mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
1136 lines
48 KiB
Python
1136 lines
48 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Conversion script for the AudioLDM2 checkpoints."""
|
|
|
|
import argparse
|
|
import re
|
|
from typing import List, Union
|
|
|
|
import torch
|
|
import yaml
|
|
from transformers import (
|
|
AutoFeatureExtractor,
|
|
AutoTokenizer,
|
|
ClapConfig,
|
|
ClapModel,
|
|
GPT2Config,
|
|
GPT2Model,
|
|
SpeechT5HifiGan,
|
|
SpeechT5HifiGanConfig,
|
|
T5Config,
|
|
T5EncoderModel,
|
|
)
|
|
|
|
from diffusers import (
|
|
AudioLDM2Pipeline,
|
|
AudioLDM2ProjectionModel,
|
|
AudioLDM2UNet2DConditionModel,
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
HeunDiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
)
|
|
from diffusers.utils import is_safetensors_available
|
|
from diffusers.utils.import_utils import BACKENDS_MAPPING
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments
|
|
def shave_segments(path, n_shave_prefix_segments=1):
|
|
"""
|
|
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
|
"""
|
|
if n_shave_prefix_segments >= 0:
|
|
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
|
else:
|
|
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_resnet_paths
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item.replace("in_layers.0", "norm1")
|
|
new_item = new_item.replace("in_layers.2", "conv1")
|
|
|
|
new_item = new_item.replace("out_layers.0", "norm2")
|
|
new_item = new_item.replace("out_layers.3", "conv2")
|
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
|
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_attention_paths
|
|
def renew_attention_paths(old_list):
|
|
"""
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
|
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
|
|
|
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
|
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
|
|
|
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
|
"""
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
"""
|
|
mapping = []
|
|
for old_item in old_list:
|
|
new_item = old_item
|
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
|
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
|
|
|
new_item = new_item.replace("q.weight", "to_q.weight")
|
|
new_item = new_item.replace("q.bias", "to_q.bias")
|
|
|
|
new_item = new_item.replace("k.weight", "to_k.weight")
|
|
new_item = new_item.replace("k.bias", "to_k.bias")
|
|
|
|
new_item = new_item.replace("v.weight", "to_v.weight")
|
|
new_item = new_item.replace("v.bias", "to_v.bias")
|
|
|
|
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
|
|
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
return mapping
|
|
|
|
|
|
def assign_to_checkpoint(
|
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
|
|
):
|
|
"""
|
|
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
|
attention layers, and takes into account additional replacements that may arise.
|
|
|
|
Assigns the weights to the new checkpoint.
|
|
"""
|
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
|
|
|
# Splits the attention layers into three variables.
|
|
if attention_paths_to_split is not None:
|
|
for path, path_map in attention_paths_to_split.items():
|
|
old_tensor = old_checkpoint[path]
|
|
channels = old_tensor.shape[0] // 3
|
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
|
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
|
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
|
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
|
|
|
for path in paths:
|
|
new_path = path["new"]
|
|
|
|
# These have already been assigned
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
|
continue
|
|
|
|
if additional_replacements is not None:
|
|
for replacement in additional_replacements:
|
|
new_path = new_path.replace(replacement["old"], replacement["new"])
|
|
|
|
# proj_attn.weight has to be converted from conv 1D to linear
|
|
if "proj_attn.weight" in new_path:
|
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
|
else:
|
|
checkpoint[new_path] = old_checkpoint[path["old"]]
|
|
|
|
|
|
def conv_attn_to_linear(checkpoint):
|
|
keys = list(checkpoint.keys())
|
|
attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"]
|
|
proj_key = "to_out.0.weight"
|
|
for key in keys:
|
|
if ".".join(key.split(".")[-2:]) in attn_keys or ".".join(key.split(".")[-3:]) == proj_key:
|
|
if checkpoint[key].ndim > 2:
|
|
checkpoint[key] = checkpoint[key].squeeze()
|
|
|
|
|
|
def create_unet_diffusers_config(original_config, image_size: int):
|
|
"""
|
|
Creates a UNet config for diffusers based on the config of the original AudioLDM2 model.
