mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
The function load_model_dict_into_meta was moved from modeling_utils.py to model_loading_utils.py but the imports in the conversion scripts were not updated, causing ImportError when running these scripts. This fixes the import in 6 conversion scripts: - scripts/convert_sd3_to_diffusers.py - scripts/convert_stable_cascade_lite.py - scripts/convert_stable_cascade.py - scripts/convert_stable_audio.py - scripts/convert_sana_to_diffusers.py - scripts/convert_sana_controlnet_to_diffusers.py Fixes #12606
457 lines
19 KiB
Python
457 lines
19 KiB
Python
#!/usr/bin/env python
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import os
|
|
from contextlib import nullcontext
|
|
|
|
import torch
|
|
from accelerate import init_empty_weights
|
|
from huggingface_hub import hf_hub_download, snapshot_download
|
|
from termcolor import colored
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderDC,
|
|
DPMSolverMultistepScheduler,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
SanaPipeline,
|
|
SanaSprintPipeline,
|
|
SanaTransformer2DModel,
|
|
SCMScheduler,
|
|
)
|
|
from diffusers.models.model_loading_utils import load_model_dict_into_meta
|
|
from diffusers.utils.import_utils import is_accelerate_available
|
|
|
|
|
|
CTX = init_empty_weights if is_accelerate_available else nullcontext
|
|
|
|
ckpt_ids = [
|
|
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px/checkpoints/Sana_Sprint_0.6B_1024px.pth"
|
|
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px/checkpoints/Sana_Sprint_1.6B_1024px.pth"
|
|
"Efficient-Large-Model/SANA1.5_4.8B_1024px/checkpoints/SANA1.5_4.8B_1024px.pth",
|
|
"Efficient-Large-Model/SANA1.5_1.6B_1024px/checkpoints/SANA1.5_1.6B_1024px.pth",
|
|
"Efficient-Large-Model/Sana_1600M_4Kpx_BF16/checkpoints/Sana_1600M_4Kpx_BF16.pth",
|
|
"Efficient-Large-Model/Sana_1600M_2Kpx_BF16/checkpoints/Sana_1600M_2Kpx_BF16.pth",
|
|
"Efficient-Large-Model/Sana_1600M_1024px_MultiLing/checkpoints/Sana_1600M_1024px_MultiLing.pth",
|
|
"Efficient-Large-Model/Sana_1600M_1024px_BF16/checkpoints/Sana_1600M_1024px_BF16.pth",
|
|
"Efficient-Large-Model/Sana_1600M_512px_MultiLing/checkpoints/Sana_1600M_512px_MultiLing.pth",
|
|
"Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth",
|
|
"Efficient-Large-Model/Sana_1600M_512px/checkpoints/Sana_1600M_512px.pth",
|
|
"Efficient-Large-Model/Sana_600M_1024px/checkpoints/Sana_600M_1024px_MultiLing.pth",
|
|
"Efficient-Large-Model/Sana_600M_512px/checkpoints/Sana_600M_512px_MultiLing.pth",
|
|
]
|
|
# https://github.com/NVlabs/Sana/blob/main/scripts/inference.py
|
|
|
|
|
|
def main(args):
|
|
cache_dir_path = os.path.expanduser("~/.cache/huggingface/hub")
|
|
|
|
if args.orig_ckpt_path is None or args.orig_ckpt_path in ckpt_ids:
|
|
ckpt_id = args.orig_ckpt_path or ckpt_ids[0]
|
|
snapshot_download(
|
|
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}",
|
|
cache_dir=cache_dir_path,
|
|
repo_type="model",
|
|
)
|
|
file_path = hf_hub_download(
|
|
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}",
|
|
filename=f"{'/'.join(ckpt_id.split('/')[2:])}",
|
|
cache_dir=cache_dir_path,
|
|
repo_type="model",
|
|
)
|
|
else:
|
|
file_path = args.orig_ckpt_path
|
|
|
|
print(colored(f"Loading checkpoint from {file_path}", "green", attrs=["bold"]))
|
|
all_state_dict = torch.load(file_path, weights_only=True)
|
|
state_dict = all_state_dict.pop("state_dict")
|
|
converted_state_dict = {}
|
|
|
|
# Patch embeddings.
|
|
converted_state_dict["patch_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
|
|
converted_state_dict["patch_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")
