mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* Fix typos in docs and comments * Apply style fixes --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
309 lines
14 KiB
Python
309 lines
14 KiB
Python
import argparse
|
|
from contextlib import nullcontext
|
|
|
|
import safetensors.torch
|
|
import torch
|
|
from accelerate import init_empty_weights
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from diffusers import AutoencoderKL, FluxTransformer2DModel
|
|
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
|
|
from diffusers.utils.import_utils import is_accelerate_available
|
|
|
|
|
|
"""
|
|
# Transformer
|
|
|
|
python scripts/convert_flux_to_diffusers.py \
|
|
--original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \
|
|
--filename "flux1-schnell.sft"
|
|
--output_path "flux-schnell" \
|
|
--transformer
|
|
"""
|
|
|
|
"""
|
|
# VAE
|
|
|
|
python scripts/convert_flux_to_diffusers.py \
|
|
--original_state_dict_repo_id "black-forest-labs/FLUX.1-schnell" \
|
|
--filename "ae.sft"
|
|
--output_path "flux-schnell" \
|
|
--vae
|
|
"""
|
|
|
|
CTX = init_empty_weights if is_accelerate_available() else nullcontext
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--original_state_dict_repo_id", default=None, type=str)
|
|
parser.add_argument("--filename", default="flux.safetensors", type=str)
|
|
parser.add_argument("--checkpoint_path", default=None, type=str)
|
|
parser.add_argument("--in_channels", type=int, default=64)
|
|
parser.add_argument("--out_channels", type=int, default=None)
|
|
parser.add_argument("--vae", action="store_true")
|
|
parser.add_argument("--transformer", action="store_true")
|
|
parser.add_argument("--output_path", type=str)
|
|
parser.add_argument("--dtype", type=str, default="bf16")
|
|
|
|
args = parser.parse_args()
|
|
dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float32
|
|
|
|
|
|
def load_original_checkpoint(args):
|
|
if args.original_state_dict_repo_id is not None:
|
|
ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename)
|
|
elif args.checkpoint_path is not None:
|
|
ckpt_path = args.checkpoint_path
|
|
else:
|
|
raise ValueError(" please provide either `original_state_dict_repo_id` or a local `checkpoint_path`")
|
|
|
|
original_state_dict = safetensors.torch.load_file(ckpt_path)
|
|
return original_state_dict
|
|
|
|
|
|
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
|
|
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
|
|
def swap_scale_shift(weight):
|
|
shift, scale = weight.chunk(2, dim=0)
|
|
new_weight = torch.cat([scale, shift], dim=0)
|
|
return new_weight
|
|
|
|
|
|
def convert_flux_transformer_checkpoint_to_diffusers(
|
|
original_state_dict, num_layers, num_single_layers, inner_dim, mlp_ratio=4.0
|
|
):
|
|
converted_state_dict = {}
|
|
|
|
## time_text_embed.timestep_embedder <- time_in
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
|
|
"time_in.in_layer.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
|
|
"time_in.in_layer.bias"
|
|
)
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
|
|
"time_in.out_layer.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
|
|
"time_in.out_layer.bias"
|
|
)
|
|
|
|
## time_text_embed.text_embedder <- vector_in
|
|
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop(
|
|
"vector_in.in_layer.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop(
|
|
"vector_in.in_layer.bias"
|
|
)
|
|
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop(
|
|
"vector_in.out_layer.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop(
|
|
"vector_in.out_layer.bias"
|
|
)
|
|
|
|
# guidance
|
|
has_guidance = any("guidance" in k for k in original_state_dict)
|
|
if has_guidance:
|
|
converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = original_state_dict.pop(
|
|
"guidance_in.in_layer.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = original_state_dict.pop(
|
|
"guidance_in.in_layer.bias"
|
|
)
|
|
converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = original_state_dict.pop(
|
|
"guidance_in.out_layer.weight"
|
|
)
|
|
converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = original_state_dict.pop(
|
|
"guidance_in.out_layer.bias"
|
|
)
|
|
|
|
# context_embedder
|
|
converted_state_dict["context_embedder.weight"] = original_state_dict.pop("txt_in.weight")
|
|
converted_state_dict["context_embedder.bias"] = original_state_dict.pop("txt_in.bias")
|
|
|
|
# x_embedder
|
|
converted_state_dict["x_embedder.weight"] = original_state_dict.pop("img_in.weight")
|
|
converted_state_dict["x_embedder.bias"] = original_state_dict.pop("img_in.bias")
|
|
|
|
# double transformer blocks
|
|
for i in range(num_layers):
|
|
block_prefix = f"transformer_blocks.{i}."