|
|
"""
|
|
unet_params = original_config["model"]["params"]["unet_config"]["params"]
|
|
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
|
|
|
|
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]
|
|
|
|
down_block_types = []
|
|
resolution = 1
|
|
for i in range(len(block_out_channels)):
|
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
|
|
down_block_types.append(block_type)
|
|
if i != len(block_out_channels) - 1:
|
|
resolution *= 2
|
|
|
|
up_block_types = []
|
|
for i in range(len(block_out_channels)):
|
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
|
|
up_block_types.append(block_type)
|
|
resolution //= 2
|
|
|
|
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)
|
|
|
|
cross_attention_dim = list(unet_params["context_dim"]) if "context_dim" in unet_params else block_out_channels
|
|
if len(cross_attention_dim) > 1:
|
|
# require two or more cross-attention layers per-block, each of different dimension
|
|
cross_attention_dim = [cross_attention_dim for _ in range(len(block_out_channels))]
|
|
|
|
config = {
|
|
"sample_size": image_size // vae_scale_factor,
|
|
"in_channels": unet_params["in_channels"],
|
|
"out_channels": unet_params["out_channels"],
|
|
"down_block_types": tuple(down_block_types),
|
|
"up_block_types": tuple(up_block_types),
|
|
"block_out_channels": tuple(block_out_channels),
|
|
"layers_per_block": unet_params["num_res_blocks"],
|
|
"transformer_layers_per_block": unet_params["transformer_depth"],
|
|
"cross_attention_dim": tuple(cross_attention_dim),
|
|
}
|
|
|
|
return config
|
|
|
|
|
|
# Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_vae_diffusers_config
|
|
def create_vae_diffusers_config(original_config, checkpoint, image_size: int):
|
|
"""
|
|
Creates a VAE config for diffusers based on the config of the original AudioLDM2 model. Compared to the original
|
|
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE.
|
|
"""
|
|
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
|
|
_ = original_config["model"]["params"]["first_stage_config"]["params"]["embed_dim"]
|
|
|
|
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
|
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
|
|
|
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config["model"]["params"] else 0.18215
|
|
|
|
config = {
|
|
"sample_size": image_size,
|
|
"in_channels": vae_params["in_channels"],
|
|
"out_channels": vae_params["out_ch"],
|
|
"down_block_types": tuple(down_block_types),
|
|
"up_block_types": tuple(up_block_types),
|
|
"block_out_channels": tuple(block_out_channels),
|
|
"latent_channels": vae_params["z_channels"],
|
|
"layers_per_block": vae_params["num_res_blocks"],
|
|
"scaling_factor": float(scaling_factor),
|
|
}
|
|
return config
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular
|
|
def create_diffusers_schedular(original_config):
|
|
schedular = DDIMScheduler(
|
|
num_train_timesteps=original_config["model"]["params"]["timesteps"],
|
|
beta_start=original_config["model"]["params"]["linear_start"],
|
|
beta_end=original_config["model"]["params"]["linear_end"],
|
|
beta_schedule="scaled_linear",
|
|
)
|
|
return schedular
|
|
|
|
|
|
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
|
|
"""
|
|
Takes a state dict and a config, and returns a converted UNet checkpoint.
|
|
"""
|
|
|
|
# extract state_dict for UNet
|
|
unet_state_dict = {}
|
|
keys = list(checkpoint.keys())
|
|
|
|
unet_key = "model.diffusion_model."
