mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* remove torch_dtype from to()
* remove torch_dtype from usage scripts.
* remove old lora backend
* Revert "remove old lora backend"
This reverts commit adcddf6ba4.
582 lines
25 KiB
Python
582 lines
25 KiB
Python
import argparse
|
|
import re
|
|
|
|
import torch
|
|
import yaml
|
|
from transformers import (
|
|
CLIPProcessor,
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
CLIPVisionModelWithProjection,
|
|
)
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
StableDiffusionGLIGENPipeline,
|
|
StableDiffusionGLIGENTextImagePipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
|
assign_to_checkpoint,
|
|
conv_attn_to_linear,
|
|
protected,
|
|
renew_attention_paths,
|
|
renew_resnet_paths,
|
|
renew_vae_attention_paths,
|
|
renew_vae_resnet_paths,
|
|
shave_segments,
|
|
textenc_conversion_map,
|
|
textenc_pattern,
|
|
)
|
|
|
|
|
|
def convert_open_clip_checkpoint(checkpoint):
|
|
checkpoint = checkpoint["text_encoder"]
|
|
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
text_model_dict = {}
|
|
|
|
if "cond_stage_model.model.text_projection" in checkpoint:
|
|
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
|
|
else:
|
|
d_model = 1024
|
|
|
|
for key in keys:
|
|
if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
|
|
continue
|
|
if key in textenc_conversion_map:
|
|
text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
|
|
# if key.startswith("cond_stage_model.model.transformer."):
|
|
new_key = key[len("transformer.") :]
|
|
if new_key.endswith(".in_proj_weight"):
|
|
new_key = new_key[: -len(".in_proj_weight")]
|
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
|
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
|
|
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
|
|
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
|
|
elif new_key.endswith(".in_proj_bias"):
|
|
new_key = new_key[: -len(".in_proj_bias")]
|
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
|
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
|
|
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
|
|
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
|
|
else:
|
|
if key != "transformer.text_model.embeddings.position_ids":
|
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
|
|
|
text_model_dict[new_key] = checkpoint[key]
|
|
|
|
if key == "transformer.text_model.embeddings.token_embedding.weight":
|
|
text_model_dict["text_model.embeddings.token_embedding.weight"] = checkpoint[key]
|
|
|
|
text_model_dict.pop("text_model.embeddings.transformer.text_model.embeddings.token_embedding.weight")
|
|
|
|
text_model.load_state_dict(text_model_dict)
|
|
|
|
return text_model
|
|
|
|
|
|
def convert_gligen_vae_checkpoint(checkpoint, config):
|
|
checkpoint = checkpoint["autoencoder"]
|
|
vae_state_dict = {}
|
|
vae_key = "first_stage_model."
|
|
keys = list(checkpoint.keys())
|
|
for key in keys:
|
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
|
|
|
# Retrieves the keys for the encoder down blocks only
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
|
down_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the decoder up blocks only
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
|
up_blocks = {
|
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
|
}
|
|
|
|
for i in range(num_down_blocks):
|
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
|
f"encoder.down.{i}.downsample.conv.weight"
|
|
)
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
|
f"encoder.down.{i}.downsample.conv.bias"
|
|
)
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
|
|
for i in range(num_up_blocks):
|
|
block_id = num_up_blocks - 1 - i
|
|
resnets = [
|
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
|
]
|
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
|
f"decoder.up.{block_id}.upsample.conv.weight"
|
|
]
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
|
f"decoder.up.{block_id}.upsample.conv.bias"
|
|
]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
|
num_mid_res_blocks = 2
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
conv_attn_to_linear(new_checkpoint)
|
|
|
|
for key in new_checkpoint.keys():
|
|
if "encoder.mid_block.attentions.0" in key or "decoder.mid_block.attentions.0" in key:
|
|
if "query" in key:
|
|
new_checkpoint[key.replace("query", "to_q")] = new_checkpoint.pop(key)
|
|
if "value" in key:
|
|
new_checkpoint[key.replace("value", "to_v")] = new_checkpoint.pop(key)
|
|
if "key" in key:
|
|
new_checkpoint[key.replace("key", "to_k")] = new_checkpoint.pop(key)
|
|
if "proj_attn" in key:
|
|
new_checkpoint[key.replace("proj_attn", "to_out.0")] = new_checkpoint.pop(key)
|
|
|
|
return new_checkpoint
|
|
|
|
|
|
def convert_gligen_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
|
|
unet_state_dict = {}
|
|
checkpoint = checkpoint["model"]
|
|
keys = list(checkpoint.keys())
|
|
|
|
unet_key = "model.diffusion_model."
