mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* convert tensorrt controlnet * Fix code quality * Fix code quality * Fix code quality * Fix code quality * Fix code quality * Fix code quality * Fix number controlnet condition * Add convert SD XL to onnx * Add convert SD XL to tensorrt * Add convert SD XL to tensorrt * Add examples in comments * Add examples in comments * Add test onnx controlnet * Add tensorrt test * Remove copied * Move file test to examples/community * Remove script * Remove script * Remove text --------- Co-authored-by: dotieuthien <thien.do@mservice.com.vn> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
506 lines
18 KiB
Python
506 lines
18 KiB
Python
import argparse
|
|
import os
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import onnx
|
|
import onnx_graphsurgeon as gs
|
|
import torch
|
|
from onnx import shape_inference
|
|
from packaging import version
|
|
from polygraphy.backend.onnx.loader import fold_constants
|
|
from torch.onnx import export
|
|
|
|
from diffusers import (
|
|
ControlNetModel,
|
|
StableDiffusionControlNetImg2ImgPipeline,
|
|
)
|
|
from diffusers.models.attention_processor import AttnProcessor
|
|
from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
|
|
|
|
|
|
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
|
|
is_torch_2_0_1 = version.parse(version.parse(torch.__version__).base_version) == version.parse("2.0.1")
|
|
|
|
|
|
class Optimizer:
|
|
def __init__(self, onnx_graph, verbose=False):
|
|
self.graph = gs.import_onnx(onnx_graph)
|
|
self.verbose = verbose
|
|
|
|
def info(self, prefix):
|
|
if self.verbose:
|
|
print(
|
|
f"{prefix} .. {len(self.graph.nodes)} nodes, {len(self.graph.tensors().keys())} tensors, {len(self.graph.inputs)} inputs, {len(self.graph.outputs)} outputs"
|
|
)
|
|
|
|
def cleanup(self, return_onnx=False):
|
|
self.graph.cleanup().toposort()
|
|
if return_onnx:
|
|
return gs.export_onnx(self.graph)
|
|
|
|
def select_outputs(self, keep, names=None):
|
|
self.graph.outputs = [self.graph.outputs[o] for o in keep]
|
|
if names:
|
|
for i, name in enumerate(names):
|
|
self.graph.outputs[i].name = name
|
|
|
|
def fold_constants(self, return_onnx=False):
|
|
onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True)
|
|
self.graph = gs.import_onnx(onnx_graph)
|
|
if return_onnx:
|
|
return onnx_graph
|
|
|
|
def infer_shapes(self, return_onnx=False):
|
|
onnx_graph = gs.export_onnx(self.graph)
|
|
if onnx_graph.ByteSize() > 2147483648:
|
|
raise TypeError("ERROR: model size exceeds supported 2GB limit")
|
|
else:
|
|
onnx_graph = shape_inference.infer_shapes(onnx_graph)
|
|
|
|
self.graph = gs.import_onnx(onnx_graph)
|
|
if return_onnx:
|
|
return onnx_graph
|
|
|
|
|
|
def optimize(onnx_graph, name, verbose):
|
|
opt = Optimizer(onnx_graph, verbose=verbose)
|
|
opt.info(name + ": original")
|
|
opt.cleanup()
|
|
opt.info(name + ": cleanup")
|
|
opt.fold_constants()
|
|
opt.info(name + ": fold constants")
|
|
# opt.infer_shapes()
|
|
# opt.info(name + ': shape inference')
|
|
onnx_opt_graph = opt.cleanup(return_onnx=True)
|
|
opt.info(name + ": finished")
|
|
return onnx_opt_graph
|
|
|
|
|
|
class UNet2DConditionControlNetModel(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
unet,
|
|
controlnets: ControlNetModel,
|
|
):
|
|
super().__init__()
|
|
self.unet = unet
|
|
self.controlnets = controlnets
|
|
|
|
def forward(
|
|
self,
|
|
sample,
|
|
timestep,
|
|
encoder_hidden_states,
|
|
controlnet_conds,
|
|
controlnet_scales,
|
|
):
|
|
for i, (controlnet_cond, conditioning_scale, controlnet) in enumerate(
|
|
zip(controlnet_conds, controlnet_scales, self.controlnets)
|
|
):
|
|
down_samples, mid_sample = controlnet(
|
|
sample,
|
|
timestep,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
controlnet_cond=controlnet_cond,
|
|
conditioning_scale=conditioning_scale,
|
|
return_dict=False,
|
|
)
|
|
|
|
# merge samples
|
|
if i == 0:
|
|
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
|
|
else:
|
|
down_block_res_samples = [
|
|
samples_prev + samples_curr
|
|
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
|
|
]
|
|
mid_block_res_sample += mid_sample
|
|
|
|
noise_pred = self.unet(
|
|
sample,
|
|
timestep,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
return_dict=False,
|
|
)[0]
|
