mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 20:44:33 +08:00
* Add optional precision-preserving preprocessing * Document decoder caveat for precision flag --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
750 lines
30 KiB
Python
750 lines
30 KiB
Python
import argparse
|
|
import inspect
|
|
import logging
|
|
import math
|
|
import os
|
|
import shutil
|
|
from datetime import timedelta
|
|
from pathlib import Path
|
|
|
|
import accelerate
|
|
import datasets
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from accelerate import Accelerator, InitProcessGroupKwargs
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import ProjectConfiguration
|
|
from datasets import load_dataset
|
|
from huggingface_hub import create_repo, upload_folder
|
|
from packaging import version
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
|
|
import diffusers
|
|
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.training_utils import EMAModel
|
|
from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
|
|
|
|
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
|
check_min_version("0.36.0.dev0")
|
|
|
|
logger = get_logger(__name__, log_level="INFO")
|
|
|
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
|
"""
|
|
Extract values from a 1-D numpy array for a batch of indices.
|
|
|
|
:param arr: the 1-D numpy array.
|
|
:param timesteps: a tensor of indices into the array to extract.
|
|
:param broadcast_shape: a larger shape of K dimensions with the batch
|
|
dimension equal to the length of timesteps.
|
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
|
"""
|
|
if not isinstance(arr, torch.Tensor):
|
|
arr = torch.from_numpy(arr)
|
|
res = arr[timesteps].float().to(timesteps.device)
|
|
while len(res.shape) < len(broadcast_shape):
|
|
res = res[..., None]
|
|
return res.expand(broadcast_shape)
|
|
|
|
|
|
def _ensure_three_channels(tensor: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Ensure the tensor has exactly three channels (C, H, W) by repeating or truncating channels when needed.
|
|
"""
|
|
if tensor.ndim == 2:
|
|
tensor = tensor.unsqueeze(0)
|
|
channels = tensor.shape[0]
|
|
if channels == 3:
|
|
return tensor
|
|
if channels == 1:
|
|
return tensor.repeat(3, 1, 1)
|
|
if channels == 2:
|
|
return torch.cat([tensor, tensor[:1]], dim=0)
|
|
if channels > 3:
|
|
return tensor[:3]
|
|
raise ValueError(f"Unsupported number of channels: {channels}")
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
parser.add_argument(
|
|
"--dataset_name",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
|
" or to a folder containing files that HF Datasets can understand."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_config_name",
|
|
type=str,
|
|
default=None,
|
|
help="The config of the Dataset, leave as None if there's only one config.",
|
|
)
|
|
parser.add_argument(
|
|
"--model_config_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
help="The config of the UNet model to train, leave as None to use standard DDPM configuration.",
|
|
)
|
|
parser.add_argument(
|
|
"--train_data_dir",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"A folder containing the training data. Folder contents must follow the structure described in"
|
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="ddpm-model-64",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument("--overwrite_output_dir", action="store_true")
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
type=str,
|
|
default=None,
|
|
help="The directory where the downloaded models and datasets will be stored.",
|
|
)
|
|
parser.add_argument(
|
|
"--resolution",
|
|
type=int,
|
|
default=64,
|
|
help=(
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
" resolution"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--center_crop",
|
|
default=False,
|
|
action="store_true",
|
|
help=(
|
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
|
" cropped. The images will be resized to the resolution first before cropping."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--random_flip",
|
|
default=False,
|
|
action="store_true",
|
|
help="whether to randomly flip images horizontally",
|
|
)
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument(
|
|
"--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
|
|
)
|
|
parser.add_argument(
|
|
"--dataloader_num_workers",
|
|
type=int,
|
|
default=0,
|
|
help=(
|
|
"The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
|
|
" process."
|
|
),
|
|
)
|
|
parser.add_argument("--num_epochs", type=int, default=100)
|
|
parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
|
|
parser.add_argument(
|
|
"--save_model_epochs", type=int, default=10, help="How often to save the model during training."
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=1e-4,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="cosine",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
parser.add_argument(
|
|
"--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
|
|
)
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
|
|
parser.add_argument(
|
|
"--use_ema",
|
|
action="store_true",
|
|
help="Whether to use Exponential Moving Average for the final model weights.",
|
|
)
|
|
parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
|
|
parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
|
|
parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
|
|
)
|
|
parser.add_argument(
|
|
"--logger",
|
|
type=str,
|
|
default="tensorboard",
|
|
choices=["tensorboard", "wandb"],
|
|
help=(
|
|
"Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
|
|
" for experiment tracking and logging of model metrics and model checkpoints"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help=(
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
),
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default="no",
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose"
|
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
|
"and an Nvidia Ampere GPU."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--prediction_type",
|
|
type=str,
|
|
default="epsilon",
|
|
choices=["epsilon", "sample"],
|
|
help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
|
|
)
|
|
parser.add_argument("--ddpm_num_steps", type=int, default=1000)
|
|
parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000)
|
|
parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=int,
|
|
default=500,
|
|
help=(
|
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
|
|
" training using `--resume_from_checkpoint`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--checkpoints_total_limit",
|
|
type=int,
|
|
default=None,
|
|
help=("Max number of checkpoints to store."),
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
|
)
|
|
parser.add_argument(
|
|
"--preserve_input_precision",
|
|
action="store_true",
|
|
help="Preserve 16/32-bit image precision by avoiding 8-bit RGB conversion while still producing 3-channel tensors.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
if args.dataset_name is None and args.train_data_dir is None:
|
|
raise ValueError("You must specify either a dataset name from the hub or a train data directory.")
