mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* initial sparse control model draft * remove unnecessary implementation * copy animatediff pipeline * remove deprecated callbacks * update * update pipeline implementation progress * make style * make fix-copies * update progress * add partially working pipeline * remove debug prints * add model docs * dummy objects * improve motion lora conversion script * fix bugs * update docstrings * remove unnecessary model params; docs * address review comment * add copied from to zero_module * copy animatediff test * add fast tests * update docs * update * update pipeline docs * fix expected slice values * fix license * remove get_down_block usage * remove temporal_double_self_attention from get_down_block * update * update docs with org and documentation images * make from_unet work in sparsecontrolnetmodel * add latest freeinit test from #8969 * make fix-copies * LoraLoaderMixin -> StableDiffsuionLoraLoaderMixin
84 lines
2.8 KiB
Python
84 lines
2.8 KiB
Python
import argparse
|
|
from typing import Dict
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from diffusers import SparseControlNetModel
|
|
|
|
|
|
KEYS_RENAME_MAPPING = {
|
|
".attention_blocks.0": ".attn1",
|
|
".attention_blocks.1": ".attn2",
|
|
".attn1.pos_encoder": ".pos_embed",
|
|
".ff_norm": ".norm3",
|
|
".norms.0": ".norm1",
|
|
".norms.1": ".norm2",
|
|
".temporal_transformer": "",
|
|
}
|
|
|
|
|
|
def convert(original_state_dict: Dict[str, nn.Module]) -> Dict[str, nn.Module]:
|
|
converted_state_dict = {}
|
|
|
|
for key in list(original_state_dict.keys()):
|
|
renamed_key = key
|
|
for new_name, old_name in KEYS_RENAME_MAPPING.items():
|
|
renamed_key = renamed_key.replace(new_name, old_name)
|
|
converted_state_dict[renamed_key] = original_state_dict.pop(key)
|
|
|
|
return converted_state_dict
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint")
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path to output directory")
|
|
parser.add_argument(
|
|
"--max_motion_seq_length",
|
|
type=int,
|
|
default=32,
|
|
help="Max motion sequence length supported by the motion adapter",
|
|
)
|
|
parser.add_argument(
|
|
"--conditioning_channels", type=int, default=4, help="Number of channels in conditioning input to controlnet"
|
|
)
|
|
parser.add_argument(
|
|
"--use_simplified_condition_embedding",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether or not to use simplified condition embedding. When `conditioning_channels==4` i.e. latent inputs, set this to `True`. When `conditioning_channels==3` i.e. image inputs, set this to `False`",
|
|
)
|
|
parser.add_argument(
|
|
"--save_fp16",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether or not to save model in fp16 precision along with fp32",
|
|
)
|
|
parser.add_argument(
|
|
"--push_to_hub", action="store_true", default=False, help="Whether or not to push saved model to the HF hub"
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
|
|
state_dict = torch.load(args.ckpt_path, map_location="cpu")
|
|
if "state_dict" in state_dict.keys():
|
|
state_dict: dict = state_dict["state_dict"]
|
|
|
|
controlnet = SparseControlNetModel(
|
|
conditioning_channels=args.conditioning_channels,
|
|
motion_max_seq_length=args.max_motion_seq_length,
|
|
use_simplified_condition_embedding=args.use_simplified_condition_embedding,
|
|
)
|
|
|
|
state_dict = convert(state_dict)
|
|
controlnet.load_state_dict(state_dict, strict=True)
|
|
|
|
controlnet.save_pretrained(args.output_path, push_to_hub=args.push_to_hub)
|
|
if args.save_fp16:
|
|
controlnet = controlnet.to(dtype=torch.float16)
|
|
controlnet.save_pretrained(args.output_path, variant="fp16", push_to_hub=args.push_to_hub)
|