|
|
# norms.
|
|
## norm1
|
|
converted_state_dict[f"{block_prefix}norm1.linear.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_mod.lin.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}norm1.linear.bias"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_mod.lin.bias"
|
|
)
|
|
## norm1_context
|
|
converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_mod.lin.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_mod.lin.bias"
|
|
)
|
|
# Q, K, V
|
|
sample_q, sample_k, sample_v = torch.chunk(
|
|
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0
|
|
)
|
|
context_q, context_k, context_v = torch.chunk(
|
|
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
|
|
)
|
|
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
|
|
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
|
|
)
|
|
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
|
|
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
|
|
)
|
|
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
|
|
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
|
|
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
|
|
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
|
|
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
|
|
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
|
|
converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
|
|
converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
|
|
converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
|
|
converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
|
|
converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
|
|
converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
|
|
# qk_norm
|
|
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_attn.norm.query_norm.scale"
|
|
)
|
|
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_attn.norm.key_norm.scale"
|
|
)
|
|
converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
|
|
)
|
|
converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
|
|
)
|
|
# ff img_mlp
|
|
converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_mlp.0.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_mlp.0.bias"
|
|
)
|
|
converted_state_dict[f"{block_prefix}ff.net.2.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_mlp.2.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}ff.net.2.bias"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_mlp.2.bias"
|
|
)
|
|
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_mlp.0.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_mlp.0.bias"
|
|
)
|
|
converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_mlp.2.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_mlp.2.bias"
|
|
)
|
|
# output projections.
|
|
converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.img_attn.proj.bias"
|
|
)
|
|
converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_attn.proj.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = original_state_dict.pop(
|
|
f"double_blocks.{i}.txt_attn.proj.bias"
|
|
)
|
|
|
|
# single transformer blocks
|
|
for i in range(num_single_layers):
|
|
block_prefix = f"single_transformer_blocks.{i}."
|
|
# norm.linear <- single_blocks.0.modulation.lin
|
|
converted_state_dict[f"{block_prefix}norm.linear.weight"] = original_state_dict.pop(
|
|
f"single_blocks.{i}.modulation.lin.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}norm.linear.bias"] = original_state_dict.pop(
|
|
f"single_blocks.{i}.modulation.lin.bias"
|
|
)
|
|
# Q, K, V, mlp
|
|
mlp_hidden_dim = int(inner_dim * mlp_ratio)
|
|
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
|
|
q, k, v, mlp = torch.split(original_state_dict.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
|
|
q_bias, k_bias, v_bias, mlp_bias = torch.split(
|
|
original_state_dict.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
|
|
)
|
|
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
|
|
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
|
|
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
|
|
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
|
|
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
|
|
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
|
|
converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
|
|
converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
|
|
# qk norm
|
|
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
|
|
f"single_blocks.{i}.norm.query_norm.scale"
|
|
)
|
|
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
|
|
f"single_blocks.{i}.norm.key_norm.scale"
|
|
)
|
|
# output projections.
|
|
converted_state_dict[f"{block_prefix}proj_out.weight"] = original_state_dict.pop(
|
|
f"single_blocks.{i}.linear2.weight"
|
|
)
|
|
converted_state_dict[f"{block_prefix}proj_out.bias"] = original_state_dict.pop(
|
|
f"single_blocks.{i}.linear2.bias"
|
|
)
|
|
|
|
converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
|
|
converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
|
|
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
|
|
original_state_dict.pop("final_layer.adaLN_modulation.1.weight")
|
|
)
|
|
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
|
|
original_state_dict.pop("final_layer.adaLN_modulation.1.bias")
|
|
)
|
|
|
|
return converted_state_dict
|
|
|
|
|
|
def main(args):
|
|
original_ckpt = load_original_checkpoint(args)
|
|
has_guidance = any("guidance" in k for k in original_ckpt)
|
|
|
|
if args.transformer:
|
|
num_layers = 19
|
|
num_single_layers = 38
|
|
inner_dim = 3072
|
|
mlp_ratio = 4.0
|
|
|
|
converted_transformer_state_dict = convert_flux_transformer_checkpoint_to_diffusers(
|
|
original_ckpt, num_layers, num_single_layers, inner_dim, mlp_ratio=mlp_ratio
|
|
)
|
|
transformer = FluxTransformer2DModel(
|
|
in_channels=args.in_channels, out_channels=args.out_channels, guidance_embeds=has_guidance
|
|
)
|
|
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
|
|
|
|
print(
|
|
f"Saving Flux Transformer in Diffusers format. Variant: {'guidance-distilled' if has_guidance else 'timestep-distilled'}"
|
|
)
|
|
transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer")
|
|
|
|
if args.vae:
|
|
config = AutoencoderKL.load_config("stabilityai/stable-diffusion-3-medium-diffusers", subfolder="vae")
|
|
vae = AutoencoderKL.from_config(config, scaling_factor=0.3611, shift_factor=0.1159).to(torch.bfloat16)
|
|
|
|
converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config)
|
|
vae.load_state_dict(converted_vae_state_dict, strict=True)
|
|
vae.to(dtype).save_pretrained(f"{args.output_path}/vae")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(args)
|