|
|
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
|
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
|
|
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
|
|
print(
|
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
|
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
|
|
)
|
|
for key in keys:
|
|
if key.startswith("model.diffusion_model"):
|
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
|
else:
|
|
if sum(k.startswith("model_ema") for k in keys) > 100:
|
|
print(
|
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
|
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
|
|
)
|
|
|
|
# strip the unet prefix from the weight names
|
|
for key in keys:
|
|
if key.startswith(unet_key):
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
|
|
|
# Retrieves the keys for the input blocks only
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
|
input_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key]
|
|
for layer_id in range(num_input_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the middle blocks only
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
|
middle_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}." in key]
|
|
for layer_id in range(num_middle_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the output blocks only
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
|
output_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key]
|
|
for layer_id in range(num_output_blocks)
|
|
}
|
|
|
|
# Check how many Transformer blocks we have per layer
|
|
if isinstance(config.get("cross_attention_dim"), (list, tuple)):
|
|
if isinstance(config["cross_attention_dim"][0], (list, tuple)):
|
|
# in this case we have multiple cross-attention layers per-block
|
|
num_attention_layers = len(config.get("cross_attention_dim")[0])
|
|
else:
|
|
num_attention_layers = 1
|
|
|
|
if config.get("extra_self_attn_layer"):
|
|
num_attention_layers += 1
|
|
|
|
for i in range(1, num_input_blocks):
|
|
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
|
|
|
resnets = [
|
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
|
]
|
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.0" not in key]
|
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
|
f"input_blocks.{i}.0.op.weight"
|
|
)
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
|
f"input_blocks.{i}.0.op.bias"
|
|
)
|
|
|
|
paths = renew_resnet_paths(resnets)
|
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
meta_path = [
|
|
{
|
|
"old": f"input_blocks.{i}.{1 + layer_id}",
|
|
"new": f"down_blocks.{block_id}.attentions.{layer_in_block_id * num_attention_layers + layer_id}",
|
|
}
|
|
for layer_id in range(num_attention_layers)
|
|
]
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=meta_path, config=config
|
|
)
|
|
|
|
resnet_0 = middle_blocks[0]
|
|
resnet_1 = middle_blocks[num_middle_blocks - 1]
|
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0)
|
|
meta_path = {"old": "middle_block.0", "new": "mid_block.resnets.0"}
|
|
assign_to_checkpoint(
|
|
resnet_0_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1)
|
|
meta_path = {"old": f"middle_block.{len(middle_blocks) - 1}", "new": "mid_block.resnets.1"}
|
|
assign_to_checkpoint(
|
|
resnet_1_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
for i in range(1, num_middle_blocks - 1):
|
|
attentions = middle_blocks[i]
|
|
attentions_paths = renew_attention_paths(attentions)
|
|
meta_path = {"old": f"middle_block.{i}", "new": f"mid_block.attentions.{i - 1}"}
|
|
assign_to_checkpoint(
|
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
for i in range(num_output_blocks):
|
|
block_id = i // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
|
output_block_list = {}
|
|
|
|
for layer in output_block_layers:
|
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
|
if layer_id in output_block_list:
|
|
output_block_list[layer_id].append(layer_name)
|
|
else:
|
|
output_block_list[layer_id] = [layer_name]
|
|
|
|
if len(output_block_list) > 1:
|
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.0" not in key]
|
|
|
|
paths = renew_resnet_paths(resnets)
|
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
|
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
|
f"output_blocks.{i}.{index}.conv.weight"
|
|
]
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
|
f"output_blocks.{i}.{index}.conv.bias"
|
|
]
|
|
|
|
attentions.remove(f"output_blocks.{i}.{index}.conv.bias")
|
|
attentions.remove(f"output_blocks.{i}.{index}.conv.weight")
|
|
|
|
# Clear attentions as they have been attributed above.
|
|
if len(attentions) == 2:
|
|
attentions = []
|
|
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
meta_path = [
|
|
{
|
|
"old": f"output_blocks.{i}.{1 + layer_id}",
|
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id * num_attention_layers + layer_id}",
|
|
}
|
|
for layer_id in range(num_attention_layers)
|
|
]
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=meta_path, config=config
|
|
)
|
|
else:
|
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
|
for path in resnet_0_paths:
|
|
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path]
|
|
|
|
return new_checkpoint
|
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config):
|
|
# extract state dict for VAE
|
|
vae_state_dict = {}
|
|
vae_key = "first_stage_model."
|
|
keys = list(checkpoint.keys())
|
|
for key in keys:
|
|
if key.startswith(vae_key):
|
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
|
|
|
# Retrieves the keys for the encoder down blocks only
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
|
down_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the decoder up blocks only
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
|
up_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
|
}
|
|
|
|
for i in range(num_down_blocks):
|
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
|
f"encoder.down.{i}.downsample.conv.weight"
|
|
)
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
|
f"encoder.down.{i}.downsample.conv.bias"
|
|
)
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
|
|
for i in range(num_up_blocks):
|
|
block_id = num_up_blocks - 1 - i
|
|
resnets = [
|
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
|
]
|
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
|
f"decoder.up.{block_id}.upsample.conv.weight"
|
|
]
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
|
f"decoder.up.{block_id}.upsample.conv.bias"
|
|
]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
return new_checkpoint
|
|
|
|
|
|
CLAP_KEYS_TO_MODIFY_MAPPING = {
|
|
"text_branch": "text_model",
|
|
"audio_branch": "audio_model.audio_encoder",
|
|
"attn": "attention.self",
|
|
"self.proj": "output.dense",
|
|
"attention.self_mask": "attn_mask",
|
|
"mlp.fc1": "intermediate.dense",
|
|
"mlp.fc2": "output.dense",
|
|
"norm1": "layernorm_before",
|
|
"norm2": "layernorm_after",
|
|
"bn0": "batch_norm",
|
|
}
|
|
|
|
CLAP_KEYS_TO_IGNORE = [
|
|
"text_transform",
|
|
"audio_transform",
|
|
"stft",
|
|
"logmel_extractor",
|
|
"tscam_conv",
|
|
"head",
|
|
"attn_mask",
|
|
]
|
|
|
|
CLAP_EXPECTED_MISSING_KEYS = ["text_model.embeddings.token_type_ids"]
|
|
|
|
|
|
def convert_open_clap_checkpoint(checkpoint):
|
|
"""
|
|
Takes a state dict and returns a converted CLAP checkpoint.