|
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
|
|
print(f"Checkpoint {path} has bot EMA and non-EMA weights.")
|
|
print(
|
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
|
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
|
|
)
|
|
for key in keys:
|
|
if key.startswith("model.diffusion_model"):
|
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
|
else:
|
|
if sum(k.startswith("model_ema") for k in keys) > 100:
|
|
print(
|
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
|
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
|
|
)
|
|
for key in keys:
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
|
|
|
new_checkpoint = {}
|
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
|
|
|
# Retrieves the keys for the input blocks only
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
|
input_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
|
for layer_id in range(num_input_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the middle blocks only
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
|
middle_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
|
for layer_id in range(num_middle_blocks)
|
|
}
|
|
|
|
# Retrieves the keys for the output blocks only
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
|
output_blocks = {
|
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
|
for layer_id in range(num_output_blocks)
|
|
}
|
|
|
|
for i in range(1, num_input_blocks):
|
|
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
|
|
|
resnets = [
|
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
|
]
|
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
|
f"input_blocks.{i}.0.op.weight"
|
|
)
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
|
f"input_blocks.{i}.0.op.bias"
|
|
)
|
|
|
|
paths = renew_resnet_paths(resnets)
|
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
resnet_0 = middle_blocks[0]
|
|
attentions = middle_blocks[1]
|
|
resnet_1 = middle_blocks[2]
|
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0)
|
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1)
|
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
|
|
|
attentions_paths = renew_attention_paths(attentions)
|
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
|
assign_to_checkpoint(
|
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
for i in range(num_output_blocks):
|
|
block_id = i // (config["layers_per_block"] + 1)
|
|
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
|
output_block_list = {}
|
|
|
|
for layer in output_block_layers:
|
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
|
if layer_id in output_block_list:
|
|
output_block_list[layer_id].append(layer_name)
|
|
else:
|
|
output_block_list[layer_id] = [layer_name]
|
|
|
|
if len(output_block_list) > 1:
|
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
|
|
|
resnet_0_paths = renew_resnet_paths(resnets)
|
|
paths = renew_resnet_paths(resnets)
|
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
|
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
|
f"output_blocks.{i}.{index}.conv.weight"
|
|
]
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
|
f"output_blocks.{i}.{index}.conv.bias"
|
|
]
|
|
|
|
# Clear attentions as they have been attributed above.
|
|
if len(attentions) == 2:
|
|
attentions = []
|
|
|
|
if len(attentions):
|
|
paths = renew_attention_paths(attentions)
|
|
meta_path = {
|
|
"old": f"output_blocks.{i}.1",
|
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
|
}
|
|
assign_to_checkpoint(
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
)
|
|
else:
|
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
|
for path in resnet_0_paths:
|
|
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path]
|
|
|
|
for key in keys:
|
|
if "position_net" in key:
|
|
new_checkpoint[key] = unet_state_dict[key]
|
|
|
|
return new_checkpoint
|
|
|
|
|
|
def create_vae_config(original_config, image_size: int):
|
|
vae_params = original_config["autoencoder"]["params"]["ddconfig"]
|
|
_ = original_config["autoencoder"]["params"]["embed_dim"]
|
|
|
|
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
|
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
|
|
|
config = {
|
|
"sample_size": image_size,
|
|
"in_channels": vae_params["in_channels"],
|
|
"out_channels": vae_params["out_ch"],
|
|
"down_block_types": tuple(down_block_types),
|
|
"up_block_types": tuple(up_block_types),
|
|
"block_out_channels": tuple(block_out_channels),
|
|
"latent_channels": vae_params["z_channels"],
|
|
"layers_per_block": vae_params["num_res_blocks"],
|
|
}
|
|
|
|
return config
|
|
|
|
|
|
def create_unet_config(original_config, image_size: int, attention_type):
|
|
unet_params = original_config["model"]["params"]
|
|
vae_params = original_config["autoencoder"]["params"]["ddconfig"]
|
|
|
|
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]
|
|
|
|
down_block_types = []
|
|
resolution = 1
|
|
for i in range(len(block_out_channels)):
|
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
