mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* update conversion script to handle motion adapter sdxl checkpoint * add animatediff xl * handle addition_embed_type * fix output * update * add imports * make fix-copies * add decode latents * update docstrings * add animatediff sdxl to docs * remove unnecessary lines * update example * add test * revert conv_in conv_out kernel param * remove unused param addition_embed_type_num_heads * latest IPAdapter impl * make fix-copies * fix return * add IPAdapterTesterMixin to tests * fix return * revert based on suggestion * add freeinit * fix test_to_dtype test * use StableDiffusionMixin instead of different helper methods * fix progress bar iterations * apply suggestions from review * hardcode flip_sin_to_cos and freq_shift * make fix-copies * fix ip adapter implementation * fix last failing test * make style * Update docs/source/en/api/pipelines/animatediff.md Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> * remove todo * fix doc-builder errors --------- Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
63 lines
2.0 KiB
Python
63 lines
2.0 KiB
Python
import argparse
|
|
|
|
import torch
|
|
from safetensors.torch import load_file
|
|
|
|
from diffusers import MotionAdapter
|
|
|
|
|
|
def convert_motion_module(original_state_dict):
|
|
converted_state_dict = {}
|
|
for k, v in original_state_dict.items():
|
|
if "pos_encoder" in k:
|
|
continue
|
|
|
|
else:
|
|
converted_state_dict[
|
|
k.replace(".norms.0", ".norm1")
|
|
.replace(".norms.1", ".norm2")
|
|
.replace(".ff_norm", ".norm3")
|
|
.replace(".attention_blocks.0", ".attn1")
|
|
.replace(".attention_blocks.1", ".attn2")
|
|
.replace(".temporal_transformer", "")
|
|
] = v
|
|
|
|
return converted_state_dict
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--ckpt_path", type=str, required=True)
|
|
parser.add_argument("--output_path", type=str, required=True)
|
|
parser.add_argument("--use_motion_mid_block", action="store_true")
|
|
parser.add_argument("--motion_max_seq_length", type=int, default=32)
|
|
parser.add_argument("--block_out_channels", nargs="+", default=[320, 640, 1280, 1280], type=int)
|
|
parser.add_argument("--save_fp16", action="store_true")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
|
|
if args.ckpt_path.endswith(".safetensors"):
|
|
state_dict = load_file(args.ckpt_path)
|
|
else:
|
|
state_dict = torch.load(args.ckpt_path, map_location="cpu")
|
|
|
|
if "state_dict" in state_dict.keys():
|
|
state_dict = state_dict["state_dict"]
|
|
|
|
conv_state_dict = convert_motion_module(state_dict)
|
|
adapter = MotionAdapter(
|
|
block_out_channels=args.block_out_channels,
|
|
use_motion_mid_block=args.use_motion_mid_block,
|
|
motion_max_seq_length=args.motion_max_seq_length,
|
|
)
|
|
# skip loading position embeddings
|
|
adapter.load_state_dict(conv_state_dict, strict=False)
|
|
adapter.save_pretrained(args.output_path)
|
|
|
|
if args.save_fp16:
|
|
adapter.to(dtype=torch.float16).save_pretrained(args.output_path, variant="fp16")
|