mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
The function load_model_dict_into_meta was moved from modeling_utils.py to model_loading_utils.py but the imports in the conversion scripts were not updated, causing ImportError when running these scripts. This fixes the import in 6 conversion scripts: - scripts/convert_sd3_to_diffusers.py - scripts/convert_stable_cascade_lite.py - scripts/convert_stable_cascade.py - scripts/convert_stable_audio.py - scripts/convert_sana_to_diffusers.py - scripts/convert_sana_controlnet_to_diffusers.py Fixes #12606
352 lines
16 KiB
Python
352 lines
16 KiB
Python
import argparse
|
|
from contextlib import nullcontext
|
|
|
|
import safetensors.torch
|
|
import torch
|
|
from accelerate import init_empty_weights
|
|
|
|
from diffusers import AutoencoderKL, SD3Transformer2DModel
|
|
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
|
|
from diffusers.models.model_loading_utils import load_model_dict_into_meta
|
|
from diffusers.utils.import_utils import is_accelerate_available
|
|
|
|
|
|
CTX = init_empty_weights if is_accelerate_available() else nullcontext
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--checkpoint_path", type=str)
|
|
parser.add_argument("--output_path", type=str)
|
|
parser.add_argument("--dtype", type=str)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
def load_original_checkpoint(ckpt_path):
|
|
original_state_dict = safetensors.torch.load_file(ckpt_path)
|
|
keys = list(original_state_dict.keys())
|
|
for k in keys:
|
|
if "model.diffusion_model." in k:
|
|
original_state_dict[k.replace("model.diffusion_model.", "")] = original_state_dict.pop(k)
|
|
|
|
return original_state_dict
|
|
|
|
|
|
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
|
|
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
|
|
def swap_scale_shift(weight, dim):
|
|
shift, scale = weight.chunk(2, dim=0)
|
|
new_weight = torch.cat([scale, shift], dim=0)
|
|
return new_weight
|
|
|
|
|
|
def convert_sd3_transformer_checkpoint_to_diffusers(
|
|
original_state_dict, num_layers, caption_projection_dim, dual_attention_layers, has_qk_norm
|
|
):
|
|
converted_state_dict = {}
|
|
|
|
# Positional and patch embeddings.
|
|
converted_state_dict["pos_embed.pos_embed"] = original_state_dict.pop("pos_embed")
|
|
converted_state_dict["pos_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight")
|
|
converted_state_dict["pos_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias")
|
|
|
|
# Timestep embeddings.
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
|
|
"t_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
|
|
"t_embedder.mlp.0.bias"
|
|
)
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
|
|
"t_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
|
|
"t_embedder.mlp.2.bias"
|
|
)
|
|
|
|
# Context projections.
|
|
converted_state_dict["context_embedder.weight"] = original_state_dict.pop("context_embedder.weight")
|
|
converted_state_dict["context_embedder.bias"] = original_state_dict.pop("context_embedder.bias")
|
|
|
|
# Pooled context projection.
|
|
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop(
|
|
"y_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop(
|
|
"y_embedder.mlp.0.bias"
|
|
)
|
|
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop(
|
|
"y_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop(
|
|
"y_embedder.mlp.2.bias"
|
|
)
|
|
|
|
# Transformer blocks 🎸.
|
|
for i in range(num_layers):
|
|
# Q, K, V
|
|
sample_q, sample_k, sample_v = torch.chunk(
|
|
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0
|
|
)
|
|
context_q, context_k, context_v = torch.chunk(
|
|
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0
|
|
)
|
|
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
|
|
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0
|
|
)
|
|
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
|
|
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0
|
|
)
|
|
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias])
|
|
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias])
|
|
|
|
# qk norm
|
|
if has_qk_norm:
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.norm_q.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.attn.ln_q.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.norm_k.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.attn.ln_k.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_q.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.attn.ln_q.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_k.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.attn.ln_k.weight"
|
|
)
|
|
|
|
# output projections.
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.attn.proj.bias"
|
|
)
|
|
if not (i == num_layers - 1):
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.attn.proj.bias"
|
|
)
|
|
|
|
# attn2
|
|
if i in dual_attention_layers:
|
|
# Q, K, V
|
|
sample_q2, sample_k2, sample_v2 = torch.chunk(
|
|
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn2.qkv.weight"), 3, dim=0
|
|
)
|
|
sample_q2_bias, sample_k2_bias, sample_v2_bias = torch.chunk(
|
|
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn2.qkv.bias"), 3, dim=0
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.weight"] = torch.cat([sample_q2])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.bias"] = torch.cat([sample_q2_bias])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.weight"] = torch.cat([sample_k2])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.bias"] = torch.cat([sample_k2_bias])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.weight"] = torch.cat([sample_v2])
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.bias"] = torch.cat([sample_v2_bias])
|
|
|
|
# qk norm
|
|
if has_qk_norm:
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.norm_q.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.attn2.ln_q.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.norm_k.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.attn2.ln_k.weight"
|
|
)
