mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-24 13:24:49 +08:00
Compare commits
4 Commits
v0.26.0
...
v0.26.2-pa
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7d52558c15 | ||
|
|
3efe355d52 | ||
|
|
08e6558ab8 | ||
|
|
1547720209 |
@@ -538,7 +538,7 @@ class StableDiffusionReferencePipeline(StableDiffusionPipeline):
|
||||
|
||||
return hidden_states, output_states
|
||||
|
||||
def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
|
||||
def hacked_DownBlock2D_forward(self, hidden_states, temb=None, **kwargs):
|
||||
eps = 1e-6
|
||||
|
||||
output_states = ()
|
||||
@@ -634,7 +634,9 @@ class StableDiffusionReferencePipeline(StableDiffusionPipeline):
|
||||
|
||||
return hidden_states
|
||||
|
||||
def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
||||
def hacked_UpBlock2D_forward(
|
||||
self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, **kwargs
|
||||
):
|
||||
eps = 1e-6
|
||||
for i, resnet in enumerate(self.resnets):
|
||||
# pop res hidden states
|
||||
|
||||
@@ -507,7 +507,7 @@ class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline):
|
||||
|
||||
return hidden_states, output_states
|
||||
|
||||
def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
|
||||
def hacked_DownBlock2D_forward(self, hidden_states, temb=None, **kwargs):
|
||||
eps = 1e-6
|
||||
|
||||
output_states = ()
|
||||
@@ -603,7 +603,9 @@ class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline):
|
||||
|
||||
return hidden_states
|
||||
|
||||
def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
||||
def hacked_UpBlock2D_forward(
|
||||
self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, **kwargs
|
||||
):
|
||||
eps = 1e-6
|
||||
for i, resnet in enumerate(self.resnets):
|
||||
# pop res hidden states
|
||||
|
||||
2
setup.py
2
setup.py
@@ -249,7 +249,7 @@ version_range_max = max(sys.version_info[1], 10) + 1
|
||||
|
||||
setup(
|
||||
name="diffusers",
|
||||
version="0.26.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
version="0.26.2", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
description="State-of-the-art diffusion in PyTorch and JAX.",
|
||||
long_description=open("README.md", "r", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
__version__ = "0.26.0"
|
||||
__version__ = "0.26.2"
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
|
||||
@@ -158,6 +158,12 @@ class BasicTransformerBlock(nn.Module):
|
||||
super().__init__()
|
||||
self.only_cross_attention = only_cross_attention
|
||||
|
||||
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
||||
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
||||
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
||||
self.use_layer_norm = norm_type == "layer_norm"
|
||||
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
||||
|
||||
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
||||
raise ValueError(
|
||||
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
||||
|
||||
@@ -5,7 +5,6 @@ from typing import Any, Dict, Iterable, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import is_torchvision_available
|
||||
|
||||
from .models import UNet2DConditionModel
|
||||
from .utils import (
|
||||
@@ -13,6 +12,7 @@ from .utils import (
|
||||
convert_state_dict_to_peft,
|
||||
deprecate,
|
||||
is_peft_available,
|
||||
is_torchvision_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
@@ -75,6 +75,7 @@ from .import_utils import (
|
||||
is_torch_version,
|
||||
is_torch_xla_available,
|
||||
is_torchsde_available,
|
||||
is_torchvision_available,
|
||||
is_transformers_available,
|
||||
is_transformers_version,
|
||||
is_unidecode_available,
|
||||
|
||||
@@ -278,6 +278,13 @@ try:
|
||||
except importlib_metadata.PackageNotFoundError:
|
||||
_peft_available = False
|
||||
|
||||
_torchvision_available = importlib.util.find_spec("torchvision") is not None
|
||||
try:
|
||||
_torchvision_version = importlib_metadata.version("torchvision")
|
||||
logger.debug(f"Successfully imported torchvision version {_torchvision_version}")
|
||||
except importlib_metadata.PackageNotFoundError:
|
||||
_torchvision_available = False
|
||||
|
||||
|
||||
def is_torch_available():
|
||||
return _torch_available
|
||||
@@ -367,6 +374,10 @@ def is_peft_available():
|
||||
return _peft_available
|
||||
|
||||
|
||||
def is_torchvision_available():
|
||||
return _torchvision_available
|
||||
|
||||
|
||||
# docstyle-ignore
|
||||
FLAX_IMPORT_ERROR = """
|
||||
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
|
||||
|
||||
Reference in New Issue
Block a user