|
|
"""
|
|
# extract state dict for CLAP text embedding model, discarding the audio component
|
|
model_state_dict = {}
|
|
model_key = "clap.model."
|
|
keys = list(checkpoint.keys())
|
|
for key in keys:
|
|
if key.startswith(model_key):
|
|
model_state_dict[key.replace(model_key, "")] = checkpoint.get(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
sequential_layers_pattern = r".*sequential.(\d+).*"
|
|
text_projection_pattern = r".*_projection.(\d+).*"
|
|
|
|
for key, value in model_state_dict.items():
|
|
# check if key should be ignored in mapping - if so map it to a key name that we'll filter out at the end
|
|
for key_to_ignore in CLAP_KEYS_TO_IGNORE:
|
|
if key_to_ignore in key:
|
|
key = "spectrogram"
|
|
|
|
# check if any key needs to be modified
|
|
for key_to_modify, new_key in CLAP_KEYS_TO_MODIFY_MAPPING.items():
|
|
if key_to_modify in key:
|
|
key = key.replace(key_to_modify, new_key)
|
|
|
|
if re.match(sequential_layers_pattern, key):
|
|
# replace sequential layers with list
|
|
sequential_layer = re.match(sequential_layers_pattern, key).group(1)
|
|
|
|
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer) // 3}.linear.")
|
|
elif re.match(text_projection_pattern, key):
|
|
projecton_layer = int(re.match(text_projection_pattern, key).group(1))
|
|
|
|
# Because in CLAP they use `nn.Sequential`...
|
|
transformers_projection_layer = 1 if projecton_layer == 0 else 2
|
|
|
|
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.")
|
|
|
|
if "audio" and "qkv" in key:
|
|
# split qkv into query key and value
|
|
mixed_qkv = value
|
|
qkv_dim = mixed_qkv.size(0) // 3
|
|
|
|
query_layer = mixed_qkv[:qkv_dim]
|
|
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
|
|
value_layer = mixed_qkv[qkv_dim * 2 :]
|
|
|
|
new_checkpoint[key.replace("qkv", "query")] = query_layer
|
|
new_checkpoint[key.replace("qkv", "key")] = key_layer
|
|
new_checkpoint[key.replace("qkv", "value")] = value_layer
|
|
elif key != "spectrogram":
|
|
new_checkpoint[key] = value
|
|
|
|
return new_checkpoint
|
|
|
|
|
|
def create_transformers_vocoder_config(original_config):
|
|
"""
|
|
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model.
|
|
"""
|
|
vocoder_params = original_config["model"]["params"]["vocoder_config"]["params"]
|
|
|
|
config = {
|
|
"model_in_dim": vocoder_params["num_mels"],
|
|
"sampling_rate": vocoder_params["sampling_rate"],
|
|
"upsample_initial_channel": vocoder_params["upsample_initial_channel"],
|
|
"upsample_rates": list(vocoder_params["upsample_rates"]),
|
|
"upsample_kernel_sizes": list(vocoder_params["upsample_kernel_sizes"]),
|
|
"resblock_kernel_sizes": list(vocoder_params["resblock_kernel_sizes"]),
|
|
"resblock_dilation_sizes": [
|
|
list(resblock_dilation) for resblock_dilation in vocoder_params["resblock_dilation_sizes"]
|
|
],
|
|
"normalize_before": False,
|
|
}
|
|
|
|
return config
|
|
|
|
|
|
def extract_sub_model(checkpoint, key_prefix):
|
|
"""
|
|
Takes a state dict and returns the state dict for a particular sub-model.