|
|
|
|
# output projections.
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.attn2.proj.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.bias"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.attn2.proj.bias"
|
|
)
|
|
|
|
# norms.
|
|
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias"
|
|
)
|
|
if not (i == num_layers - 1):
|
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"
|
|
)
|
|
else:
|
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift(
|
|
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"),
|
|
dim=caption_projection_dim,
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift(
|
|
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"),
|
|
dim=caption_projection_dim,
|
|
)
|
|
|
|
# ffs.
|
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.mlp.fc1.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.mlp.fc1.bias"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.mlp.fc2.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.x_block.mlp.fc2.bias"
|
|
)
|
|
if not (i == num_layers - 1):
|
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.mlp.fc1.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.mlp.fc1.bias"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.mlp.fc2.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = original_state_dict.pop(
|
|
f"joint_blocks.{i}.context_block.mlp.fc2.bias"
|
|
)
|
|
|
|
# Final blocks.
|
|
converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
|
|
converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
|
|
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
|
|
original_state_dict.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim
|
|
)
|
|
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
|
|
original_state_dict.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim
|
|
)
|
|
|
|
return converted_state_dict
|
|
|
|
|
|
def is_vae_in_checkpoint(original_state_dict):
|
|
return ("first_stage_model.decoder.conv_in.weight" in original_state_dict) and (
|
|
"first_stage_model.encoder.conv_in.weight" in original_state_dict
|
|
)
|
|
|
|
|
|
def get_attn2_layers(state_dict):
|
|
attn2_layers = []
|
|
for key in state_dict.keys():
|
|
if "attn2." in key:
|
|
# Extract the layer number from the key
|
|
layer_num = int(key.split(".")[1])
|
|
attn2_layers.append(layer_num)
|
|
return tuple(sorted(set(attn2_layers)))
|
|
|
|
|
|
def get_pos_embed_max_size(state_dict):
|
|
num_patches = state_dict["pos_embed"].shape[1]
|
|
pos_embed_max_size = int(num_patches**0.5)
|
|
return pos_embed_max_size
|
|
|
|
|
|
def get_caption_projection_dim(state_dict):
|
|
caption_projection_dim = state_dict["context_embedder.weight"].shape[0]
|
|
return caption_projection_dim
|
|
|
|
|
|
def main(args):
|
|
original_ckpt = load_original_checkpoint(args.checkpoint_path)
|
|
original_dtype = next(iter(original_ckpt.values())).dtype
|
|
|
|
# Initialize dtype with a default value
|
|
dtype = None
|
|
|
|
if args.dtype is None:
|
|
dtype = original_dtype
|
|
elif args.dtype == "fp16":
|
|
dtype = torch.float16
|
|
elif args.dtype == "bf16":
|
|
dtype = torch.bfloat16
|
|
elif args.dtype == "fp32":
|
|
dtype = torch.float32
|
|
else:
|
|
raise ValueError(f"Unsupported dtype: {args.dtype}")
|
|
|
|
if dtype != original_dtype:
|
|
print(
|
|
f"Checkpoint dtype {original_dtype} does not match requested dtype {dtype}. This can lead to unexpected results, proceed with caution."
|
|
)
|
|
|
|
num_layers = list(set(int(k.split(".", 2)[1]) for k in original_ckpt if "joint_blocks" in k))[-1] + 1 # noqa: C401
|
|
|
|
caption_projection_dim = get_caption_projection_dim(original_ckpt)
|
|
|
|
# () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
|
|
attn2_layers = get_attn2_layers(original_ckpt)
|
|
|
|
# sd3.5 use qk norm("rms_norm")
|
|
has_qk_norm = any("ln_q" in key for key in original_ckpt.keys())
|
|
|
|
# sd3.5 2b use pox_embed_max_size=384 and sd3.0 and sd3.5 8b use 192
|
|
pos_embed_max_size = get_pos_embed_max_size(original_ckpt)
|
|
|
|
converted_transformer_state_dict = convert_sd3_transformer_checkpoint_to_diffusers(
|
|
original_ckpt, num_layers, caption_projection_dim, attn2_layers, has_qk_norm
|
|
)
|
|
|
|
with CTX():
|
|
transformer = SD3Transformer2DModel(
|
|
sample_size=128,
|
|
patch_size=2,
|
|
in_channels=16,
|
|
joint_attention_dim=4096,
|
|
num_layers=num_layers,
|
|
caption_projection_dim=caption_projection_dim,
|
|
num_attention_heads=num_layers,
|
|
pos_embed_max_size=pos_embed_max_size,
|
|
qk_norm="rms_norm" if has_qk_norm else None,
|
|
dual_attention_layers=attn2_layers,
|
|
)
|
|
if is_accelerate_available():
|
|
load_model_dict_into_meta(transformer, converted_transformer_state_dict)
|
|
else:
|
|
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
|
|
|
|
print("Saving SD3 Transformer in Diffusers format.")
|
|
transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer")
|
|
|
|
if is_vae_in_checkpoint(original_ckpt):
|
|
with CTX():
|
|
vae = AutoencoderKL.from_config(
|
|
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
subfolder="vae",
|
|
latent_channels=16,
|
|
use_post_quant_conv=False,
|
|
use_quant_conv=False,
|
|
scaling_factor=1.5305,
|
|
shift_factor=0.0609,
|
|
)
|
|
converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config)
|
|
if is_accelerate_available():
|
|
load_model_dict_into_meta(vae, converted_vae_state_dict)
|
|
else:
|
|
vae.load_state_dict(converted_vae_state_dict, strict=True)
|
|
|
|
print("Saving SD3 Autoencoder in Diffusers format.")
|
|
vae.to(dtype).save_pretrained(f"{args.output_path}/vae")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(args)
|