|
|
|
|
# Caption projection.
|
|
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
|
|
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
|
|
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
|
|
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
|
|
|
|
# Handle different time embedding structure based on model type
|
|
|
|
if args.model_type in ["SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"]:
|
|
# For Sana Sprint, the time embedding structure is different
|
|
converted_state_dict["time_embed.timestep_embedder.linear_1.weight"] = state_dict.pop(
|
|
"t_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["time_embed.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
|
|
converted_state_dict["time_embed.timestep_embedder.linear_2.weight"] = state_dict.pop(
|
|
"t_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["time_embed.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
|
|
|
|
# Guidance embedder for Sana Sprint
|
|
converted_state_dict["time_embed.guidance_embedder.linear_1.weight"] = state_dict.pop(
|
|
"cfg_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["time_embed.guidance_embedder.linear_1.bias"] = state_dict.pop("cfg_embedder.mlp.0.bias")
|
|
converted_state_dict["time_embed.guidance_embedder.linear_2.weight"] = state_dict.pop(
|
|
"cfg_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["time_embed.guidance_embedder.linear_2.bias"] = state_dict.pop("cfg_embedder.mlp.2.bias")
|
|
else:
|
|
# Original Sana time embedding structure
|
|
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
|
|
"t_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop(
|
|
"t_embedder.mlp.0.bias"
|
|
)
|
|
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
|
|
"t_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop(
|
|
"t_embedder.mlp.2.bias"
|
|
)
|
|
|
|
# Shared norm.
|
|
converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight")
|
|
converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias")
|
|
|
|
# y norm
|
|
converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight")
|
|
|
|
# scheduler
|
|
if args.image_size == 4096:
|
|
flow_shift = 6.0
|
|
else:
|
|
flow_shift = 3.0
|
|
|
|
# model config
|
|
if args.model_type in ["SanaMS_1600M_P1_D20", "SanaSprint_1600M_P1_D20", "SanaMS1.5_1600M_P1_D20"]:
|
|
layer_num = 20
|
|
elif args.model_type in ["SanaMS_600M_P1_D28", "SanaSprint_600M_P1_D28"]:
|
|
layer_num = 28
|
|
elif args.model_type == "SanaMS_4800M_P1_D60":
|
|
layer_num = 60
|
|
else:
|
|
raise ValueError(f"{args.model_type} is not supported.")
|
|
# Positional embedding interpolation scale.
|
|
interpolation_scale = {512: None, 1024: None, 2048: 1.0, 4096: 2.0}
|
|
qk_norm = (
|
|
"rms_norm_across_heads"
|
|
if args.model_type
|
|
in ["SanaMS1.5_1600M_P1_D20", "SanaMS1.5_4800M_P1_D60", "SanaSprint_600M_P1_D28", "SanaSprint_1600M_P1_D20"]
|
|
else None
|
|
)
|
|
|
|
for depth in range(layer_num):
|
|
# Transformer blocks.
|
|
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
|
|
f"blocks.{depth}.scale_shift_table"
|
|
)
|
|
|
|
# Linear Attention is all you need 🤘
|
|
# Self attention.
|
|
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
|
|
if qk_norm is not None:
|
|
# Add Q/K normalization for self-attention (attn1) - needed for Sana-Sprint and Sana-1.5
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_q.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.q_norm.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_k.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.k_norm.weight"
|
|
)
|
|
# Projection.
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.proj.bias"
|
|
)
|
|
|
|
# Feed-forward.
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.inverted_conv.conv.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.inverted_conv.conv.bias"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.depth_conv.conv.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.depth_conv.conv.bias"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.point_conv.conv.weight"
|
|
)
|
|
|
|
# Cross-attention.
|
|
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight")
|
|
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias")
|
|
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0)
|
|
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0)
|
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
|
|
if qk_norm is not None:
|
|
# Add Q/K normalization for cross-attention (attn2) - needed for Sana-Sprint and Sana-1.5
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_q.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.cross_attn.q_norm.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_k.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.cross_attn.k_norm.weight"
|
|
)
|
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.cross_attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.cross_attn.proj.bias"
|
|
)