|
|
|
|
return args
|
|
|
|
|
|
def main(args):
|
|
logging_dir = os.path.join(args.output_dir, args.logging_dir)
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
|
|
|
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) # a big number for high resolution or big dataset
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
|
mixed_precision=args.mixed_precision,
|
|
log_with=args.logger,
|
|
project_config=accelerator_project_config,
|
|
kwargs_handlers=[kwargs],
|
|
)
|
|
|
|
if args.logger == "tensorboard":
|
|
if not is_tensorboard_available():
|
|
raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.")
|
|
|
|
elif args.logger == "wandb":
|
|
if not is_wandb_available():
|
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
|
import wandb
|
|
|
|
# `accelerate` 0.16.0 will have better support for customized saving
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
|
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
|
def save_model_hook(models, weights, output_dir):
|
|
if accelerator.is_main_process:
|
|
if args.use_ema:
|
|
ema_model.save_pretrained(os.path.join(output_dir, "unet_ema"))
|
|
|
|
for i, model in enumerate(models):
|
|
model.save_pretrained(os.path.join(output_dir, "unet"))
|
|
|
|
# make sure to pop weight so that corresponding model is not saved again
|
|
weights.pop()
|
|
|
|
def load_model_hook(models, input_dir):
|
|
if args.use_ema:
|
|
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
|
|
ema_model.load_state_dict(load_model.state_dict())
|
|
ema_model.to(accelerator.device)
|
|
del load_model
|
|
|
|
for i in range(len(models)):
|
|
# pop models so that they are not loaded again
|
|
model = models.pop()
|
|
|
|
# load diffusers style into model
|
|
load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
|
|
model.register_to_config(**load_model.config)
|
|
|
|
model.load_state_dict(load_model.state_dict())
|
|
del load_model
|
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook)
|
|
accelerator.register_load_state_pre_hook(load_model_hook)
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state, main_process_only=False)
|
|
if accelerator.is_local_main_process:
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
diffusers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
diffusers.utils.logging.set_verbosity_error()
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
if args.push_to_hub:
|
|
repo_id = create_repo(
|
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
|
).repo_id
|
|
|
|
# Initialize the model
|
|
if args.model_config_name_or_path is None:
|
|
model = UNet2DModel(
|
|
sample_size=args.resolution,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
layers_per_block=2,
|
|
block_out_channels=(128, 128, 256, 256, 512, 512),
|
|
down_block_types=(
|
|
"DownBlock2D",
|
|
"DownBlock2D",
|
|
"DownBlock2D",
|
|
"DownBlock2D",
|
|
"AttnDownBlock2D",
|
|
"DownBlock2D",
|
|
),
|
|
up_block_types=(
|
|
"UpBlock2D",
|
|
"AttnUpBlock2D",
|
|
"UpBlock2D",
|
|
"UpBlock2D",
|
|
"UpBlock2D",
|
|
"UpBlock2D",
|
|
),
|
|
)
|
|
else:
|
|
config = UNet2DModel.load_config(args.model_config_name_or_path)
|
|
model = UNet2DModel.from_config(config)
