Compare commits

...

271 Commits

Author SHA1 Message Date
Alex McKinney
cd9d0913d9 Fixes eval generator init in train_text_to_image_lora.py (#3678) 2023-06-07 15:37:13 +05:30
Pedro Cuenca
fdec23188a [Tests] Run slow matrix sequentially (#3500)
[tests] Run slow matrix sequentially.
2023-06-07 11:01:35 +01:00
Max-We
12a232efa9 Fix schedulers zero SNR and rescale classifier free guidance (#3664)
* Implement option for rescaling betas to zero terminal SNR

* Implement rescale classifier free guidance in pipeline_stable_diffusion.py

* focus on DDIM

* make style

* make style

* make style

* make style

* Apply suggestions from Peter Lin

* Apply suggestions from Peter Lin

* make style

* Apply suggestions from code review

* Apply suggestions from code review

* make style

* make style

---------

Co-authored-by: MaxWe00 <gitlab.9v1lq@slmail.me>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-07 10:57:10 +01:00
Patrick von Platen
74fd735eb0 Add draft for lora text encoder scale (#3626)
* Add draft for lora text encoder scale

* Improve naming

* fix: training dreambooth lora script.

* Apply suggestions from code review

* Update examples/dreambooth/train_dreambooth_lora.py

* Apply suggestions from code review

* Apply suggestions from code review

* add lora mixin when fit

* add lora mixin when fit

* add lora mixin when fit

* fix more

* fix more

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-06 22:47:46 +01:00
Jason C.H
2de9e2df36 Fix from_ckpt for Stable Diffusion 2.x (#3662) 2023-06-06 22:39:11 +01:00
Isotr0py
11b3002b48 Support views batch for panorama (#3632)
* support views batch for panorama

* add entry for the new argument

* format entry for the new argument

* add view_batch_size test

* fix batch test and a boundary condition

* add more docstrings

* fix a typos

* fix typos

* add: entry to the doc about view_batch_size.

* Revert "add: entry to the doc about view_batch_size."

This reverts commit a36aeaa9ed.

* add a tip on .

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-07 02:50:02 +05:30
stano
10f4ecd177 Fix the Kandinsky docstring examples (#3695)
- use the correct Prior hub model id
 - use the new names in KandinskyPriorPipelineOutput
2023-06-06 22:18:14 +01:00
Sayak Paul
de16f64667 feat: when using PT 2.0 use LoRAAttnProcessor2_0 for text enc LoRA. (#3691) 2023-06-06 21:20:53 +01:00
YiYi Xu
017ee1609b refactor Image processor for x4 upscaler (#3692)
* refactor x4 upscaler

* style

* copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-06-06 21:08:36 +01:00
Sayak Paul
8669e8313d [LoRA] feat: add lora attention processor for pt 2.0. (#3594)
* feat: add lora attention processor for pt 2.0.

* explicit context manager for SDPA.

* switch to flash attention

* make shapes compatible to work optimally with SDPA.

* fix: circular import problem.

* explicitly specify the flash attention kernel in sdpa

* fall back to efficient attention context manager.

* remove explicit dispatch.

* fix: removed processor.

* fix: remove optional from type annotation.

* feat: make changes regarding LoRAAttnProcessor2_0.

* remove confusing warning.

* formatting.

* relax tolerance for PT 2.0

* fix: loading message.

* remove unnecessary logging.

* add: entry to the docs.

* add: network_alpha argument.

* relax tolerance.
2023-06-06 14:56:05 +05:30
Takuma Mori
b45204ea5a Add function to remove monkey-patch for text encoder LoRA (#3649)
* merge undoable-monkeypatch

* remove TEXT_ENCODER_TARGET_MODULES, refactoring

* move create_lora_weight_file
2023-06-06 14:06:13 +05:30
Steven Liu
a8b0f42c38 [docs] Fix link to loader method (#3680)
fix link to load_lora_weights
2023-06-06 13:37:47 +05:30
Will Berman
41ae670828 move activation dispatches into helper function (#3656)
* move activation dispatches into helper function

* tests
2023-06-05 12:30:48 -07:00
Will Berman
462956be7b small tweaks for parsing thibaudz controlnet checkpoints (#3657) 2023-06-05 10:24:31 -07:00
YiYi Xu
5990014700 [WIP]Vae preprocessor refactor (PR1) (#3557)
VaeImageProcessor.preprocess refactor