|
|
|
|
# Final block.
|
|
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight")
|
|
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias")
|
|
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table")
|
|
|
|
# Transformer
|
|
with CTX():
|
|
transformer_kwargs = {
|
|
"in_channels": 32,
|
|
"out_channels": 32,
|
|
"num_attention_heads": model_kwargs[args.model_type]["num_attention_heads"],
|
|
"attention_head_dim": model_kwargs[args.model_type]["attention_head_dim"],
|
|
"num_layers": model_kwargs[args.model_type]["num_layers"],
|
|
"num_cross_attention_heads": model_kwargs[args.model_type]["num_cross_attention_heads"],
|
|
"cross_attention_head_dim": model_kwargs[args.model_type]["cross_attention_head_dim"],
|
|
"cross_attention_dim": model_kwargs[args.model_type]["cross_attention_dim"],
|
|
"caption_channels": 2304,
|
|
"mlp_ratio": 2.5,
|
|
"attention_bias": False,
|
|
"sample_size": args.image_size // 32,
|
|
"patch_size": 1,
|
|
"norm_elementwise_affine": False,
|
|
"norm_eps": 1e-6,
|
|
"interpolation_scale": interpolation_scale[args.image_size],
|
|
}
|
|
|
|
# Add qk_norm parameter for Sana Sprint
|
|
if args.model_type in [
|
|
"SanaMS1.5_1600M_P1_D20",
|
|
"SanaMS1.5_4800M_P1_D60",
|
|
"SanaSprint_600M_P1_D28",
|
|
"SanaSprint_1600M_P1_D20",
|
|
]:
|
|
transformer_kwargs["qk_norm"] = "rms_norm_across_heads"
|
|
if args.model_type in ["SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"]:
|
|
transformer_kwargs["guidance_embeds"] = True
|
|
|
|
transformer = SanaTransformer2DModel(**transformer_kwargs)
|
|
|
|
if is_accelerate_available():
|
|
load_model_dict_into_meta(transformer, converted_state_dict)
|
|
else:
|
|
transformer.load_state_dict(converted_state_dict, strict=True, assign=True)
|
|
|
|
try:
|
|
state_dict.pop("y_embedder.y_embedding")
|
|
state_dict.pop("pos_embed")
|
|
state_dict.pop("logvar_linear.weight")
|
|
state_dict.pop("logvar_linear.bias")
|
|
except KeyError:
|
|
print("y_embedder.y_embedding or pos_embed not found in the state_dict")
|
|
|
|
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}"
|
|
|
|
num_model_params = sum(p.numel() for p in transformer.parameters())
|
|
print(f"Total number of transformer parameters: {num_model_params}")
|
|
|
|
transformer = transformer.to(weight_dtype)
|
|
|
|
if not args.save_full_pipeline:
|
|
print(
|
|
colored(
|
|
f"Only saving transformer model of {args.model_type}. "
|
|
f"Set --save_full_pipeline to save the whole Pipeline",
|
|
"green",
|
|
attrs=["bold"],
|
|
)
|
|
)
|
|
transformer.save_pretrained(
|
|
os.path.join(args.dump_path, "transformer"), safe_serialization=True, max_shard_size="5GB"
|
|
)
|
|
else:
|
|
print(colored(f"Saving the whole Pipeline containing {args.model_type}", "green", attrs=["bold"]))
|
|
# VAE
|
|
ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers", torch_dtype=torch.float32)
|
|
|
|
# Text Encoder
|
|
text_encoder_model_path = "Efficient-Large-Model/gemma-2-2b-it"
|
|
tokenizer = AutoTokenizer.from_pretrained(text_encoder_model_path)
|
|
tokenizer.padding_side = "right"
|
|
text_encoder = AutoModelForCausalLM.from_pretrained(
|
|
text_encoder_model_path, torch_dtype=torch.bfloat16
|
|
).get_decoder()
|
|
|
|
# Choose the appropriate pipeline and scheduler based on model type
|
|
if args.model_type in ["SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"]:
|
|
# Force SCM Scheduler for Sana Sprint regardless of scheduler_type
|
|
if args.scheduler_type != "scm":
|
|
print(
|
|
colored(
|
|
f"Warning: Overriding scheduler_type '{args.scheduler_type}' to 'scm' for SanaSprint model",
|
|
"yellow",
|
|
attrs=["bold"],
|
|
)
|
|
)
|
|
|
|
# SCM Scheduler for Sana Sprint
|
