mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
345 lines
13 KiB
Python
345 lines
13 KiB
Python
"""
|
|
This script requires you to build `LAVIS` from source, since the pip version doesn't have BLIP Diffusion. Follow instructions here: https://github.com/salesforce/LAVIS/tree/main.
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
import tempfile
|
|
|
|
import torch
|
|
from lavis.models import load_model_and_preprocess
|
|
from transformers import CLIPTokenizer
|
|
from transformers.models.blip_2.configuration_blip_2 import Blip2Config
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
PNDMScheduler,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.pipelines import BlipDiffusionPipeline
|
|
from diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
|
|
from diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
|
|
from diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel
|
|
|
|
|
|
BLIP2_CONFIG = {
|
|
"vision_config": {
|
|
"hidden_size": 1024,
|
|
"num_hidden_layers": 23,
|
|
"num_attention_heads": 16,
|
|
"image_size": 224,
|
|
"patch_size": 14,
|
|
"intermediate_size": 4096,
|
|
"hidden_act": "quick_gelu",
|
|
},
|
|
"qformer_config": {
|
|
"cross_attention_frequency": 1,
|
|
"encoder_hidden_size": 1024,
|
|
"vocab_size": 30523,
|
|
},
|
|
"num_query_tokens": 16,
|
|
}
|
|
blip2config = Blip2Config(**BLIP2_CONFIG)
|
|
|
|
|
|
def qformer_model_from_original_config():
|
|
qformer = Blip2QFormerModel(blip2config)
|
|
return qformer
|
|
|
|
|
|
def embeddings_from_original_checkpoint(model, diffuser_embeddings_prefix, original_embeddings_prefix):
|
|
embeddings = {}
|
|
embeddings.update(
|
|
{
|
|
f"{diffuser_embeddings_prefix}.word_embeddings.weight": model[
|
|
f"{original_embeddings_prefix}.word_embeddings.weight"
|
|
]
|
|
}
|
|
)
|
|
embeddings.update(
|
|
{
|
|
f"{diffuser_embeddings_prefix}.position_embeddings.weight": model[
|
|
f"{original_embeddings_prefix}.position_embeddings.weight"
|
|
]
|
|
}
|
|
)
|
|
embeddings.update(
|
|
{f"{diffuser_embeddings_prefix}.LayerNorm.weight": model[f"{original_embeddings_prefix}.LayerNorm.weight"]}
|
|
)
|
|
embeddings.update(
|
|
{f"{diffuser_embeddings_prefix}.LayerNorm.bias": model[f"{original_embeddings_prefix}.LayerNorm.bias"]}
|
|
)
|
|
return embeddings
|
|
|
|
|
|
def proj_layer_from_original_checkpoint(model, diffuser_proj_prefix, original_proj_prefix):
|
|
proj_layer = {}
|
|
proj_layer.update({f"{diffuser_proj_prefix}.dense1.weight": model[f"{original_proj_prefix}.dense1.weight"]})
|
|
proj_layer.update({f"{diffuser_proj_prefix}.dense1.bias": model[f"{original_proj_prefix}.dense1.bias"]})
|
|
proj_layer.update({f"{diffuser_proj_prefix}.dense2.weight": model[f"{original_proj_prefix}.dense2.weight"]})
|
|
proj_layer.update({f"{diffuser_proj_prefix}.dense2.bias": model[f"{original_proj_prefix}.dense2.bias"]})
|
|
proj_layer.update({f"{diffuser_proj_prefix}.LayerNorm.weight": model[f"{original_proj_prefix}.LayerNorm.weight"]})
|
|
proj_layer.update({f"{diffuser_proj_prefix}.LayerNorm.bias": model[f"{original_proj_prefix}.LayerNorm.bias"]})
|
|
return proj_layer
|
|
|
|
|
|