|
|
|
|
# Create EMA for the model.
|
|
if args.use_ema:
|
|
ema_model = EMAModel(
|
|
model.parameters(),
|
|
decay=args.ema_max_decay,
|
|
use_ema_warmup=True,
|
|
inv_gamma=args.ema_inv_gamma,
|
|
power=args.ema_power,
|
|
model_cls=UNet2DModel,
|
|
model_config=model.config,
|
|
)
|
|
|
|
weight_dtype = torch.float32
|
|
if accelerator.mixed_precision == "fp16":
|
|
weight_dtype = torch.float16
|
|
args.mixed_precision = accelerator.mixed_precision
|
|
elif accelerator.mixed_precision == "bf16":
|
|
weight_dtype = torch.bfloat16
|
|
args.mixed_precision = accelerator.mixed_precision
|
|
|
|
if args.enable_xformers_memory_efficient_attention:
|
|
if is_xformers_available():
|
|
import xformers
|
|
|
|
xformers_version = version.parse(xformers.__version__)
|
|
if xformers_version == version.parse("0.0.16"):
|
|
logger.warning(
|
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
|
)
|
|
model.enable_xformers_memory_efficient_attention()
|
|
else:
|
|
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
|
|
|
# Initialize the scheduler
|
|
accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
|
|
if accepts_prediction_type:
|
|
noise_scheduler = DDPMScheduler(
|
|
num_train_timesteps=args.ddpm_num_steps,
|
|
beta_schedule=args.ddpm_beta_schedule,
|
|
prediction_type=args.prediction_type,
|
|
)
|
|
else:
|
|
noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)
|
|
|
|
# Initialize the optimizer
|
|
optimizer = torch.optim.AdamW(
|
|
model.parameters(),
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
)
|
|
|
|
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
|
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
|
|
|
|
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
|
# download the dataset.
|
|
if args.dataset_name is not None:
|
|
dataset = load_dataset(
|
|
args.dataset_name,
|
|
args.dataset_config_name,
|
|
cache_dir=args.cache_dir,
|
|
split="train",
|
|
)
|
|
else:
|
|
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
|
|
# See more about loading custom images at
|
|
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
|
|
|
|
# Preprocessing the datasets and DataLoaders creation.
|
|
spatial_augmentations = [
|
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
|
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
|
|
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
|
|
]
|
|
|
|
augmentations = transforms.Compose(
|
|
spatial_augmentations
|
|
+ [
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
|
|
precision_augmentations = transforms.Compose(
|
|
[
|
|
transforms.PILToTensor(),
|
|
transforms.Lambda(_ensure_three_channels),
|
|
transforms.ConvertImageDtype(torch.float32),
|
|
]
|
|
+ spatial_augmentations
|
|
+ [transforms.Normalize([0.5], [0.5])]
|
|
)
|
|
|
|
def transform_images(examples):
|
|
processed = []
|
|
for image in examples["image"]:
|
|
if not args.preserve_input_precision:
|
|
processed.append(augmentations(image.convert("RGB")))
|
|
else:
|
|
precise_image = image
|
|
if precise_image.mode == "P":
|
|
precise_image = precise_image.convert("RGB")
|
|
processed.append(precision_augmentations(precise_image))
|
|
return {"input": processed}
|
|
|
|
logger.info(f"Dataset size: {len(dataset)}")
|
|
|
|
dataset.set_transform(transform_images)
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
|
|
)
|
|
|
|
# Initialize the learning rate scheduler
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
|
num_training_steps=(len(train_dataloader) * args.num_epochs),
|
|
)
|
|
|
|
# Prepare everything with our `accelerator`.
|
|
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
model, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
if args.use_ema:
|
|
ema_model.to(accelerator.device)
|
|
|
|
# We need to initialize the trackers we use, and also store our configuration.
|
|
# The trackers initializes automatically on the main process.
|
|
if accelerator.is_main_process:
|
|
run = os.path.split(__file__)[-1].split(".")[0]
|
|
accelerator.init_trackers(run)
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
max_train_steps = args.num_epochs * num_update_steps_per_epoch
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(dataset)}")
|
|
logger.info(f" Num Epochs = {args.num_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {max_train_steps}")
|
|
|
|
global_step = 0
|
|
first_epoch = 0
|
|
|
|
# Potentially load in the weights and states from a previous save
|
|
if args.resume_from_checkpoint:
|
|
if args.resume_from_checkpoint != "latest":
|
|
path = os.path.basename(args.resume_from_checkpoint)
|
|
else:
|
|
# Get the most recent checkpoint
|
|
dirs = os.listdir(args.output_dir)
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
|
path = dirs[-1] if len(dirs) > 0 else None
|
|
|
|
if path is None:
|
|
accelerator.print(
|
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
|
)
|
|
args.resume_from_checkpoint = None
|
|
else:
|
|
accelerator.print(f"Resuming from checkpoint {path}")
|
|
accelerator.load_state(os.path.join(args.output_dir, path))
|
|
global_step = int(path.split("-")[1])
|
|
|
|
resume_global_step = global_step * args.gradient_accumulation_steps
|
|
first_epoch = global_step // num_update_steps_per_epoch
|
|
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
|
|
|
# Train!
|
|
for epoch in range(first_epoch, args.num_epochs):
|
|
model.train()
|
|
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
|
|
progress_bar.set_description(f"Epoch {epoch}")
|
|
for step, batch in enumerate(train_dataloader):
|
|
# Skip steps until we reach the resumed step
|
|
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
|
if step % args.gradient_accumulation_steps == 0:
|
|
progress_bar.update(1)
|
|
continue
|
|
|
|
clean_images = batch["input"].to(weight_dtype)
|
|
# Sample noise that we'll add to the images
|
|
noise = torch.randn(clean_images.shape, dtype=weight_dtype, device=clean_images.device)
|
|
bsz = clean_images.shape[0]
|
|
# Sample a random timestep for each image
|
|
timesteps = torch.randint(
|
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
|
|
).long()
|
|
|
|
# Add noise to the clean images according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
|
|
|
|
with accelerator.accumulate(model):
|
|
# Predict the noise residual
|
|
model_output = model(noisy_images, timesteps).sample
|
|
|
|
if args.prediction_type == "epsilon":
|
|
loss = F.mse_loss(model_output.float(), noise.float()) # this could have different weights!