|
|
"""
|
|
|
|
sub_model_state_dict = {}
|
|
keys = list(checkpoint.keys())
|
|
for key in keys:
|
|
if key.startswith(key_prefix):
|
|
sub_model_state_dict[key.replace(key_prefix, "")] = checkpoint.get(key)
|
|
|
|
return sub_model_state_dict
|
|
|
|
|
|
def convert_hifigan_checkpoint(checkpoint, config):
|
|
"""
|
|
Takes a state dict and config, and returns a converted HiFiGAN vocoder checkpoint.
|
|
"""
|
|
# extract state dict for vocoder
|
|
vocoder_state_dict = extract_sub_model(checkpoint, key_prefix="first_stage_model.vocoder.")
|
|
|
|
# fix upsampler keys, everything else is correct already
|
|
for i in range(len(config.upsample_rates)):
|
|
vocoder_state_dict[f"upsampler.{i}.weight"] = vocoder_state_dict.pop(f"ups.{i}.weight")
|
|
vocoder_state_dict[f"upsampler.{i}.bias"] = vocoder_state_dict.pop(f"ups.{i}.bias")
|
|
|
|
if not config.normalize_before:
|
|
# if we don't set normalize_before then these variables are unused, so we set them to their initialised values
|
|
vocoder_state_dict["mean"] = torch.zeros(config.model_in_dim)
|
|
vocoder_state_dict["scale"] = torch.ones(config.model_in_dim)
|
|
|
|
return vocoder_state_dict
|
|
|
|
|
|
def convert_projection_checkpoint(checkpoint):
|
|
projection_state_dict = {}
|
|
conditioner_state_dict = extract_sub_model(checkpoint, key_prefix="cond_stage_models.0.")
|
|
|
|
projection_state_dict["sos_embed"] = conditioner_state_dict["start_of_sequence_tokens.weight"][0]
|
|
projection_state_dict["sos_embed_1"] = conditioner_state_dict["start_of_sequence_tokens.weight"][1]
|
|
|
|
projection_state_dict["eos_embed"] = conditioner_state_dict["end_of_sequence_tokens.weight"][0]
|
|
projection_state_dict["eos_embed_1"] = conditioner_state_dict["end_of_sequence_tokens.weight"][1]
|
|
|
|
projection_state_dict["projection.weight"] = conditioner_state_dict["input_sequence_embed_linear.0.weight"]
|
|
projection_state_dict["projection.bias"] = conditioner_state_dict["input_sequence_embed_linear.0.bias"]
|
|
|
|
projection_state_dict["projection_1.weight"] = conditioner_state_dict["input_sequence_embed_linear.1.weight"]
|
|
projection_state_dict["projection_1.bias"] = conditioner_state_dict["input_sequence_embed_linear.1.bias"]
|
|
|
|
return projection_state_dict
|
|
|
|
|
|
# Adapted from https://github.com/haoheliu/AudioLDM2/blob/81ad2c6ce015c1310387695e2dae975a7d2ed6fd/audioldm2/utils.py#L143
|
|
DEFAULT_CONFIG = {
|
|
"model": {
|
|
"params": {
|
|
"linear_start": 0.0015,
|
|
"linear_end": 0.0195,
|
|
"timesteps": 1000,
|
|
"channels": 8,
|
|
"scale_by_std": True,
|
|
"unet_config": {
|
|
"target": "audioldm2.latent_diffusion.openaimodel.UNetModel",
|
|
"params": {
|
|
"context_dim": [None, 768, 1024],
|
|
"in_channels": 8,
|
|
"out_channels": 8,
|
|
"model_channels": 128,
|
|
"attention_resolutions": [8, 4, 2],
|
|
"num_res_blocks": 2,
|
|
"channel_mult": [1, 2, 3, 5],
|
|
"num_head_channels": 32,
|
|
"transformer_depth": 1,
|
|
},
|
|
},
|
|
"first_stage_config": {
|
|
"target": "audioldm2.variational_autoencoder.autoencoder.AutoencoderKL",
|
|
"params": {
|
|
"embed_dim": 8,
|
|
"ddconfig": {
|
|
"z_channels": 8,
|
|
"resolution": 256,
|
|
"in_channels": 1,
|
|
"out_ch": 1,
|
|
"ch": 128,
|
|
"ch_mult": [1, 2, 4],
|
|
"num_res_blocks": 2,
|
|
},
|
|
},
|
|
},
|
|