|
|
down_block_types.append(block_type)
|
|
if i != len(block_out_channels) - 1:
|
|
resolution *= 2
|
|
|
|
up_block_types = []
|
|
for i in range(len(block_out_channels)):
|
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
|
|
up_block_types.append(block_type)
|
|
resolution //= 2
|
|
|
|
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)
|
|
|
|
head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
|
|
use_linear_projection = (
|
|
unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
|
|
)
|
|
if use_linear_projection:
|
|
if head_dim is None:
|
|
head_dim = [5, 10, 20, 20]
|
|
|
|
config = {
|
|
"sample_size": image_size // vae_scale_factor,
|
|
"in_channels": unet_params["in_channels"],
|
|
"down_block_types": tuple(down_block_types),
|
|
"block_out_channels": tuple(block_out_channels),
|
|
"layers_per_block": unet_params["num_res_blocks"],
|
|
"cross_attention_dim": unet_params["context_dim"],
|
|
"attention_head_dim": head_dim,
|
|
"use_linear_projection": use_linear_projection,
|
|
"attention_type": attention_type,
|
|
}
|
|
|
|
return config
|
|
|
|
|
|
def convert_gligen_to_diffusers(
|
|
checkpoint_path: str,
|
|
original_config_file: str,
|
|
attention_type: str,
|
|
image_size: int = 512,
|
|
extract_ema: bool = False,
|
|
num_in_channels: int = None,
|
|
device: str = None,
|
|
):
|
|
if device is None:
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
checkpoint = torch.load(checkpoint_path, map_location=device)
|
|
else:
|
|
checkpoint = torch.load(checkpoint_path, map_location=device)
|
|
|
|
if "global_step" in checkpoint:
|
|
checkpoint["global_step"]
|
|
else:
|
|
print("global_step key not found in model")
|
|
|
|
original_config = yaml.safe_load(original_config_file)
|
|
|
|
if num_in_channels is not None:
|
|
original_config["model"]["params"]["in_channels"] = num_in_channels
|
|
|
|
num_train_timesteps = original_config["diffusion"]["params"]["timesteps"]
|
|
beta_start = original_config["diffusion"]["params"]["linear_start"]
|
|
beta_end = original_config["diffusion"]["params"]["linear_end"]
|
|
|
|
scheduler = DDIMScheduler(
|
|
beta_end=beta_end,
|
|
beta_schedule="scaled_linear",
|
|
beta_start=beta_start,
|
|
num_train_timesteps=num_train_timesteps,
|
|
steps_offset=1,
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
prediction_type="epsilon",
|
|
)
|
|
|
|
# Convert the UNet2DConditionalModel model
|
|
unet_config = create_unet_config(original_config, image_size, attention_type)
|
|
unet = UNet2DConditionModel(**unet_config)
|
|
|
|
converted_unet_checkpoint = convert_gligen_unet_checkpoint(
|
|
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
|
|
)
|
|
|
|
unet.load_state_dict(converted_unet_checkpoint)
|
|
|
|
# Convert the VAE model
|
|
vae_config = create_vae_config(original_config, image_size)
|
|
converted_vae_checkpoint = convert_gligen_vae_checkpoint(checkpoint, vae_config)
|
|
|
|
vae = AutoencoderKL(**vae_config)
|
|
vae.load_state_dict(converted_vae_checkpoint)
|
|
|
|
# Convert the text model
|
|
text_encoder = convert_open_clip_checkpoint(checkpoint)
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
|
|
|
if attention_type == "gated-text-image":
|
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
|
|
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
|
|
|
pipe = StableDiffusionGLIGENTextImagePipeline(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
image_encoder=image_encoder,
|
|
processor=processor,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
)
|
|
elif attention_type == "gated":
|
|
pipe = StableDiffusionGLIGENPipeline(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=None,
|
|
feature_extractor=None,
|
|
)
|
|
|
|
return pipe
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
|
|
)
|
|
parser.add_argument(
|
|
"--original_config_file",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="The YAML config file corresponding to the gligen architecture.",
|
|
)
|
|
parser.add_argument(
|
|
"--num_in_channels",
|
|
default=None,
|
|
type=int,
|
|
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
|
|
)
|
|
parser.add_argument(
|
|
"--extract_ema",
|
|
action="store_true",
|
|
help=(
|
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
|
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
|
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--attention_type",
|
|
default=None,
|
|
type=str,
|
|
required=True,
|
|
help="Type of attention ex: gated or gated-text-image",
|
|
)
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
|
parser.add_argument("--device", type=str, help="Device to use.")
|
|
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
pipe = convert_gligen_to_diffusers(
|
|
checkpoint_path=args.checkpoint_path,
|
|
original_config_file=args.original_config_file,
|
|
attention_type=args.attention_type,
|
|
extract_ema=args.extract_ema,
|
|
num_in_channels=args.num_in_channels,
|
|
device=args.device,
|
|
)
|
|
|
|
if args.half:
|
|
pipe.to(dtype=torch.float16)
|
|
|
|
pipe.save_pretrained(args.dump_path)
|