Files
diffusers/tests/models/testing_utils/parallelism.py
Dhruv Nair 0b76728e27 Refactor Model Tests (#12822)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-02 18:51:44 +05:30

129 lines
4.2 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import socket
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from diffusers.models._modeling_parallel import ContextParallelConfig
from ...testing_utils import (
is_context_parallel,
require_torch_multi_accelerator,
)
def _find_free_port():
"""Find a free port on localhost."""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("", 0))
s.listen(1)
port = s.getsockname()[1]
return port
def _context_parallel_worker(rank, world_size, master_port, model_class, init_dict, cp_dict, inputs_dict, return_dict):
"""Worker function for context parallel testing."""
try:
# Set up distributed environment
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(master_port)
os.environ["RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
# Initialize process group
dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
# Set device for this process
torch.cuda.set_device(rank)
device = torch.device(f"cuda:{rank}")
# Create model
model = model_class(**init_dict)
model.to(device)
model.eval()
# Move inputs to device
inputs_on_device = {}
for key, value in inputs_dict.items():
if isinstance(value, torch.Tensor):
inputs_on_device[key] = value.to(device)
else:
inputs_on_device[key] = value
# Enable context parallelism
cp_config = ContextParallelConfig(**cp_dict)
model.enable_parallelism(config=cp_config)
# Run forward pass
with torch.no_grad():
output = model(**inputs_on_device, return_dict=False)[0]
# Only rank 0 reports results
if rank == 0:
return_dict["status"] = "success"
return_dict["output_shape"] = list(output.shape)
except Exception as e:
if rank == 0:
return_dict["status"] = "error"
return_dict["error"] = str(e)
finally:
if dist.is_initialized():
dist.destroy_process_group()
@is_context_parallel
@require_torch_multi_accelerator
class ContextParallelTesterMixin:
@pytest.mark.parametrize("cp_type", ["ulysses_degree", "ring_degree"], ids=["ulysses", "ring"])
def test_context_parallel_inference(self, cp_type):
if not torch.distributed.is_available():
pytest.skip("torch.distributed is not available.")
if not hasattr(self.model_class, "_cp_plan") or self.model_class._cp_plan is None:
pytest.skip("Model does not have a _cp_plan defined for context parallel inference.")
world_size = 2
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
# Move all tensors to CPU for multiprocessing
inputs_dict = {k: v.cpu() if isinstance(v, torch.Tensor) else v for k, v in inputs_dict.items()}
cp_dict = {cp_type: world_size}
# Find a free port for distributed communication
master_port = _find_free_port()
# Use multiprocessing manager for cross-process communication
manager = mp.Manager()
return_dict = manager.dict()
# Spawn worker processes
mp.spawn(
_context_parallel_worker,
args=(world_size, master_port, self.model_class, init_dict, cp_dict, inputs_dict, return_dict),
nprocs=world_size,
join=True,
)
assert return_dict.get("status") == "success", (
f"Context parallel inference failed: {return_dict.get('error', 'Unknown error')}"
)