mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-07 21:14:44 +08:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d7634cca87 | ||
|
|
1ab57b68c2 |
2
setup.py
2
setup.py
@@ -249,7 +249,7 @@ version_range_max = max(sys.version_info[1], 10) + 1
|
||||
|
||||
setup(
|
||||
name="diffusers",
|
||||
version="0.27.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
version="0.27.1", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
description="State-of-the-art diffusion in PyTorch and JAX.",
|
||||
long_description=open("README.md", "r", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
__version__ = "0.27.0"
|
||||
__version__ = "0.27.1"
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
|
||||
@@ -1081,6 +1081,8 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
||||
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
||||
A tensor that if specified is added to the residual of the middle unet block.
|
||||
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
||||
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
||||
encoder_attention_mask (`torch.Tensor`):
|
||||
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
||||
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
||||
@@ -1088,18 +1090,6 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
||||
tuple.
|
||||
cross_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
||||
added_cond_kwargs: (`dict`, *optional*):
|
||||
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
||||
are passed along to the UNet blocks.
|
||||
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
||||
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
||||
example from ControlNet side model(s)
|
||||
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
||||
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
||||
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
||||
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
||||
|
||||
Returns:
|
||||
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
||||
@@ -1185,7 +1175,13 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
||||
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
||||
|
||||
# 3. down
|
||||
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
||||
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
||||
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
||||
if cross_attention_kwargs is not None:
|
||||
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
|
||||
Reference in New Issue
Block a user