mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* support PixArt-DMD --------- Co-authored-by: jschen <chenjunsong4@h-partners.com> Co-authored-by: badayvedat <badayvedat@gmail.com> Co-authored-by: Vedat Baday <54285744+badayvedat@users.noreply.github.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: YiYi Xu <yixu310@gmail.com> Co-authored-by: yiyixuxu <yixu310@gmail,com>
224 lines
10 KiB
Python
224 lines
10 KiB
Python
import argparse
|
|
import os
|
|
|
|
import torch
|
|
from transformers import T5EncoderModel, T5Tokenizer
|
|
|
|
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, PixArtSigmaPipeline, Transformer2DModel
|
|
|
|
|
|
ckpt_id = "PixArt-alpha"
|
|
# https://github.com/PixArt-alpha/PixArt-sigma/blob/dd087141864e30ec44f12cb7448dd654be065e88/scripts/inference.py#L158
|
|
interpolation_scale = {256: 0.5, 512: 1, 1024: 2, 2048: 4}
|
|
|
|
|
|
def main(args):
|
|
all_state_dict = torch.load(args.orig_ckpt_path)
|
|
state_dict = all_state_dict.pop("state_dict")
|
|
converted_state_dict = {}
|
|
|
|
# Patch embeddings.
|
|
converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
|
|
converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")
|
|
|
|
# Caption projection.
|
|
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
|
|
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
|
|
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
|
|
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
|
|
|
|
# AdaLN-single LN
|
|
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
|
|
"t_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
|
|
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
|
|
"t_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
|
|
|
|
if args.micro_condition:
|
|
# Resolution.
|
|
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.weight"] = state_dict.pop(
|
|
"csize_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.bias"] = state_dict.pop(
|
|
"csize_embedder.mlp.0.bias"
|
|
)
|
|
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.weight"] = state_dict.pop(
|
|
"csize_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.bias"] = state_dict.pop(
|
|
"csize_embedder.mlp.2.bias"
|
|
)
|
|
# Aspect ratio.
|
|
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.weight"] = state_dict.pop(
|
|
"ar_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.bias"] = state_dict.pop(
|
|
"ar_embedder.mlp.0.bias"
|
|
)
|
|
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.weight"] = state_dict.pop(
|
|
"ar_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.bias"] = state_dict.pop(
|
|
"ar_embedder.mlp.2.bias"
|
|
)
|
|
# Shared norm.
|
|
converted_state_dict["adaln_single.linear.weight"] = state_dict.pop("t_block.1.weight")
|
|
converted_state_dict["adaln_single.linear.bias"] = state_dict.pop("t_block.1.bias")
|
|
|
|
for depth in range(28):
|
|
# Transformer blocks.
|
|
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
|
|
f"blocks.{depth}.scale_shift_table"
|
|
)
|
|
# Attention is all you need 🤘
|
|
|
|
# Self attention.
|
|
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0)
|
|
q_bias, k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.bias"), 3, dim=0)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias
|
|
# Projection.
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.proj.bias"
|
|
)
|
|
if args.qk_norm:
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.q_norm.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.q_norm.bias"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.k_norm.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.k_norm.bias"
|
|
)
|
|
|
|
# Feed-forward.
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.fc1.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.fc1.bias"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.fc2.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.fc2.bias"
|
|
)
|
|
|
|
# Cross-attention.
|
|
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight")
|
|
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias")
|
|
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0)
|
|
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0)
|
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
|
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.cross_attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.cross_attn.proj.bias"
|
|
)
|
|
|
|
# Final block.
|
|
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight")
|
|
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias")
|
|
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table")
|
|
|
|
# PixArt XL/2
|
|
transformer = Transformer2DModel(
|
|
sample_size=args.image_size // 8,
|
|
num_layers=28,
|
|
attention_head_dim=72,
|
|
in_channels=4,
|
|
out_channels=8,
|
|
patch_size=2,
|
|
attention_bias=True,
|
|
num_attention_heads=16,
|
|
cross_attention_dim=1152,
|
|
activation_fn="gelu-approximate",
|
|
num_embeds_ada_norm=1000,
|
|
norm_type="ada_norm_single",
|
|
norm_elementwise_affine=False,
|
|
norm_eps=1e-6,
|
|
caption_channels=4096,
|
|
interpolation_scale=interpolation_scale[args.image_size],
|
|
use_additional_conditions=args.micro_condition,
|
|
)
|
|
transformer.load_state_dict(converted_state_dict, strict=True)
|
|
|
|
assert transformer.pos_embed.pos_embed is not None
|
|
try:
|
|
state_dict.pop("y_embedder.y_embedding")
|
|
state_dict.pop("pos_embed")
|
|
except Exception as e:
|
|
print(f"Skipping {str(e)}")
|
|
pass
|
|
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}"
|
|
|
|
num_model_params = sum(p.numel() for p in transformer.parameters())
|
|
print(f"Total number of transformer parameters: {num_model_params}")
|
|
|
|
if args.only_transformer:
|
|
transformer.save_pretrained(os.path.join(args.dump_path, "transformer"))
|
|
else:
|
|
# pixart-Sigma vae link: https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main/vae
|
|
vae = AutoencoderKL.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae")
|
|
|
|
scheduler = DPMSolverMultistepScheduler()
|
|
|
|
tokenizer = T5Tokenizer.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="tokenizer")
|
|
text_encoder = T5EncoderModel.from_pretrained(
|
|
f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="text_encoder"
|
|
)
|
|
|
|
pipeline = PixArtSigmaPipeline(
|
|
tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler
|
|
)
|
|
|
|
pipeline.save_pretrained(args.dump_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--micro_condition", action="store_true", help="If use Micro-condition in PixArtMS structure during training."
|
|
)
|
|
parser.add_argument("--qk_norm", action="store_true", help="If use qk norm during training.")
|
|
parser.add_argument(
|
|
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
|
|
)
|
|
parser.add_argument(
|
|
"--image_size",
|
|
default=1024,
|
|
type=int,
|
|
choices=[256, 512, 1024, 2048],
|
|
required=False,
|
|
help="Image size of pretrained model, 256, 512, 1024, or 2048.",
|
|
)
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
|
|
parser.add_argument("--only_transformer", default=True, type=bool, required=True)
|
|
|
|
args = parser.parse_args()
|
|
main(args)
|