# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from diffusers import ( AutoencoderDC, ) from ..testing_utils import ( enable_full_determinism, load_hf_numpy, numpy_cosine_similarity_distance, torch_device, ) from .single_file_testing_utils import SingleFileModelTesterMixin enable_full_determinism() class TestAutoencoderDCSingleFile(SingleFileModelTesterMixin): model_class = AutoencoderDC ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.0/blob/main/model.safetensors" repo_id = "mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers" main_input_name = "sample" base_precision = 1e-2 def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def test_single_file_inference_same_as_pretrained(self): model_1 = self.model_class.from_pretrained(self.repo_id).to(torch_device) model_2 = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id).to(torch_device) image = self.get_sd_image(33) with torch.no_grad(): sample_1 = model_1(image).sample sample_2 = model_2(image).sample assert sample_1.shape == sample_2.shape output_slice_1 = sample_1.flatten().float().cpu() output_slice_2 = sample_2.flatten().float().cpu() assert numpy_cosine_similarity_distance(output_slice_1, output_slice_2) < 1e-4 def test_single_file_in_type_variant_components(self): # `in` variant checkpoints require passing in a `config` parameter # in order to set the scaling factor correctly. # `in` and `mix` variants have the same keys and we cannot automatically infer a scaling factor. # We default to using the `mix` config repo_id = "mit-han-lab/dc-ae-f128c512-in-1.0-diffusers" ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f128c512-in-1.0/blob/main/model.safetensors" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path, config=repo_id) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" ) def test_single_file_mix_type_variant_components(self): repo_id = "mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers" ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f128c512-mix-1.0/blob/main/model.safetensors" model = self.model_class.from_pretrained(repo_id) model_single_file = self.model_class.from_single_file(ckpt_path, config=repo_id) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between pretrained loading and single file loading" )