mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
* initial sparse control model draft * remove unnecessary implementation * copy animatediff pipeline * remove deprecated callbacks * update * update pipeline implementation progress * make style * make fix-copies * update progress * add partially working pipeline * remove debug prints * add model docs * dummy objects * improve motion lora conversion script * fix bugs * update docstrings * remove unnecessary model params; docs * address review comment * add copied from to zero_module * copy animatediff test * add fast tests * update docs * update * update pipeline docs * fix expected slice values * fix license * remove get_down_block usage * remove temporal_double_self_attention from get_down_block * update * update docs with org and documentation images * make from_unet work in sparsecontrolnetmodel * add latest freeinit test from #8969 * make fix-copies * LoraLoaderMixin -> StableDiffsuionLoraLoaderMixin
70 lines
2.1 KiB
Python
70 lines
2.1 KiB
Python
import argparse
|
|
import os
|
|
|
|
import torch
|
|
from huggingface_hub import create_repo, upload_folder
|
|
from safetensors.torch import load_file, save_file
|
|
|
|
|
|
def convert_motion_module(original_state_dict):
|
|
converted_state_dict = {}
|
|
for k, v in original_state_dict.items():
|
|
if "pos_encoder" in k:
|
|
continue
|
|
|
|
else:
|
|
converted_state_dict[
|
|
k.replace(".norms.0", ".norm1")
|
|
.replace(".norms.1", ".norm2")
|
|
.replace(".ff_norm", ".norm3")
|
|
.replace(".attention_blocks.0", ".attn1")
|
|
.replace(".attention_blocks.1", ".attn2")
|
|
.replace(".temporal_transformer", "")
|
|
] = v
|
|
|
|
return converted_state_dict
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint")
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path to output directory")
|
|
parser.add_argument(
|
|
"--push_to_hub",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether to push the converted model to the HF or not",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
|
|
if args.ckpt_path.endswith(".safetensors"):
|
|
state_dict = load_file(args.ckpt_path)
|
|
else:
|
|
state_dict = torch.load(args.ckpt_path, map_location="cpu")
|
|
|
|
if "state_dict" in state_dict.keys():
|
|
state_dict = state_dict["state_dict"]
|
|
|
|
conv_state_dict = convert_motion_module(state_dict)
|
|
|
|
# convert to new format
|
|
output_dict = {}
|
|
for module_name, params in conv_state_dict.items():
|
|
if type(params) is not torch.Tensor:
|
|
continue
|
|
output_dict.update({f"unet.{module_name}": params})
|
|
|
|
os.makedirs(args.output_path, exist_ok=True)
|
|
|
|
filepath = os.path.join(args.output_path, "diffusion_pytorch_model.safetensors")
|
|
save_file(output_dict, filepath)
|
|
|
|
if args.push_to_hub:
|
|
repo_id = create_repo(args.output_path, exist_ok=True).repo_id
|
|
upload_folder(repo_id=repo_id, folder_path=args.output_path, repo_type="model")
|