|
return noise_pred
|
|
|
|
|
|
class UNet2DConditionXLControlNetModel(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
unet,
|
|
controlnets: ControlNetModel,
|
|
):
|
|
super().__init__()
|
|
self.unet = unet
|
|
self.controlnets = controlnets
|
|
|
|
def forward(
|
|
self,
|
|
sample,
|
|
timestep,
|
|
encoder_hidden_states,
|
|
controlnet_conds,
|
|
controlnet_scales,
|
|
text_embeds,
|
|
time_ids,
|
|
):
|
|
added_cond_kwargs = {"text_embeds": text_embeds, "time_ids": time_ids}
|
|
for i, (controlnet_cond, conditioning_scale, controlnet) in enumerate(
|
|
zip(controlnet_conds, controlnet_scales, self.controlnets)
|
|
):
|
|
down_samples, mid_sample = controlnet(
|
|
sample,
|
|
timestep,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
controlnet_cond=controlnet_cond,
|
|
conditioning_scale=conditioning_scale,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)
|
|
|
|
# merge samples
|
|
if i == 0:
|
|
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
|
|
else:
|
|
down_block_res_samples = [
|
|
samples_prev + samples_curr
|
|
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
|
|
]
|
|
mid_block_res_sample += mid_sample
|
|
|
|
noise_pred = self.unet(
|
|
sample,
|
|
timestep,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
return noise_pred
|
|
|
|
|
|
def onnx_export(
|
|
model,
|
|
model_args: tuple,
|
|
output_path: Path,
|
|
ordered_input_names,
|
|
output_names,
|
|
dynamic_axes,
|
|
opset,
|
|
use_external_data_format=False,
|
|
):
|
|
output_path.parent.mkdir(parents=True, exist_ok=True)
|
|
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
|
|
# so we check the torch version for backwards compatibility
|
|
with torch.inference_mode(), torch.autocast("cuda"):
|
|
if is_torch_less_than_1_11:
|
|
export(
|
|
model,
|
|
model_args,
|
|
f=output_path.as_posix(),
|
|
input_names=ordered_input_names,
|
|
output_names=output_names,
|
|
dynamic_axes=dynamic_axes,
|
|
do_constant_folding=True,
|
|
use_external_data_format=use_external_data_format,
|
|
enable_onnx_checker=True,
|
|
opset_version=opset,
|
|
)
|
|
else:
|
|
export(
|
|
model,
|
|
model_args,
|
|
f=output_path.as_posix(),
|
|
input_names=ordered_input_names,
|
|
output_names=output_names,
|
|
dynamic_axes=dynamic_axes,
|
|
do_constant_folding=True,
|
|
opset_version=opset,
|
|
)
|
|
|
|
|
|
@torch.no_grad()
|
|
def convert_models(
|
|
model_path: str, controlnet_path: list, output_path: str, opset: int, fp16: bool = False, sd_xl: bool = False
|
|
):
|
|
"""
|
|
Function to convert models in stable diffusion controlnet pipeline into ONNX format
|
|
|
|
Example:
|
|
python convert_stable_diffusion_controlnet_to_onnx.py
|
|
--model_path danbrown/RevAnimated-v1-2-2
|
|
--controlnet_path lllyasviel/control_v11f1e_sd15_tile ioclab/brightness-controlnet
|
|
--output_path path-to-models-stable_diffusion/RevAnimated-v1-2-2
|
|
--fp16
|
|
|
|
Example for SD XL:
|
|
python convert_stable_diffusion_controlnet_to_onnx.py
|
|
--model_path stabilityai/stable-diffusion-xl-base-1.0
|
|
--controlnet_path SargeZT/sdxl-controlnet-seg
|
|
--output_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0
|
|
--fp16
|
|
--sd_xl
|
|
|
|
Returns:
|
|
create 4 onnx models in output path
|
|
text_encoder/model.onnx
|
|
unet/model.onnx + unet/weights.pb
|
|
vae_encoder/model.onnx
|
|
vae_decoder/model.onnx
|
|
|
|
run test script in diffusers/examples/community
|
|
python test_onnx_controlnet.py
|
|
--sd_model danbrown/RevAnimated-v1-2-2
|
|
--onnx_model_dir path-to-models-stable_diffusion/RevAnimated-v1-2-2
|
|
--qr_img_path path-to-qr-code-image
|
|
"""
|
|
dtype = torch.float16 if fp16 else torch.float32
|
|
if fp16 and torch.cuda.is_available():
|
|
device = "cuda"
|
|
elif fp16 and not torch.cuda.is_available():
|
|
raise ValueError("`float16` model export is only supported on GPUs with CUDA")
|
|
else:
|
|
device = "cpu"
|
|
|
|
# init controlnet
|
|
controlnets = []
|
|
for path in controlnet_path:
|
|
controlnet = ControlNetModel.from_pretrained(path, torch_dtype=dtype).to(device)
|
|
if is_torch_2_0_1:
|
|
controlnet.set_attn_processor(AttnProcessor())
|
|
controlnets.append(controlnet)
|
|
|
|
if sd_xl:
|
|
if len(controlnets) == 1:
|
|
controlnet = controlnets[0]
|
|
else:
|
|
raise ValueError("MultiControlNet is not yet supported.")