def attention_from_original_checkpoint(model, diffuser_attention_prefix, original_attention_prefix):
|
|
attention = {}
|
|
attention.update(
|
|
{
|
|
f"{diffuser_attention_prefix}.attention.query.weight": model[
|
|
f"{original_attention_prefix}.self.query.weight"
|
|
]
|
|
}
|
|
)
|
|
attention.update(
|
|
{f"{diffuser_attention_prefix}.attention.query.bias": model[f"{original_attention_prefix}.self.query.bias"]}
|
|
)
|
|
attention.update(
|
|
{f"{diffuser_attention_prefix}.attention.key.weight": model[f"{original_attention_prefix}.self.key.weight"]}
|
|
)
|
|
attention.update(
|
|
{f"{diffuser_attention_prefix}.attention.key.bias": model[f"{original_attention_prefix}.self.key.bias"]}
|
|
)
|
|
attention.update(
|
|
{
|
|
f"{diffuser_attention_prefix}.attention.value.weight": model[
|
|
f"{original_attention_prefix}.self.value.weight"
|
|
]
|
|
}
|
|
)
|
|
attention.update(
|
|
{f"{diffuser_attention_prefix}.attention.value.bias": model[f"{original_attention_prefix}.self.value.bias"]}
|
|
)
|
|
attention.update(
|
|
{f"{diffuser_attention_prefix}.output.dense.weight": model[f"{original_attention_prefix}.output.dense.weight"]}
|
|
)
|
|
attention.update(
|
|
{f"{diffuser_attention_prefix}.output.dense.bias": model[f"{original_attention_prefix}.output.dense.bias"]}
|
|
)
|
|
attention.update(
|
|
{
|
|
f"{diffuser_attention_prefix}.output.LayerNorm.weight": model[
|
|
f"{original_attention_prefix}.output.LayerNorm.weight"
|
|
]
|
|
}
|
|
)
|
|
attention.update(
|
|
{
|
|
f"{diffuser_attention_prefix}.output.LayerNorm.bias": model[
|
|
f"{original_attention_prefix}.output.LayerNorm.bias"
|
|
]
|
|
}
|
|
)
|
|
return attention
|
|
|
|
|
|
def output_layers_from_original_checkpoint(model, diffuser_output_prefix, original_output_prefix):
|
|
output_layers = {}
|
|
output_layers.update({f"{diffuser_output_prefix}.dense.weight": model[f"{original_output_prefix}.dense.weight"]})
|
|
output_layers.update({f"{diffuser_output_prefix}.dense.bias": model[f"{original_output_prefix}.dense.bias"]})
|
|
output_layers.update(
|
|
{f"{diffuser_output_prefix}.LayerNorm.weight": model[f"{original_output_prefix}.LayerNorm.weight"]}
|
|
)
|
|
output_layers.update(
|
|
{f"{diffuser_output_prefix}.LayerNorm.bias": model[f"{original_output_prefix}.LayerNorm.bias"]}
|
|
)
|
|
return output_layers
|
|
|
|
|
|
def encoder_from_original_checkpoint(model, diffuser_encoder_prefix, original_encoder_prefix):
|
|
encoder = {}
|
|
for i in range(blip2config.qformer_config.num_hidden_layers):
|
|
encoder.update(
|
|
attention_from_original_checkpoint(
|
|
model, f"{diffuser_encoder_prefix}.{i}.attention", f"{original_encoder_prefix}.{i}.attention"
|
|
)
|
|
)
|
|
encoder.update(
|
|
attention_from_original_checkpoint(
|
|
model, f"{diffuser_encoder_prefix}.{i}.crossattention", f"{original_encoder_prefix}.{i}.crossattention"
|
|
)
|
|
)
|
|
|
|
encoder.update(
|
|
{
|
|
f"{diffuser_encoder_prefix}.{i}.intermediate.dense.weight": model[
|
|
f"{original_encoder_prefix}.{i}.intermediate.dense.weight"
|
|
]
|
|
}
|
|
)
|
|
encoder.update(
|
|
{
|
|
f"{diffuser_encoder_prefix}.{i}.intermediate.dense.bias": model[
|
|
f"{original_encoder_prefix}.{i}.intermediate.dense.bias"