|
scheduler_config = {
|
|
"prediction_type": "trigflow",
|
|
"sigma_data": 0.5,
|
|
}
|
|
scheduler = SCMScheduler(**scheduler_config)
|
|
pipe = SanaSprintPipeline(
|
|
tokenizer=tokenizer,
|
|
text_encoder=text_encoder,
|
|
transformer=transformer,
|
|
vae=ae,
|
|
scheduler=scheduler,
|
|
)
|
|
else:
|
|
# Original Sana scheduler
|
|
if args.scheduler_type == "flow-dpm_solver":
|
|
scheduler = DPMSolverMultistepScheduler(
|
|
flow_shift=flow_shift,
|
|
use_flow_sigmas=True,
|
|
prediction_type="flow_prediction",
|
|
)
|
|
elif args.scheduler_type == "flow-euler":
|
|
scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
|
|
else:
|
|
raise ValueError(f"Scheduler type {args.scheduler_type} is not supported")
|
|
|
|
pipe = SanaPipeline(
|
|
tokenizer=tokenizer,
|
|
text_encoder=text_encoder,
|
|
transformer=transformer,
|
|
vae=ae,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
pipe.save_pretrained(args.dump_path, safe_serialization=True, max_shard_size="5GB")
|
|
|
|
|
|
DTYPE_MAPPING = {
|
|
"fp32": torch.float32,
|
|
"fp16": torch.float16,
|
|
"bf16": torch.bfloat16,
|
|
}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
|
|
)
|
|
parser.add_argument(
|
|
"--image_size",
|
|
default=1024,
|
|
type=int,
|
|
choices=[512, 1024, 2048, 4096],
|
|
required=False,
|
|
help="Image size of pretrained model, 512, 1024, 2048 or 4096.",
|
|
)
|
|
parser.add_argument(
|
|
"--model_type",
|
|
default="SanaMS_1600M_P1_D20",
|
|
type=str,
|
|
choices=[
|
|
"SanaMS_1600M_P1_D20",
|
|
"SanaMS_600M_P1_D28",
|
|
"SanaMS1.5_1600M_P1_D20",
|
|
"SanaMS1.5_4800M_P1_D60",
|
|
"SanaSprint_1600M_P1_D20",
|
|
"SanaSprint_600M_P1_D28",
|
|
],
|
|
)
|
|
parser.add_argument(
|
|
"--scheduler_type",
|
|
default="flow-dpm_solver",
|
|
type=str,
|
|
choices=["flow-dpm_solver", "flow-euler", "scm"],
|
|
help="Scheduler type to use. Use 'scm' for Sana Sprint models.",
|
|
)
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
|
|
parser.add_argument("--save_full_pipeline", action="store_true", help="save all the pipeline elements in one.")
|
|
parser.add_argument("--dtype", default="fp32", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
model_kwargs = {
|
|
"SanaMS_1600M_P1_D20": {
|
|
"num_attention_heads": 70,
|
|
"attention_head_dim": 32,
|
|
"num_cross_attention_heads": 20,
|
|
"cross_attention_head_dim": 112,
|
|
"cross_attention_dim": 2240,
|
|
"num_layers": 20,
|
|
},
|
|
"SanaMS_600M_P1_D28": {
|
|
"num_attention_heads": 36,
|
|
"attention_head_dim": 32,
|
|
"num_cross_attention_heads": 16,
|
|
"cross_attention_head_dim": 72,
|
|
"cross_attention_dim": 1152,
|
|
"num_layers": 28,
|
|
},
|
|
"SanaMS1.5_1600M_P1_D20": {
|
|
"num_attention_heads": 70,
|
|
"attention_head_dim": 32,
|
|
"num_cross_attention_heads": 20,
|
|
"cross_attention_head_dim": 112,
|
|
"cross_attention_dim": 2240,
|
|
"num_layers": 20,
|
|
},
|
|
"SanaMS1.5_4800M_P1_D60": {
|
|
"num_attention_heads": 70,
|
|
"attention_head_dim": 32,
|
|
"num_cross_attention_heads": 20,
|
|
"cross_attention_head_dim": 112,
|
|
"cross_attention_dim": 2240,
|
|
"num_layers": 60,
|
|
},
|
|
"SanaSprint_600M_P1_D28": {
|
|
"num_attention_heads": 36,
|
|
"attention_head_dim": 32,
|
|
"num_cross_attention_heads": 16,
|
|
"cross_attention_head_dim": 72,
|
|
"cross_attention_dim": 1152,
|
|
"num_layers": 28,
|
|
},
|
|
"SanaSprint_1600M_P1_D20": {
|
|
"num_attention_heads": 70,
|
|
"attention_head_dim": 32,
|
|
"num_cross_attention_heads": 20,
|
|
"cross_attention_head_dim": 112,
|
|
"cross_attention_dim": 2240,
|
|
"num_layers": 20,
|
|
},
|
|
}
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
weight_dtype = DTYPE_MAPPING[args.dtype]
|
|
|
|
main(args)
|