* refactored VaeImageProcessor 
   -  allow passing optional height and width argument to resize()
   - add convert_to_rgb
* refactored prepare_latents method for img2img pipelines so that if we pass latents directly as image input, it will not encode it again
* added a test in test_pipelines_common.py to test latents as image inputs
* refactored img2img pipelines that accept latents as image: 
   - controlnet img2img, stable diffusion img2img , instruct_pix2pix

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-05 07:11:00 -10:00
Steven Liu
1a6a647e06 [docs] More API fixes (#3640)
* part 2 of api fixes

* move randn_tensor

* add to toctree

* apply feedback

* more feedback
2023-06-05 09:47:26 -07:00
Sayak Paul
995bbcb9aa [UniDiffuser test] fix one test so that it runs correctly on V100 (#3675)
* fix: assertion.

* assertion fix.
2023-06-05 17:42:31 +05:30
pdoane
d0416ab090 Update Compel documentation for textual inversions (#3663)
* Update Compel documentation for textual inversions

* Fix typo
2023-06-05 16:46:27 +05:30
Vladislav Lyubimov
1994dbcb5e Fix from_ckpt not working properly on windows (#3666) 2023-06-05 11:55:37 +01:00
Patrick von Platen
262d539a8a Correct multi gpu dreambooth (#3673)
Correct multi gpu
2023-06-05 11:03:11 +01:00
Will Berman
0fc2fb71c1 dreambooth upscaling fix added latents (#3659) 2023-06-05 10:32:16 +01:00
Steven Liu
523a50a8eb [docs] Load A1111 LoRA (#3629)
* load a1111 lora

* fix

* apply feedback

* fix
2023-06-05 11:05:42 +05:30
0x1355
de45af4a46 Allow setting num_cycles for cosine_with_restarts lr scheduler (#3606)
Expose num_cycles kwarg of get_schedule() through args.lr_num_cycles.
2023-06-05 10:18:29 +05:30
0x1355
b95cbdf6fc Set step_rules correctly for piecewise_constant scheduler (#3605)
So that schedule_func() calls get_piecewise_constant_schedule() with correctly named kwarg.
2023-06-05 10:16:26 +05:30
Will Berman
7a39691362 linting fix (#3653) 2023-06-02 13:33:19 -07:00
Will Berman
5911a3aa47 dreambooth if docs - stage II, more info (#3628)
* dreambooth if docs - stage II, more info

* Update docs/source/en/training/dreambooth.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/training/dreambooth.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/training/dreambooth.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* download instructions for downsized images

* update source README to match docs

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-02 10:37:13 -07:00
Will Berman
b7af946138 set config from original module but set compiled module on class (#3650)
* set config from original module but set compiled module on class

* add test
2023-06-02 10:26:41 -07:00
asfiyab-nvidia
d3717e6368 add Stable Diffusion TensorRT Inpainting pipeline (#3642)
* add tensorrt inpaint pipeline

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* run make style

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-02 18:14:31 +01:00
Kadir Nar
0dbdc0cbae [Community Doc] Updated the filename and readme file. (#3634)
* Updated the filename and readme file.

* reformatter

* reformetter
2023-06-02 17:53:09 +01:00
YiYi Xu
0e8688113a fix inpainting pipeline when providing initial latents (#3641)
* fix latents

* fix copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-06-02 17:03:15 +01:00
Kashif Rasul
f1d4743394 fixed typo in example train_text_to_image.py (#3608)
fixed typo
2023-06-02 20:54:54 +05:30
Lachlan Nicholson
a6c7b5b6b7 Iterate over unique tokens to avoid duplicate replacements for multivector embeddings (#3588)
* iterate over unique tokens to avoid duplicate replacements

* added test for multiple references to multi embedding

* adhere to black formatting

* reorder test post-rebase
2023-06-02 16:10:22 +01:00
Takuma Mori
8e552bb4fe Support Kohya-ss style LoRA file format (in a limited capacity) (#3437)
* add _convert_kohya_lora_to_diffusers

* make style

* add scaffold

* match result: unet attention only

* fix monkey-patch for text_encoder

* with CLIPAttention

While the terrible images are no longer produced,
the results do not match those from the hook ver.
This may be due to not setting the network_alpha value.