|
|
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
model_path, controlnet=controlnet, torch_dtype=dtype, variant="fp16", use_safetensors=True
|
|
).to(device)
|
|
else:
|
|
pipeline = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
|
model_path, controlnet=controlnets, torch_dtype=dtype
|
|
).to(device)
|
|
|
|
output_path = Path(output_path)
|
|
if is_torch_2_0_1:
|
|
pipeline.unet.set_attn_processor(AttnProcessor())
|
|
pipeline.vae.set_attn_processor(AttnProcessor())
|
|
|
|
# # TEXT ENCODER
|
|
num_tokens = pipeline.text_encoder.config.max_position_embeddings
|
|
text_hidden_size = pipeline.text_encoder.config.hidden_size
|
|
text_input = pipeline.tokenizer(
|
|
"A sample prompt",
|
|
padding="max_length",
|
|
max_length=pipeline.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
onnx_export(
|
|
pipeline.text_encoder,
|
|
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files
|
|
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)),
|
|
output_path=output_path / "text_encoder" / "model.onnx",
|
|
ordered_input_names=["input_ids"],
|
|
output_names=["last_hidden_state", "pooler_output"],
|
|
dynamic_axes={
|
|
"input_ids": {0: "batch", 1: "sequence"},
|
|
},
|
|
opset=opset,
|
|
)
|
|
del pipeline.text_encoder
|
|
|
|
# # UNET
|
|
if sd_xl:
|
|
controlnets = torch.nn.ModuleList(controlnets)
|
|
unet_controlnet = UNet2DConditionXLControlNetModel(pipeline.unet, controlnets)
|
|
unet_in_channels = pipeline.unet.config.in_channels
|
|
unet_sample_size = pipeline.unet.config.sample_size
|
|
text_hidden_size = 2048
|
|
img_size = 8 * unet_sample_size
|
|
unet_path = output_path / "unet" / "model.onnx"
|
|
|
|
onnx_export(
|
|
unet_controlnet,
|
|
model_args=(
|
|
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
|
|
torch.tensor([1.0]).to(device=device, dtype=dtype),
|
|
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
|
|
torch.randn(len(controlnets), 2, 3, img_size, img_size).to(device=device, dtype=dtype),
|
|
torch.randn(len(controlnets), 1).to(device=device, dtype=dtype),
|
|
torch.randn(2, 1280).to(device=device, dtype=dtype),
|
|
torch.rand(2, 6).to(device=device, dtype=dtype),
|
|
),
|
|
output_path=unet_path,
|
|
ordered_input_names=[
|
|
"sample",
|
|
"timestep",
|
|
"encoder_hidden_states",
|
|
"controlnet_conds",
|
|
"conditioning_scales",
|
|
"text_embeds",
|
|
"time_ids",
|
|
],
|
|
output_names=["noise_pred"], # has to be different from "sample" for correct tracing
|
|
dynamic_axes={
|
|
"sample": {0: "2B", 2: "H", 3: "W"},
|
|
"encoder_hidden_states": {0: "2B"},
|
|
"controlnet_conds": {1: "2B", 3: "8H", 4: "8W"},
|
|
"text_embeds": {0: "2B"},
|
|
"time_ids": {0: "2B"},
|
|
},
|
|
opset=opset,
|
|
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split
|
|
)
|
|
unet_model_path = str(unet_path.absolute().as_posix())
|
|
unet_dir = os.path.dirname(unet_model_path)
|
|
# optimize onnx
|
|
shape_inference.infer_shapes_path(unet_model_path, unet_model_path)
|
|
unet_opt_graph = optimize(onnx.load(unet_model_path), name="Unet", verbose=True)
|
|
# clean up existing tensor files
|
|
shutil.rmtree(unet_dir)
|
|
os.mkdir(unet_dir)
|
|
# collate external tensor files into one
|
|
onnx.save_model(
|
|
unet_opt_graph,
|
|
unet_model_path,
|
|
save_as_external_data=True,
|
|
all_tensors_to_one_file=True,
|
|
location="weights.pb",
|
|
convert_attribute=False,
|
|
)
|
|
del pipeline.unet
|
|
else:
|
|
controlnets = torch.nn.ModuleList(controlnets)
|
|
unet_controlnet = UNet2DConditionControlNetModel(pipeline.unet, controlnets)
|
|
unet_in_channels = pipeline.unet.config.in_channels
|
|
unet_sample_size = pipeline.unet.config.sample_size
|
|
img_size = 8 * unet_sample_size
