mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-13 14:25:27 +08:00
* update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
129 lines
4.2 KiB
Python
129 lines
4.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import socket
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
|
|
from diffusers.models._modeling_parallel import ContextParallelConfig
|
|
|
|
from ...testing_utils import (
|
|
is_context_parallel,
|
|
require_torch_multi_accelerator,
|
|
)
|
|
|
|
|
|
def _find_free_port():
|
|
"""Find a free port on localhost."""
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
s.bind(("", 0))
|
|
s.listen(1)
|
|
port = s.getsockname()[1]
|
|
return port
|
|
|
|
|
|
def _context_parallel_worker(rank, world_size, master_port, model_class, init_dict, cp_dict, inputs_dict, return_dict):
|
|
"""Worker function for context parallel testing."""
|
|
try:
|
|
# Set up distributed environment
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = str(master_port)
|
|
os.environ["RANK"] = str(rank)
|
|
os.environ["WORLD_SIZE"] = str(world_size)
|
|
|
|
# Initialize process group
|
|
dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)
|
|
|
|
# Set device for this process
|
|
torch.cuda.set_device(rank)
|
|
device = torch.device(f"cuda:{rank}")
|
|
|
|
# Create model
|
|
model = model_class(**init_dict)
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
# Move inputs to device
|
|
inputs_on_device = {}
|
|
for key, value in inputs_dict.items():
|
|
if isinstance(value, torch.Tensor):
|
|
inputs_on_device[key] = value.to(device)
|
|
else:
|
|
inputs_on_device[key] = value
|
|
|
|
# Enable context parallelism
|
|
cp_config = ContextParallelConfig(**cp_dict)
|
|
model.enable_parallelism(config=cp_config)
|
|
|
|
# Run forward pass
|
|
with torch.no_grad():
|
|
output = model(**inputs_on_device, return_dict=False)[0]
|
|
|
|
# Only rank 0 reports results
|
|
if rank == 0:
|
|
return_dict["status"] = "success"
|
|
return_dict["output_shape"] = list(output.shape)
|
|
|
|
except Exception as e:
|
|
if rank == 0:
|
|
return_dict["status"] = "error"
|
|
return_dict["error"] = str(e)
|
|
finally:
|
|
if dist.is_initialized():
|
|
dist.destroy_process_group()
|
|
|
|
|
|
@is_context_parallel
|
|
@require_torch_multi_accelerator
|
|
class ContextParallelTesterMixin:
|
|
@pytest.mark.parametrize("cp_type", ["ulysses_degree", "ring_degree"], ids=["ulysses", "ring"])
|
|
def test_context_parallel_inference(self, cp_type):
|
|
if not torch.distributed.is_available():
|
|
pytest.skip("torch.distributed is not available.")
|
|
|
|
if not hasattr(self.model_class, "_cp_plan") or self.model_class._cp_plan is None:
|
|
pytest.skip("Model does not have a _cp_plan defined for context parallel inference.")
|
|
|
|
world_size = 2
|
|
init_dict = self.get_init_dict()
|
|
inputs_dict = self.get_dummy_inputs()
|
|
|
|
# Move all tensors to CPU for multiprocessing
|
|
inputs_dict = {k: v.cpu() if isinstance(v, torch.Tensor) else v for k, v in inputs_dict.items()}
|
|
cp_dict = {cp_type: world_size}
|
|
|
|
# Find a free port for distributed communication
|
|
master_port = _find_free_port()
|
|
|
|
# Use multiprocessing manager for cross-process communication
|
|
manager = mp.Manager()
|
|
return_dict = manager.dict()
|
|
|
|
# Spawn worker processes
|
|
mp.spawn(
|
|
_context_parallel_worker,
|
|
args=(world_size, master_port, self.model_class, init_dict, cp_dict, inputs_dict, return_dict),
|
|
nprocs=world_size,
|
|
join=True,
|
|
)
|
|
|
|
assert return_dict.get("status") == "success", (
|
|
f"Context parallel inference failed: {return_dict.get('error', 'Unknown error')}"
|
|
)
|