"cond_stage_config": {
|
|
"crossattn_audiomae_generated": {
|
|
"target": "audioldm2.latent_diffusion.modules.encoders.modules.SequenceGenAudioMAECond",
|
|
"params": {
|
|
"sequence_gen_length": 8,
|
|
"sequence_input_embed_dim": [512, 1024],
|
|
},
|
|
}
|
|
},
|
|
"vocoder_config": {
|
|
"target": "audioldm2.first_stage_model.vocoder",
|
|
"params": {
|
|
"upsample_rates": [5, 4, 2, 2, 2],
|
|
"upsample_kernel_sizes": [16, 16, 8, 4, 4],
|
|
"upsample_initial_channel": 1024,
|
|
"resblock_kernel_sizes": [3, 7, 11],
|
|
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
|
"num_mels": 64,
|
|
"sampling_rate": 16000,
|
|
},
|
|
},
|
|
},
|
|
},
|
|
}
|
|
|
|
|
|
def load_pipeline_from_original_AudioLDM2_ckpt(
|
|
checkpoint_path: str,
|
|
original_config_file: str = None,
|
|
image_size: int = 1024,
|
|
prediction_type: str = None,
|
|
extract_ema: bool = False,
|
|
scheduler_type: str = "ddim",
|
|
cross_attention_dim: Union[List, List[List]] = None,
|
|
transformer_layers_per_block: int = None,
|
|
device: str = None,
|
|
from_safetensors: bool = False,
|
|
) -> AudioLDM2Pipeline:
|
|
"""
|
|
Load an AudioLDM2 pipeline object from a `.ckpt`/`.safetensors` file and (ideally) a `.yaml` config file.
|
|
|
|
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
|
|
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
|
|
recommended that you override the default values and/or supply an `original_config_file` wherever possible.
|
|
|
|
Args:
|
|
checkpoint_path (`str`): Path to `.ckpt` file.
|
|
original_config_file (`str`):
|
|
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be automatically
|
|
set to the AudioLDM2 base config.
|
|
image_size (`int`, *optional*, defaults to 1024):
|
|
The image size that the model was trained on.
|
|
prediction_type (`str`, *optional*):
|
|
The prediction type that the model was trained on. If `None`, will be automatically
|
|
inferred by looking for a key in the config. For the default config, the prediction type is `'epsilon'`.
|
|
scheduler_type (`str`, *optional*, defaults to 'ddim'):
|
|
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
|
|
"ddim"]`.
|
|
cross_attention_dim (`list`, *optional*, defaults to `None`):
|
|
The dimension of the cross-attention layers. If `None`, the cross-attention dimension will be
|
|
automatically inferred. Set to `[768, 1024]` for the base model, or `[768, 1024, None]` for the large model.
|
|
transformer_layers_per_block (`int`, *optional*, defaults to `None`):
|
|
The number of transformer layers in each transformer block. If `None`, number of layers will be "
|
|
"automatically inferred. Set to `1` for the base model, or `2` for the large model.
|
|
extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for
|
|
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults to
|
|
`False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for
|
|
inference. Non-EMA weights are usually better to continue fine-tuning.
|
|
device (`str`, *optional*, defaults to `None`):
|
|
The device to use. Pass `None` to determine automatically.
|
|
from_safetensors (`str`, *optional*, defaults to `False`):
|
|
If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.
|
|
return: An AudioLDM2Pipeline object representing the passed-in `.ckpt`/`.safetensors` file.