* add to support network_alpha

* generate diff image

* fix monkey-patch for text_encoder

* add test_text_encoder_lora_monkey_patch()

* verify that it's okay to release the attn_procs

* fix closure version

* add comment

* Revert "fix monkey-patch for text_encoder"

This reverts commit bb9c61e6fa.

* Fix to reuse utility functions

* make LoRAAttnProcessor targets to self_attn

* fix LoRAAttnProcessor target

* make style

* fix split key

* Update src/diffusers/loaders.py

* remove TEXT_ENCODER_TARGET_MODULES loop

* add print memory usage

* remove test_kohya_loras_scaffold.py

* add: doc on LoRA civitai

* remove print statement and refactor in the doc.

* fix state_dict test for kohya-ss style lora

* Apply suggestions from code review

Co-authored-by: Takuma Mori <takuma104@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-02 17:40:24 +05:30
Patrick von Platen
32ea2142c0 [Kandinsky] Improve kandinsky API a bit (#3636)
* Improve docs

* up

* Update docs/source/en/api/pipelines/kandinsky.mdx

* up

* up

* correct more

* further improve

* Update docs/source/en/api/pipelines/kandinsky.mdx

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2023-06-02 08:57:20 +01:00
Sayak Paul
55dbfa0229 [Docs] include the instruction-tuning blog link in the InstructPix2Pix docs (#3644)
include the instruction-tuning blog link.
2023-06-02 08:04:35 +05:30
Will Berman
4f14b36329 Full Dreambooth IF stage II upscaling (#3561)
* update dreambooth lora to work with IF stage II

* Update dreambooth script for IF stage II upscaler
2023-05-31 09:39:31 -07:00
Will Berman
f751b8844e update dreambooth lora to work with IF stage II (#3560) 2023-05-31 09:39:03 -07:00
Prathik Rao
abb89da4de update code to reflect latest changes as of May 30th (#3616)
* update code to reflect latest changes as of May 30th

* update text to image example

* reflect changes to textual inversion

* make style

* fix typo

* Revert unnecessary readme changes

---------

Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-05-31 11:29:04 +02:00
Will Berman
7d0ac4eeab goodbye frog (#3617) 2023-05-30 23:18:01 +01:00
Patrick von Platen
0cc3a7a123 Make sure we also change the config when setting encoder_hid_dim_type=="text_proj" and allow xformers (#3615)
* fix if

* make style

* make style

* add tests for xformers

* make style

* update
2023-05-30 20:47:14 +01:00
Patrick von Platen
9d3ff0794d fix tests (#3614) 2023-05-30 18:59:07 +01:00
Patrick von Platen
a359ab4e29 Update README.md 2023-05-30 18:26:32 +01:00
Patrick von Platen
160c377ddc Make style 2023-05-30 13:14:09 +01:00
Denis
bb22d546c0 [Community] CLIP Guided Images Mixing with Stable DIffusion Pipeline (#3587)
* added clip_guided_images_mixing_stable_diffusion file and readme description

* apply pre-commit

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-30 13:13:45 +01:00
Greg Hunkins
799f5b4e12 [Feat] Enable State Dict For Textual Inversion Loader (#3439)
* enable state dict for textual inversion loader

* Empty-Commit | restart CI

* Empty-Commit | restart CI

* Empty-Commit | restart CI

* Empty-Commit | restart CI

* add tests

* fix tests

* fix tests

* fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-30 13:13:34 +01:00
takuoko
07ef4855cd [Community, Enhancement] Add reference tricks in README (#3589)
add reference tricks
2023-05-30 12:38:16 +01:00
Kadir Nar
6cbddf558a [Community] Support StableDiffusionTilingPipeline (#3586)
* added mixture pipeline

* added docstring

* update docstring
2023-05-30 12:24:15 +01:00
Rupert Menneer
35a740427e #3487 Fix inpainting strength for various samplers (#3532)
* Throw error if strength adjusted num_inference_steps < 1

* Added new fast test to check ValueError raised when num_inference_steps < 1

when strength adjusts the num_inference_steps then the inpainting pipeline should fail

* fix #3487 initial latents are now only scaled by init_noise_sigma when pure noise

updated this commit w.r.t the latest merge here: https://github.com/huggingface/diffusers/pull/3533

* fix

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-30 12:17:42 +01:00
Sayak Paul
0612f48cd0 [UniDiffuser Tests] Fix some tests (#3609)
* fix: unidiffuser test failures.