|
|
unet_path = output_path / "unet" / "model.onnx"
|
|
|
|
onnx_export(
|
|
unet_controlnet,
|
|
model_args=(
|
|
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
|
|
torch.tensor([1.0]).to(device=device, dtype=dtype),
|
|
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
|
|
torch.randn(len(controlnets), 2, 3, img_size, img_size).to(device=device, dtype=dtype),
|
|
torch.randn(len(controlnets), 1).to(device=device, dtype=dtype),
|
|
),
|
|
output_path=unet_path,
|
|
ordered_input_names=[
|
|
"sample",
|
|
"timestep",
|
|
"encoder_hidden_states",
|
|
"controlnet_conds",
|
|
"conditioning_scales",
|
|
],
|
|
output_names=["noise_pred"], # has to be different from "sample" for correct tracing
|
|
dynamic_axes={
|
|
"sample": {0: "2B", 2: "H", 3: "W"},
|
|
"encoder_hidden_states": {0: "2B"},
|
|
"controlnet_conds": {1: "2B", 3: "8H", 4: "8W"},
|
|
},
|
|
opset=opset,
|
|
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split
|
|
)
|
|
unet_model_path = str(unet_path.absolute().as_posix())
|
|
unet_dir = os.path.dirname(unet_model_path)
|
|
# optimize onnx
|
|
shape_inference.infer_shapes_path(unet_model_path, unet_model_path)
|
|
unet_opt_graph = optimize(onnx.load(unet_model_path), name="Unet", verbose=True)
|
|
# clean up existing tensor files
|
|
shutil.rmtree(unet_dir)
|
|
os.mkdir(unet_dir)
|
|
# collate external tensor files into one
|
|
onnx.save_model(
|
|
unet_opt_graph,
|
|
unet_model_path,
|
|
save_as_external_data=True,
|
|
all_tensors_to_one_file=True,
|
|
location="weights.pb",
|
|
convert_attribute=False,
|
|
)
|
|
del pipeline.unet
|
|
|
|
# VAE ENCODER
|
|
vae_encoder = pipeline.vae
|
|
vae_in_channels = vae_encoder.config.in_channels
|
|
vae_sample_size = vae_encoder.config.sample_size
|
|
# need to get the raw tensor output (sample) from the encoder
|
|
vae_encoder.forward = lambda sample: vae_encoder.encode(sample).latent_dist.sample()
|
|
onnx_export(
|
|
vae_encoder,
|
|
model_args=(torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype),),
|
|
output_path=output_path / "vae_encoder" / "model.onnx",
|
|
ordered_input_names=["sample"],
|
|
output_names=["latent_sample"],
|
|
dynamic_axes={
|
|
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
|
|
},
|
|
opset=opset,
|
|
)
|
|
|
|
# VAE DECODER
|
|
vae_decoder = pipeline.vae
|
|
vae_latent_channels = vae_decoder.config.latent_channels
|
|
# forward only through the decoder part
|
|
vae_decoder.forward = vae_encoder.decode
|
|
onnx_export(
|
|
vae_decoder,
|
|
model_args=(
|
|
torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
|
|
),
|
|
output_path=output_path / "vae_decoder" / "model.onnx",
|
|
ordered_input_names=["latent_sample"],
|
|
output_names=["sample"],
|
|
dynamic_axes={
|
|
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
|
|
},
|
|
opset=opset,
|
|
)
|
|
del pipeline.vae
|
|
|
|
del pipeline
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--sd_xl", action="store_true", default=False, help="SD XL pipeline")
|
|
|
|
parser.add_argument(
|
|
"--model_path",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--controlnet_path",
|
|
nargs="+",
|
|
required=True,
|
|
help="Path to the `controlnet` checkpoint to convert (either a local directory or on the Hub).",
|
|
)
|
|
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
|
|
|
|
parser.add_argument(
|
|
"--opset",
|
|
default=14,
|
|
type=int,
|
|
help="The version of the ONNX operator set to use.",
|
|
)
|
|
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
|
|
|
|
args = parser.parse_args()
|
|
|
|
convert_models(args.model_path, args.controlnet_path, args.output_path, args.opset, args.fp16, args.sd_xl)
|