mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-22 02:39:51 +08:00
* add AudioDiffusionPipeline and LatentAudioDiffusionPipeline * add docs to toc * fix tests * fix tests * fix tests * fix tests * fix tests * Update pr_tests.yml Fix tests * parent499ff34b3eauthor teticio <teticio@gmail.com> 1668765652 +0000 committer teticio <teticio@gmail.com> 1669041721 +0000 parent499ff34b3eauthor teticio <teticio@gmail.com> 1668765652 +0000 committer teticio <teticio@gmail.com> 1669041704 +0000 add colab notebook [Flax] Fix loading scheduler from subfolder (#1319) [FLAX] Fix loading scheduler from subfolder Fix/Enable all schedulers for in-painting (#1331) * inpaint fix k lms * onnox as well * up Correct path to schedlure (#1322) * [Examples] Correct path * uP Avoid nested fix-copies (#1332) * Avoid nested `# Copied from` statements during `make fix-copies` * style Fix img2img speed with LMS-Discrete Scheduler (#896) Casting `self.sigmas` into a different dtype (the one of original_samples) is not advisable. In my img2img pipeline this leads to a long running time in the `integrate.quad` call later on- by long I mean more than 10x slower. Co-authored-by: Anton Lozhkov <anton@huggingface.co> Fix the order of casts for onnx inpainting (#1338) Legacy Inpainting Pipeline for Onnx Models (#1237) * Add legacy inpainting pipeline compatibility for onnx * remove commented out line * Add onnx legacy inpainting test * Fix slow decorators * pep8 styling * isort styling * dummy object * ordering consistency * style * docstring styles * Refactor common prompt encoding pattern * Update tests to permanent repository home * support all available schedulers until ONNX IO binding is available Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com> * updated styling from PR suggested feedback Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com> Jax infer support negative prompt (#1337) * support negative prompts in sd jax pipeline * pass batched neg_prompt * only encode when negative prompt is None Co-authored-by: Juan Acevedo <jfacevedo@google.com> Update README.md: Minor change to Imagic code snippet, missing dir error (#1347) Minor change to Imagic Readme Missing dir causes an error when running the example code. make style change the sample model (#1352) * Update alt_diffusion.mdx * Update alt_diffusion.mdx Add bit diffusion [WIP] (#971) * Create bit_diffusion.py Bit diffusion based on the paper, arXiv:2208.04202, Chen2022AnalogBG * adding bit diffusion to new branch ran tests * tests * tests * tests * tests * removed test folders + added to README * Update README.md Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * move Mel to module in pipeline construction, make librosa optional * fix imports * fix copy & paste error in comment * fix style * add missing register_to_config * fix class docstrings * fix class docstrings * tweak docstrings * tweak docstrings * update slow test * put trailing commas back * respect alphabetical order * remove LatentAudioDiffusion, make vqvae optional * move Mel from models back to pipelines :-) * allow loading of pretrained audiodiffusion models * fix tests * fix dummies * remove reference to latent_audio_diffusion in docs * unused import * inherit from SchedulerMixin to make loadable * Apply suggestions from code review * Apply suggestions from code review Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
158 lines
5.7 KiB
Python
158 lines
5.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import (
|
|
AudioDiffusionPipeline,
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
DDPMScheduler,
|
|
DiffusionPipeline,
|
|
Mel,
|
|
UNet2DModel,
|
|
)
|
|
from diffusers.utils import slow, torch_device
|
|
from diffusers.utils.testing_utils import require_torch_gpu
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class PipelineFastTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@property
|
|
def dummy_unet(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DModel(
|
|
sample_size=(32, 64),
|
|
in_channels=1,
|
|
out_channels=1,
|
|
layers_per_block=2,
|
|
block_out_channels=(128, 128),
|
|
down_block_types=("AttnDownBlock2D", "DownBlock2D"),
|
|
up_block_types=("UpBlock2D", "AttnUpBlock2D"),
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_vqvae_and_unet(self):
|
|
torch.manual_seed(0)
|
|
vqvae = AutoencoderKL(
|
|
sample_size=(128, 64),
|
|
in_channels=1,
|
|
out_channels=1,
|
|
latent_channels=1,
|
|
layers_per_block=2,
|
|
block_out_channels=(128, 128),
|
|
down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
|
|
up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
|
|
)
|
|
unet = UNet2DModel(
|
|
sample_size=(64, 32),
|
|
in_channels=1,
|
|
out_channels=1,
|
|
layers_per_block=2,
|
|
block_out_channels=(128, 128),
|
|
down_block_types=("AttnDownBlock2D", "DownBlock2D"),
|
|
up_block_types=("UpBlock2D", "AttnUpBlock2D"),
|
|
)
|
|
return vqvae, unet
|
|
|
|
def test_audio_diffusion(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
mel = Mel()
|
|
|
|
scheduler = DDPMScheduler()
|
|
pipe = AudioDiffusionPipeline(vqvae=None, unet=self.dummy_unet, mel=mel, scheduler=scheduler)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device=device).manual_seed(42)
|
|
output = pipe(generator=generator, steps=4)
|
|
audio = output.audios[0]
|
|
image = output.images[0]
|
|
|
|
generator = torch.Generator(device=device).manual_seed(42)
|
|
output = pipe(generator=generator, steps=4, return_dict=False)
|
|
image_from_tuple = output[0][0]
|
|
|
|
assert audio.shape == (1, (self.dummy_unet.sample_size[1] - 1) * mel.hop_length)
|
|
assert image.height == self.dummy_unet.sample_size[0] and image.width == self.dummy_unet.sample_size[1]
|
|
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
|
|
image_from_tuple_slice = np.frombuffer(image_from_tuple.tobytes(), dtype="uint8")[:10]
|
|
expected_slice = np.array([255, 255, 255, 0, 181, 0, 124, 0, 15, 255])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() == 0
|
|
|
|
scheduler = DDIMScheduler()
|
|
dummy_vqvae_and_unet = self.dummy_vqvae_and_unet
|
|
pipe = AudioDiffusionPipeline(
|
|
vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=mel, scheduler=scheduler
|
|
)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
np.random.seed(0)
|
|
raw_audio = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].sample_size[1] - 1) * mel.hop_length,))
|
|
generator = torch.Generator(device=device).manual_seed(42)
|
|
output = pipe(raw_audio=raw_audio, generator=generator, start_step=5, steps=10)
|
|
image = output.images[0]
|
|
|
|
assert (
|
|
image.height == self.dummy_vqvae_and_unet[0].sample_size[0]
|
|
and image.width == self.dummy_vqvae_and_unet[0].sample_size[1]
|
|
)
|
|
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
|
|
expected_slice = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class PipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_audio_diffusion(self):
|
|
device = torch_device
|
|
|
|
pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256")
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device=device).manual_seed(42)
|
|
output = pipe(generator=generator)
|
|
audio = output.audios[0]
|
|
image = output.images[0]
|
|
|
|
assert audio.shape == (1, (pipe.unet.sample_size[1] - 1) * pipe.mel.hop_length)
|
|
assert image.height == pipe.unet.sample_size[0] and image.width == pipe.unet.sample_size[1]
|
|
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10]
|
|
expected_slice = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
|