* living room.
2023-05-30 12:07:18 +01:00
Kadir Nar
c059cc0992 [docs] update the broken links (#3577) 2023-05-30 11:44:53 +01:00
Patrick von Platen
c0f867afd1 Fix temb attention (#3607)
* Fix temb attention

* Apply suggestions from code review

* make style

* Add tests and fix docker

* Apply suggestions from code review
2023-05-30 11:26:23 +01:00
Sayak Paul
c6ae883751 remove print statements from attention processor. (#3592) 2023-05-29 09:20:31 +05:30
Steven Liu
5559d04237 [docs] Working with different formats (#3534)
* add ckpt

* fix format

* apply feedback

* fix

* include pb

* rename file
2023-05-26 14:37:51 -07:00
Brandon
9917c32916 [docs] update the broken links (#3568)
update the broken links

update the broken links for training folder doc
2023-05-26 12:10:32 -07:00
Steven Liu
ab986769f1 [docs] Maintenance (#3552)
* doc fixes

* fix latex

* parenthesis on inside
2023-05-26 12:04:15 -07:00
Will Berman
bdc75e753d [IF super res] correctly normalize PIL input (#3536)
* [IF super res] correctl normalize PIL input

* 175 -> 127.5
2023-05-26 10:59:44 -07:00
Leon Lin
1d1f648c6b fix dreambooth attention mask (#3541) 2023-05-26 10:58:50 -07:00
Takuma Mori
67cf0445ef Fix to apply LoRAXFormersAttnProcessor instead of LoRAAttnProcessor when xFormers is enabled (#3556)
* fix to use LoRAXFormersAttnProcessor

* add test

* using new LoraLoaderMixin.save_lora_weights

* add test_lora_save_load_with_xformers
2023-05-26 17:33:25 +05:30
dg845
352ca3198c [WIP] Add UniDiffuser model and pipeline (#2963)
* Fix a bug of pano when not doing CFG (#3030)

* Fix a bug of pano when not doing CFG

* enhance code quality

* apply formatting.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Text2video zero refinements (#3070)

* fix progress bar issue in pipeline_text_to_video_zero.py. Copy scheduler after first backward

* fix tensor loading in test_text_to_video_zero.py

* make style && make quality

* Release: v0.15.0

* [Tests] Speed up panorama tests (#3067)

* fix: norm group test for UNet3D.

* chore: speed up the panorama tests (fast).

* set default value of _test_inference_batch_single_identical.

* fix: batch_sizes default value.

* [Post release] v0.16.0dev (#3072)

* Adds profiling flags, computes train metrics average. (#3053)

* WIP controlnet training

- bugfix --streaming
- bugfix running report_to!='wandb'
- adds memory profile before validation

* Adds final logging statement.

* Sets train epochs to 11.

Looking at a longer ~16ep run, we see only good validation images
after ~11ep:

https://wandb.ai/andsteing/controlnet_fill50k/runs/3j2hx6n8

* Removes --logging_dir (it's not used).

* Adds --profile flags.

* Updates --output_dir=runs/fill-circle-{timestamp}.

* Compute mean of `train_metrics`.

Previously `train_metrics[-1]` was logged, resulting in very bumpy train
metrics.

* Improves logging a bit.

- adds l2_grads gradient norm logging
- adds steps_per_sec
- sets walltime as x coordinate of train/step
- logs controlnet_params config

* Adds --ccache (doesn't really help though).

* minor fix in controlnet flax example (#2986)

* fix the error when push_to_hub but not log validation

* contronet_from_pt & controlnet_revision

* add intermediate checkpointing to the guide

* Bugfix --profile_steps

* Sets `RACKER_PROJECT_NAME='controlnet_fill50k'`.

* Logs fractional epoch.

* Adds relative `walltime` metric.

* Adds `StepTraceAnnotation` and uses `global_step` insetad of `step`.

* Applied `black`.

* Streamlines commands in README a bit.

* Removes `--ccache`.

This makes only a very small difference (~1 min) with this model size, so removing
the option introduced in cdb3cc.

* Re-ran `black`.

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Converts spaces to tab.

* Removes repeated args.

* Skips first step (compilation) in profiling

* Updates README with profiling instructions.

