mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* feat 256px diffusers inference bug * change the max_length of T5 to pipeline config file * fix bug in convert_pixart_alpha_to_diffusers.py * Update scripts/convert_pixart_alpha_to_diffusers.py Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * remove multi_scale_train parser * Update src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * styling * change `model_token_max_length` to call argument. * Refactoring * add: max_sequence_length to the docstring. --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: YiYi Xu <yixu310@gmail.com>
199 lines
8.8 KiB
Python
199 lines
8.8 KiB
Python
import argparse
|
|
import os
|
|
|
|
import torch
|
|
from transformers import T5EncoderModel, T5Tokenizer
|
|
|
|
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, PixArtAlphaPipeline, Transformer2DModel
|
|
|
|
|
|
ckpt_id = "PixArt-alpha/PixArt-alpha"
|
|
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/scripts/inference.py#L125
|
|
interpolation_scale = {256: 0.5, 512: 1, 1024: 2}
|
|
|
|
|
|
def main(args):
|
|
all_state_dict = torch.load(args.orig_ckpt_path, map_location="cpu")
|
|
state_dict = all_state_dict.pop("state_dict")
|
|
converted_state_dict = {}
|
|
|
|
# Patch embeddings.
|
|
converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
|
|
converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")
|
|
|
|
# Caption projection.
|
|
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
|
|
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
|
|
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
|
|
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
|
|
|
|
# AdaLN-single LN
|
|
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
|
|
"t_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
|
|
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
|
|
"t_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
|
|
|
|
if args.image_size == 1024:
|
|
# Resolution.
|
|
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.weight"] = state_dict.pop(
|
|
"csize_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.bias"] = state_dict.pop(
|
|
"csize_embedder.mlp.0.bias"
|
|
)
|
|
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.weight"] = state_dict.pop(
|
|
"csize_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.bias"] = state_dict.pop(
|
|
"csize_embedder.mlp.2.bias"
|
|
)
|
|
# Aspect ratio.
|
|
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.weight"] = state_dict.pop(
|
|
"ar_embedder.mlp.0.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.bias"] = state_dict.pop(
|
|
"ar_embedder.mlp.0.bias"
|
|
)
|
|
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.weight"] = state_dict.pop(
|
|
"ar_embedder.mlp.2.weight"
|
|
)
|
|
converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.bias"] = state_dict.pop(
|
|
"ar_embedder.mlp.2.bias"
|
|
)
|
|
# Shared norm.
|
|
converted_state_dict["adaln_single.linear.weight"] = state_dict.pop("t_block.1.weight")
|
|
converted_state_dict["adaln_single.linear.bias"] = state_dict.pop("t_block.1.bias")
|
|
|
|
for depth in range(28):
|
|
# Transformer blocks.
|
|
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
|
|
f"blocks.{depth}.scale_shift_table"
|
|
)
|
|
|
|
# Attention is all you need 🤘
|
|
|
|
# Self attention.
|
|
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0)
|
|
q_bias, k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.bias"), 3, dim=0)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias
|
|
# Projection.
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.attn.proj.bias"
|
|
)
|
|
|
|
# Feed-forward.
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.fc1.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.fc1.bias"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.fc2.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.mlp.fc2.bias"
|
|
)
|
|
|
|
# Cross-attention.
|
|
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight")
|
|
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias")
|
|
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0)
|
|
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0)
|
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
|
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
|
|
f"blocks.{depth}.cross_attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
|
|
f"blocks.{depth}.cross_attn.proj.bias"
|
|
)
|
|
|
|
# Final block.
|
|
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight")
|
|
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias")
|
|
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table")
|
|
|
|
# DiT XL/2
|
|
transformer = Transformer2DModel(
|
|
sample_size=args.image_size // 8,
|
|
num_layers=28,
|
|
attention_head_dim=72,
|
|
in_channels=4,
|
|
out_channels=8,
|
|
patch_size=2,
|
|
attention_bias=True,
|
|
num_attention_heads=16,
|
|
cross_attention_dim=1152,
|
|
activation_fn="gelu-approximate",
|
|
num_embeds_ada_norm=1000,
|
|
norm_type="ada_norm_single",
|
|
norm_elementwise_affine=False,
|
|
norm_eps=1e-6,
|
|
caption_channels=4096,
|
|
)
|
|
transformer.load_state_dict(converted_state_dict, strict=True)
|
|
|
|
assert transformer.pos_embed.pos_embed is not None
|
|
state_dict.pop("pos_embed")
|
|
state_dict.pop("y_embedder.y_embedding")
|
|
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}"
|
|
|
|
num_model_params = sum(p.numel() for p in transformer.parameters())
|
|
print(f"Total number of transformer parameters: {num_model_params}")
|
|
|
|
if args.only_transformer:
|
|
transformer.save_pretrained(os.path.join(args.dump_path, "transformer"))
|
|
else:
|
|
scheduler = DPMSolverMultistepScheduler()
|
|
|
|
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="sd-vae-ft-ema")
|
|
|
|
tokenizer = T5Tokenizer.from_pretrained(ckpt_id, subfolder="t5-v1_1-xxl")
|
|
text_encoder = T5EncoderModel.from_pretrained(ckpt_id, subfolder="t5-v1_1-xxl")
|
|
|
|
pipeline = PixArtAlphaPipeline(
|
|
tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler
|
|
)
|
|
|
|
pipeline.save_pretrained(args.dump_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
|
|
)
|
|
parser.add_argument(
|
|
"--image_size",
|
|
default=1024,
|
|
type=int,
|
|
choices=[256, 512, 1024],
|
|
required=False,
|
|
help="Image size of pretrained model, either 512 or 1024.",
|
|
)
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
|
|
parser.add_argument("--only_transformer", default=True, type=bool, required=True)
|
|
|
|
args = parser.parse_args()
|
|
main(args)
|