|
|
]
|
|
}
|
|
)
|
|
encoder.update(
|
|
{
|
|
f"{diffuser_encoder_prefix}.{i}.intermediate_query.dense.weight": model[
|
|
f"{original_encoder_prefix}.{i}.intermediate_query.dense.weight"
|
|
]
|
|
}
|
|
)
|
|
encoder.update(
|
|
{
|
|
f"{diffuser_encoder_prefix}.{i}.intermediate_query.dense.bias": model[
|
|
f"{original_encoder_prefix}.{i}.intermediate_query.dense.bias"
|
|
]
|
|
}
|
|
)
|
|
|
|
encoder.update(
|
|
output_layers_from_original_checkpoint(
|
|
model, f"{diffuser_encoder_prefix}.{i}.output", f"{original_encoder_prefix}.{i}.output"
|
|
)
|
|
)
|
|
encoder.update(
|
|
output_layers_from_original_checkpoint(
|
|
model, f"{diffuser_encoder_prefix}.{i}.output_query", f"{original_encoder_prefix}.{i}.output_query"
|
|
)
|
|
)
|
|
return encoder
|
|
|
|
|
|
def visual_encoder_layer_from_original_checkpoint(model, diffuser_prefix, original_prefix):
|
|
visual_encoder_layer = {}
|
|
|
|
visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm1.weight": model[f"{original_prefix}.ln_1.weight"]})
|
|
visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm1.bias": model[f"{original_prefix}.ln_1.bias"]})
|
|
visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm2.weight": model[f"{original_prefix}.ln_2.weight"]})
|
|
visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm2.bias": model[f"{original_prefix}.ln_2.bias"]})
|
|
visual_encoder_layer.update(
|
|
{f"{diffuser_prefix}.self_attn.qkv.weight": model[f"{original_prefix}.attn.in_proj_weight"]}
|
|
)
|
|
visual_encoder_layer.update(
|
|
{f"{diffuser_prefix}.self_attn.qkv.bias": model[f"{original_prefix}.attn.in_proj_bias"]}
|
|
)
|
|
visual_encoder_layer.update(
|
|
{f"{diffuser_prefix}.self_attn.projection.weight": model[f"{original_prefix}.attn.out_proj.weight"]}
|
|
)
|
|
visual_encoder_layer.update(
|
|
{f"{diffuser_prefix}.self_attn.projection.bias": model[f"{original_prefix}.attn.out_proj.bias"]}
|
|
)
|
|
visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc1.weight": model[f"{original_prefix}.mlp.c_fc.weight"]})
|
|
visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc1.bias": model[f"{original_prefix}.mlp.c_fc.bias"]})
|
|
visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc2.weight": model[f"{original_prefix}.mlp.c_proj.weight"]})
|
|
visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc2.bias": model[f"{original_prefix}.mlp.c_proj.bias"]})
|
|
|
|
return visual_encoder_layer
|
|
|
|
|
|
def visual_encoder_from_original_checkpoint(model, diffuser_prefix, original_prefix):
|
|
visual_encoder = {}
|
|
|
|
visual_encoder.update(
|
|
{
|
|
f"{diffuser_prefix}.embeddings.class_embedding": model[f"{original_prefix}.class_embedding"]
|
|
.unsqueeze(0)
|
|
.unsqueeze(0)
|
|
}
|
|
)
|
|
visual_encoder.update(
|
|
{
|
|
f"{diffuser_prefix}.embeddings.position_embedding": model[
|
|
f"{original_prefix}.positional_embedding"
|
|
].unsqueeze(0)
|
|
}
|
|
)
|
|
visual_encoder.update(
|
|
{f"{diffuser_prefix}.embeddings.patch_embedding.weight": model[f"{original_prefix}.conv1.weight"]}
|
|
)
|
|
visual_encoder.update({f"{diffuser_prefix}.pre_layernorm.weight": model[f"{original_prefix}.ln_pre.weight"]})