* Unifies tabs/spaces in README.

* Re-ran style & quality.

---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [Pipelines] Make sure that None functions are correctly not saved (#3080)

* doc string example remove from_pt (#3083)

* [Tests] parallelize (#3078)

* [Tests] parallelize

* finish folder structuring

* Parallelize tests more

* Correct saving of pipelines

* make sure logging level is correct

* try again

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Throw deprecation warning for return_cached_folder (#3092)

Throw deprecation warning

* Allow SD attend and excite pipeline to work with any size output images (#2835)

Allow stable diffusion attend and excite pipeline to work with any size output image. Re: #2476, #2603

* [docs] Update community pipeline docs (#2989)

* update community pipeline docs

* fix formatting

* explain sharing workflows

* Add to support Guess Mode for StableDiffusionControlnetPipleline (#2998)

* add guess mode (WIP)

* fix uncond/cond order

* support guidance_scale=1.0 and batch != 1

* remove magic coeff

* add docstring

* add intergration test

* add document to controlnet.mdx

* made the comments a bit more explanatory

* fix table

* fix default value for attend-and-excite (#3099)

* fix default

* remvoe one line as requested by gc team  (#3077)

remvoe one line

* ddpm custom timesteps (#3007)

add custom timesteps test

add custom timesteps descending order check

docs

timesteps -> custom_timesteps

can only pass one of num_inference_steps and timesteps

* Fix breaking change in `pipeline_stable_diffusion_controlnet.py` (#3118)

fix breaking change

* Add global pooling to controlnet (#3121)

* [Bug fix] Fix img2img processor with safety checker (#3127)

Fix img2img processor with safety checker

* [Bug fix] Make sure correct timesteps are chosen for img2img (#3128)

Make sure correct timesteps are chosen for img2img

* Improve deprecation warnings (#3131)

* Fix config deprecation (#3129)

* Better deprecation message

* Better deprecation message

* Better doc string

* Fixes

* fix more

* fix more

* Improve __getattr__

* correct more

* fix more

* fix

* Improve more

* more improvements

* fix more

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* make style

* Fix all rest & add tests & remove old deprecation fns

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* feat: verfication of multi-gpu support for select examples. (#3126)

* feat: verfication of multi-gpu support for select examples.

* add: multi-gpu training sections to the relvant doc pages.

* speed up attend-and-excite fast tests (#3079)

* Optimize log_validation in train_controlnet_flax (#3110)

extract pipeline from log_validation

* make style

* Correct textual inversion readme (#3145)

* Update README.md

* Apply suggestions from code review

* Add unet act fn to other model components (#3136)

Adding act fn config to the unet timestep class embedding and conv
activation.

The custom activation defaults to silu which is the default
activation function for both the conv act and the timestep class
embeddings so default behavior is not changed.

The only unet which use the custom activation is the stable diffusion
latent upscaler https://huggingface.co/stabilityai/sd-x2-latent-upscaler/blob/main/unet/config.json
(I ran a script against the hub to confirm).
The latent upscaler does not use the conv activation nor the timestep
class embeddings so we don't change its behavior.

* class labels timestep embeddings projection dtype cast (#3137)

This mimics the dtype cast for the standard time embeddings

* [ckpt loader] Allow loading the Inpaint and Img2Img pipelines, while loading a ckpt model (#2705)

* [ckpt loader] Allow loading the Inpaint and Img2Img pipelines, while loading a ckpt model

* Address review comment from PR

* PyLint formatting

* Some more pylint fixes, unrelated to our change

* Another pylint fix

* Styling fix

* add from_ckpt method as Mixin (#2318)

* add mixin class for pipeline from original sd ckpt

* Improve

* make style

* merge main into

* Improve more

* fix more

* up

* Apply suggestions from code review

* finish docs

* rename

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add TensorRT SD/txt2img Community Pipeline to diffusers along with TensorRT utils (#2974)

* Add SD/txt2img Community Pipeline to diffusers along with TensorRT utils

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update installation command

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update tensorrt installation

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* changes
1. Update setting of cache directory
2. Address comments: merge utils and pipeline code.
3. Address comments: Add section in README

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* apply make style

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Correct `Transformer2DModel.forward` docstring (#3074)