|
|
elif args.prediction_type == "sample":
|
|
alpha_t = _extract_into_tensor(
|
|
noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
|
|
)
|
|
snr_weights = alpha_t / (1 - alpha_t)
|
|
# use SNR weighting from distillation paper
|
|
loss = snr_weights * F.mse_loss(model_output.float(), clean_images.float(), reduction="none")
|
|
loss = loss.mean()
|
|
else:
|
|
raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
|
|
|
|
accelerator.backward(loss)
|
|
|
|
if accelerator.sync_gradients:
|
|
accelerator.clip_grad_norm_(model.parameters(), 1.0)
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
if args.use_ema:
|
|
ema_model.step(model.parameters())
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
if accelerator.is_main_process:
|
|
if global_step % args.checkpointing_steps == 0:
|
|
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
|
if args.checkpoints_total_limit is not None:
|
|
checkpoints = os.listdir(args.output_dir)
|
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
|
|
|
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
|
if len(checkpoints) >= args.checkpoints_total_limit:
|
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
|
removing_checkpoints = checkpoints[0:num_to_remove]
|
|
|
|
logger.info(
|
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
|
)
|
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
|
|
|
for removing_checkpoint in removing_checkpoints:
|
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
|
shutil.rmtree(removing_checkpoint)
|
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
|
accelerator.save_state(save_path)
|
|
logger.info(f"Saved state to {save_path}")
|
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
|
|
if args.use_ema:
|
|
logs["ema_decay"] = ema_model.cur_decay_value
|
|
progress_bar.set_postfix(**logs)
|
|
accelerator.log(logs, step=global_step)
|
|
progress_bar.close()
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
# Generate sample images for visual inspection
|
|
if accelerator.is_main_process:
|
|
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
|
|
unet = accelerator.unwrap_model(model)
|
|
|
|
if args.use_ema:
|
|
ema_model.store(unet.parameters())
|
|
ema_model.copy_to(unet.parameters())
|
|
|
|
pipeline = DDPMPipeline(
|
|
unet=unet,
|
|
scheduler=noise_scheduler,
|
|
)
|
|
|
|
generator = torch.Generator(device=pipeline.device).manual_seed(0)
|
|
# run pipeline in inference (sample random noise and denoise)
|
|
images = pipeline(
|
|
generator=generator,
|
|
batch_size=args.eval_batch_size,
|
|
num_inference_steps=args.ddpm_num_inference_steps,
|
|
output_type="np",
|
|
).images
|
|
|
|
if args.use_ema:
|
|
ema_model.restore(unet.parameters())
|
|
|
|
# denormalize the images and save to tensorboard
|
|
images_processed = (images * 255).round().astype("uint8")
|
|
|
|
if args.logger == "tensorboard":
|
|
if is_accelerate_version(">=", "0.17.0.dev0"):
|
|
tracker = accelerator.get_tracker("tensorboard", unwrap=True)
|
|
else:
|
|
tracker = accelerator.get_tracker("tensorboard")
|
|
tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch)
|
|
elif args.logger == "wandb":
|
|
# Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files
|
|
accelerator.get_tracker("wandb").log(
|
|
{"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch},
|
|
step=global_step,
|
|
)
|
|
|
|
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
|
|
# save the model
|
|
unet = accelerator.unwrap_model(model)
|
|
|
|
if args.use_ema:
|
|
ema_model.store(unet.parameters())
|
|
ema_model.copy_to(unet.parameters())
|
|
|
|
pipeline = DDPMPipeline(
|
|
unet=unet,
|
|
scheduler=noise_scheduler,
|
|
)
|
|
|
|
pipeline.save_pretrained(args.output_dir)
|
|
|
|
if args.use_ema:
|
|
ema_model.restore(unet.parameters())
|
|
|
|
if args.push_to_hub:
|
|
upload_folder(
|
|
repo_id=repo_id,
|
|
folder_path=args.output_dir,
|
|
commit_message=f"Epoch {epoch}",
|
|
ignore_patterns=["step_*", "epoch_*"],
|
|
)
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
main(args)
|