|
|
"""
|
|
|
|
if from_safetensors:
|
|
if not is_safetensors_available():
|
|
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
|
|
|
|
from safetensors import safe_open
|
|
|
|
checkpoint = {}
|
|
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
|
|
for key in f.keys():
|
|
checkpoint[key] = f.get_tensor(key)
|
|
else:
|
|
if device is None:
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
checkpoint = torch.load(checkpoint_path, map_location=device)
|
|
else:
|
|
checkpoint = torch.load(checkpoint_path, map_location=device)
|
|
|
|
if "state_dict" in checkpoint:
|
|
checkpoint = checkpoint["state_dict"]
|
|
|
|
if original_config_file is None:
|
|
original_config = DEFAULT_CONFIG
|
|
else:
|
|
original_config = yaml.safe_load(original_config_file)
|
|
|
|
if image_size is not None:
|
|
original_config["model"]["params"]["unet_config"]["params"]["image_size"] = image_size
|
|
|
|
if cross_attention_dim is not None:
|
|
original_config["model"]["params"]["unet_config"]["params"]["context_dim"] = cross_attention_dim
|
|
|
|
if transformer_layers_per_block is not None:
|
|
original_config["model"]["params"]["unet_config"]["params"]["transformer_depth"] = transformer_layers_per_block
|
|
|
|
if (
|
|
"parameterization" in original_config["model"]["params"]
|
|
and original_config["model"]["params"]["parameterization"] == "v"
|
|
):
|
|
if prediction_type is None:
|
|
prediction_type = "v_prediction"
|
|
else:
|
|
if prediction_type is None:
|
|
prediction_type = "epsilon"
|
|
|
|
num_train_timesteps = original_config["model"]["params"]["timesteps"]
|
|
beta_start = original_config["model"]["params"]["linear_start"]
|
|
beta_end = original_config["model"]["params"]["linear_end"]
|
|
|
|
scheduler = DDIMScheduler(
|
|
beta_end=beta_end,
|
|
beta_schedule="scaled_linear",
|
|
beta_start=beta_start,
|
|
num_train_timesteps=num_train_timesteps,
|
|
steps_offset=1,
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
prediction_type=prediction_type,
|
|
)
|
|
# make sure scheduler works correctly with DDIM
|
|
scheduler.register_to_config(clip_sample=False)
|
|
|
|
if scheduler_type == "pndm":
|
|
config = dict(scheduler.config)
|
|
config["skip_prk_steps"] = True
|
|
scheduler = PNDMScheduler.from_config(config)
|
|
elif scheduler_type == "lms":
|
|
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "heun":
|
|
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "euler":
|
|
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "euler-ancestral":
|
|
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "dpm":
|
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
|
elif scheduler_type == "ddim":
|
|
scheduler = scheduler
|
|
else:
|
|
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
|
|
|
|
# Convert the UNet2DModel
|
|
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
|
|
unet = AudioLDM2UNet2DConditionModel(**unet_config)
|
|
|
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
|
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
|
|
)
|
|
|
|
unet.load_state_dict(converted_unet_checkpoint)
|
|
|
|
# Convert the VAE model
|
|
vae_config = create_vae_diffusers_config(original_config, checkpoint=checkpoint, image_size=image_size)
|
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
|
|
|
vae = AutoencoderKL(**vae_config)
|
|
vae.load_state_dict(converted_vae_checkpoint)
|
|
|
|
# Convert the joint audio-text encoding model
|
|
clap_config = ClapConfig.from_pretrained("laion/clap-htsat-unfused")
|
|
clap_config.audio_config.update(
|
|
{
|
|
"patch_embeds_hidden_size": 128,
|
|
"hidden_size": 1024,
|
|
"depths": [2, 2, 12, 2],
|
|
}
|
|
)
|
|
# AudioLDM2 uses the same tokenizer and feature extractor as the original CLAP model
|
|
clap_tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
|
|
clap_feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused")
|
|
|
|
converted_clap_model = convert_open_clap_checkpoint(checkpoint)
|
|
clap_model = ClapModel(clap_config)
|
|
|
|
missing_keys, unexpected_keys = clap_model.load_state_dict(converted_clap_model, strict=False)
|
|
# we expect not to have token_type_ids in our original state dict so let's ignore them
|
|
missing_keys = list(set(missing_keys) - set(CLAP_EXPECTED_MISSING_KEYS))
|
|
|
|
if len(unexpected_keys) > 0:
|
|
raise ValueError(f"Unexpected keys when loading CLAP model: {unexpected_keys}")
|
|
|
|
if len(missing_keys) > 0:
|
|
raise ValueError(f"Missing keys when loading CLAP model: {missing_keys}")
|
|
|
|
# Convert the vocoder model
|
|
vocoder_config = create_transformers_vocoder_config(original_config)
|
|
vocoder_config = SpeechT5HifiGanConfig(**vocoder_config)
|
|
converted_vocoder_checkpoint = convert_hifigan_checkpoint(checkpoint, vocoder_config)
|
|
|
|
vocoder = SpeechT5HifiGan(vocoder_config)
|
|
vocoder.load_state_dict(converted_vocoder_checkpoint)
|
|
|
|
# Convert the Flan-T5 encoder model: AudioLDM2 uses the same configuration and tokenizer as the original Flan-T5 large model
|
|
t5_config = T5Config.from_pretrained("google/flan-t5-large")
|
|
converted_t5_checkpoint = extract_sub_model(checkpoint, key_prefix="cond_stage_models.1.model.")