⚙️chore(transformer_2d) update function signature for encoder_hidden_states

* Update pipeline_stable_diffusion_inpaint_legacy.py (#2903)

* Update pipeline_stable_diffusion_inpaint_legacy.py

* fix preprocessing of Pil images with adequate batch size

* revert map

* add tests

* reformat

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* next try to fix the style

* wth is this

* Update testing_utils.py

* Update testing_utils.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Modified altdiffusion pipline to support altdiffusion-m18 (#2993)

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

---------

Co-authored-by: root <fulong_ye@163.com>

* controlnet training resize inputs to multiple of 8 (#3135)

controlnet training center crop input images to multiple of 8

The pipeline code resizes inputs to multiples of 8.
Not doing this resizing in the training script is causing
the encoded image to have different height/width dimensions
than the encoded conditioning image (which uses a separate
encoder that's part of the controlnet model).

We resize and center crop the inputs to make sure they're the
same size (as well as all other images in the batch). We also
check that the initial resolution is a multiple of 8.

* adding custom diffusion training to diffusers examples (#3031)

* diffusers==0.14.0 update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion

* custom diffusion

* custom diffusion

* custom diffusion

* custom diffusion

* apply formatting and get rid of bare except.

* refactor readme and other minor changes.

* misc refactor.

* fix: repo_id issue and loaders logging bug.

* fix: save_model_card.

* fix: save_model_card.

* fix: save_model_card.

* add: doc entry.

* refactor doc,.

* custom diffusion

* custom diffusion

* custom diffusion

* apply style.

* remove tralining whitespace.

* fix: toctree entry.

* remove unnecessary print.

* custom diffusion

* custom diffusion

* custom diffusion test

* custom diffusion xformer update

* custom diffusion xformer update

* custom diffusion xformer update

---------

Co-authored-by: Nupur Kumari <nupurkumari@Nupurs-MacBook-Pro.local>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nupur Kumari <nupurkumari@nupurs-mbp.wifi.local.cmu.edu>

* make style

* Update custom_diffusion.mdx (#3165)

Add missing newlines for rendering the links correctly

* Added distillation for quantization example on textual inversion. (#2760)

* Added distillation for quantization example on textual inversion.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* refined readme and code style.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* Update text2images.py

* refined code of model load and added compatibility check.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* fixed code style.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* fix C403 [*] Unnecessary `list` comprehension (rewrite as a `set` comprehension)

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

---------

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* Update Noise Autocorrelation Loss Function for Pix2PixZero Pipeline (#2942)

* Update Pix2PixZero Auto-correlation Loss

* Add fast inversion tests

* Clarify purpose and mark as deprecated

Fix inversion prompt broadcasting

* Register modules set to `None` in config for `test_save_load_optional_components`

* Update new tests to coordinate with #2953

* [DreamBooth] add text encoder LoRA support in the DreamBooth training script (#3130)

* add: LoRA text encoder support for DreamBooth example.

* fix initialization.

* fix: modification call.

* add: entry in the readme.

* use dog dataset from hub.

* fix: params to clip.

* add entry to the LoRA doc.

* add: tests for lora.

* remove unnecessary list comprehension./

* Update Habana Gaudi documentation (#3169)

* Update Habana Gaudi doc

* Fix tables

* Add model offload to x4 upscaler (#3187)

* Add model offload to x4 upscaler

* fix

* [docs] Deterministic algorithms (#3172)

deterministic algos

* Update custom_diffusion.mdx to credit the author (#3163)

* Update custom_diffusion.mdx

* fix: unnecessary list comprehension.

* Fix TensorRT community pipeline device set function (#3157)

pass silence_dtype_warnings as kwarg

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make `from_flax` work for controlnet (#3161)

fix from_flax

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [docs] Clarify training args (#3146)

* clarify training arg

* apply feedback

* Multi Vector Textual Inversion (#3144)

* Multi Vector

* Improve

* fix multi token

* improve test

* make style

* Update examples/test_examples.py

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* update

* Finish

* Apply suggestions from code review

---------

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Add `Karras sigmas` to HeunDiscreteScheduler (#3160)

* Add karras pattern to discrete heun scheduler

* Add integration test

* Fix failing CI on pytorch test on M1 (mps)

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [AudioLDM] Fix dtype of returned waveform (#3189)

* Fix bug in train_dreambooth_lora (#3183)

* Update train_dreambooth_lora.py

fix bug

* Update train_dreambooth_lora.py

* [Community Pipelines] Update lpw_stable_diffusion pipeline (#3197)

* Update lpw_stable_diffusion.py

* fix cpu offload

* Make sure VAE attention works with Torch 2_0 (#3200)

* Make sure attention works with Torch 2_0

* make style

* Fix more

* Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline" (#3201)

Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline (#3197)"

This reverts commit 9965cb50ea.