|
|
visual_encoder.update({f"{diffuser_prefix}.pre_layernorm.bias": model[f"{original_prefix}.ln_pre.bias"]})
|
|
|
|
for i in range(blip2config.vision_config.num_hidden_layers):
|
|
visual_encoder.update(
|
|
visual_encoder_layer_from_original_checkpoint(
|
|
model, f"{diffuser_prefix}.encoder.layers.{i}", f"{original_prefix}.transformer.resblocks.{i}"
|
|
)
|
|
)
|
|
|
|
visual_encoder.update({f"{diffuser_prefix}.post_layernorm.weight": model["blip.ln_vision.weight"]})
|
|
visual_encoder.update({f"{diffuser_prefix}.post_layernorm.bias": model["blip.ln_vision.bias"]})
|
|
|
|
return visual_encoder
|
|
|
|
|
|
def qformer_original_checkpoint_to_diffusers_checkpoint(model):
|
|
qformer_checkpoint = {}
|
|
qformer_checkpoint.update(embeddings_from_original_checkpoint(model, "embeddings", "blip.Qformer.bert.embeddings"))
|
|
qformer_checkpoint.update({"query_tokens": model["blip.query_tokens"]})
|
|
qformer_checkpoint.update(proj_layer_from_original_checkpoint(model, "proj_layer", "proj_layer"))
|
|
qformer_checkpoint.update(
|
|
encoder_from_original_checkpoint(model, "encoder.layer", "blip.Qformer.bert.encoder.layer")
|
|
)
|
|
qformer_checkpoint.update(visual_encoder_from_original_checkpoint(model, "visual_encoder", "blip.visual_encoder"))
|
|
return qformer_checkpoint
|
|
|
|
|
|
def get_qformer(model):
|
|
print("loading qformer")
|
|
|
|
qformer = qformer_model_from_original_config()
|
|
qformer_diffusers_checkpoint = qformer_original_checkpoint_to_diffusers_checkpoint(model)
|
|
|
|
load_checkpoint_to_model(qformer_diffusers_checkpoint, qformer)
|
|
|
|
print("done loading qformer")
|
|
return qformer
|
|
|
|
|
|
def load_checkpoint_to_model(checkpoint, model):
|
|
with tempfile.NamedTemporaryFile(delete=False) as file:
|
|
torch.save(checkpoint, file.name)
|
|
del checkpoint
|
|
model.load_state_dict(torch.load(file.name), strict=False)
|
|
|
|
os.remove(file.name)
|
|
|
|
|
|
def save_blip_diffusion_model(model, args):
|
|
qformer = get_qformer(model)
|
|
qformer.eval()
|
|
|
|
text_encoder = ContextCLIPTextModel.from_pretrained(
|
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="text_encoder"
|
|
)
|
|
vae = AutoencoderKL.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="vae")
|
|
unet = UNet2DConditionModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet")
|
|
vae.eval()
|
|
text_encoder.eval()
|
|
scheduler = PNDMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
set_alpha_to_one=False,
|
|
skip_prk_steps=True,
|
|
)
|
|
tokenizer = CLIPTokenizer.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="tokenizer")
|
|
image_processor = BlipImageProcessor()
|
|
blip_diffusion = BlipDiffusionPipeline(
|
|
tokenizer=tokenizer,
|
|
text_encoder=text_encoder,
|
|
vae=vae,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
qformer=qformer,
|
|
image_processor=image_processor,
|
|
)
|
|
blip_diffusion.save_pretrained(args.checkpoint_path)
|
|
|
|
|
|
def main(args):
|
|
model, _, _ = load_model_and_preprocess("blip_diffusion", "base", device="cpu", is_eval=True)
|
|
save_blip_diffusion_model(model.state_dict(), args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|