|
|
|
|
t5_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
|
|
# hard-coded in the original implementation (i.e. not retrievable from the config)
|
|
t5_tokenizer.model_max_length = 128
|
|
t5_model = T5EncoderModel(t5_config)
|
|
t5_model.load_state_dict(converted_t5_checkpoint)
|
|
|
|
# Convert the GPT2 encoder model: AudioLDM2 uses the same configuration as the original GPT2 base model
|
|
gpt2_config = GPT2Config.from_pretrained("gpt2")
|
|
gpt2_model = GPT2Model(gpt2_config)
|
|
gpt2_model.config.max_new_tokens = original_config["model"]["params"]["cond_stage_config"][
|
|
"crossattn_audiomae_generated"
|
|
]["params"]["sequence_gen_length"]
|
|
|
|
converted_gpt2_checkpoint = extract_sub_model(checkpoint, key_prefix="cond_stage_models.0.model.")
|
|
gpt2_model.load_state_dict(converted_gpt2_checkpoint)
|
|
|
|
# Convert the extra embedding / projection layers
|
|
projection_model = AudioLDM2ProjectionModel(clap_config.projection_dim, t5_config.d_model, gpt2_config.n_embd)
|
|
|
|
converted_projection_checkpoint = convert_projection_checkpoint(checkpoint)
|
|
projection_model.load_state_dict(converted_projection_checkpoint)
|
|
|
|
# Instantiate the diffusers pipeline
|
|
pipe = AudioLDM2Pipeline(
|
|
vae=vae,
|
|
text_encoder=clap_model,
|
|
text_encoder_2=t5_model,
|
|
projection_model=projection_model,
|
|
language_model=gpt2_model,
|
|
tokenizer=clap_tokenizer,
|
|
tokenizer_2=t5_tokenizer,
|
|
feature_extractor=clap_feature_extractor,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vocoder=vocoder,
|
|
)
|
|
|
|
return pipe
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
|
|
)
|
|
parser.add_argument(
|
|
"--original_config_file",
|
|
default=None,
|
|
type=str,
|
|
help="The YAML config file corresponding to the original architecture.",
|
|
)
|
|
parser.add_argument(
|
|
"--cross_attention_dim",
|
|
default=None,
|
|
type=int,
|
|
nargs="+",
|
|
help="The dimension of the cross-attention layers. If `None`, the cross-attention dimension will be "
|
|
"automatically inferred. Set to `768+1024` for the base model, or `768+1024+640` for the large model",
|
|
)
|
|
parser.add_argument(
|
|
"--transformer_layers_per_block",
|
|
default=None,
|
|
type=int,
|
|
help="The number of transformer layers in each transformer block. If `None`, number of layers will be "
|
|
"automatically inferred. Set to `1` for the base model, or `2` for the large model.",
|
|
)
|
|
parser.add_argument(
|
|
"--scheduler_type",
|
|
default="ddim",
|
|
type=str,
|
|
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
|
|
)
|
|
parser.add_argument(
|
|
"--image_size",
|
|
default=1048,
|
|
type=int,
|
|
help="The image size that the model was trained on.",
|
|
)
|
|
parser.add_argument(
|
|
"--prediction_type",
|
|
default=None,
|
|
type=str,
|
|
help=("The prediction type that the model was trained on."),
|
|
)
|
|
parser.add_argument(
|
|
"--extract_ema",
|
|
action="store_true",
|
|
help=(
|
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
|
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
|
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--from_safetensors",
|
|
action="store_true",
|
|
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
|
|
)
|
|
parser.add_argument(
|
|
"--to_safetensors",
|
|
action="store_true",
|
|
help="Whether to store pipeline in safetensors format or not.",
|
|
)
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
|
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
|
|
args = parser.parse_args()
|
|
|
|
pipe = load_pipeline_from_original_AudioLDM2_ckpt(
|
|
checkpoint_path=args.checkpoint_path,
|
|
original_config_file=args.original_config_file,
|
|
image_size=args.image_size,
|
|
prediction_type=args.prediction_type,
|
|
extract_ema=args.extract_ema,
|
|
scheduler_type=args.scheduler_type,
|
|
cross_attention_dim=args.cross_attention_dim,
|
|
transformer_layers_per_block=args.transformer_layers_per_block,
|
|
from_safetensors=args.from_safetensors,
|
|
device=args.device,
|
|
)
|
|
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|