* [Bug fix] Fix batch size attention head size mismatch (#3214)

* fix mixed precision training on train_dreambooth_inpaint_lora (#3138)

cast to weight dtype

* adding enable_vae_tiling and disable_vae_tiling functions (#3225)

adding enable_vae_tiling and disable_val_tiling functions

* Add ControlNet v1.1 docs (#3226)

Add v1.1 docs

* Fix issue in maybe_convert_prompt (#3188)

When the token used for textual inversion does not have any special symbols (e.g. it is not surrounded by <>), the tokenizer does not properly split the replacement tokens.  Adding a space for the padding tokens fixes this.

* Sync cache version check from transformers (#3179)

sync cache version check from transformers

* Fix docs text inversion (#3166)

* Fix docs text inversion

* Apply suggestions from code review

* add model (#3230)

* add

* clean

* up

* clean up more

* fix more tests

* Improve docs further

* improve

* more fixes docs

* Improve docs more

* Update src/diffusers/models/unet_2d_condition.py

* fix

* up

* update doc links

* make fix-copies

* add safety checker and watermarker to stage 3 doc page code snippets

* speed optimizations docs

* memory optimization docs

* make style

* add watermarking snippets to doc string examples

* make style

* use pt_to_pil helper functions in doc strings

* skip mps tests

* Improve safety

* make style

* new logic

* fix

* fix bad onnx design

* make new stable diffusion upscale pipeline model arguments optional

* define has_nsfw_concept when non-pil output type

* lowercase linked to notebook name

---------

Co-authored-by: William Berman <WLBberman@gmail.com>

* Allow return pt x4 (#3236)

* Add all files

* update

* Allow fp16 attn for x4 upscaler (#3239)

* Add all files

* update

* Make sure vae is memory efficient for PT 1

* make style

* fix fast test (#3241)

* Adds a document on token merging (#3208)

* add document on token merging.

* fix headline.

* fix: headline.

* add some samples for comparison.

* [AudioLDM] Update docs to use updated ckpt (#3240)

* [AudioLDM] Update docs to use updated ckpt

* make style

* Release: v0.16.0

* Post release for 0.16.0 (#3244)

* Post release

* fix more

* [docs] only mention one stage (#3246)

* [docs] only mention one stage

* add blurb on auto accepting

---------

Co-authored-by: William Berman <WLBberman@gmail.com>

* Write model card in controlnet training script (#3229)

Write model card in controlnet training script.

* [2064]: Add stochastic sampler (sample_dpmpp_sde) (#3020)

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* Review comments

* [Review comment]: Add is_torchsde_available()

* [Review comment]: Test and docs

* [Review comment]

* [Review comment]

* [Review comment]

* [Review comment]

* [Review comment]

---------

Co-authored-by: njindal <njindal@adobe.com>

* [Stochastic Sampler][Slow Test]: Cuda test fixes (#3257)

[Slow Test]: Cuda test fixes

Co-authored-by: njindal <njindal@adobe.com>

* Remove required from tracker_project_name (#3260)

Remove required from tracker_project_name.

As observed by https://github.com/off99555 in https://github.com/huggingface/diffusers/issues/2695#issuecomment-1470755050, it already has a default value.

* adding required parameters while calling the get_up_block and get_down_block  (#3210)

* removed unnecessary parameters from get_up_block and get_down_block functions

* adding resnet_skip_time_act, resnet_out_scale_factor and cross_attention_norm to get_up_block and get_down_block functions

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [docs] Update interface in repaint.mdx (#3119)

Update repaint.mdx

accomodate to #1701

* Update IF name to XL (#3262)

Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>

* fix typo in score sde pipeline (#3132)

* Fix typo in textual inversion JAX training script (#3123)

The pipeline is built as `pipe` but then used as `pipeline`.

* AudioDiffusionPipeline - fix encode method after config changes (#3114)

* config fixes

* deprecate get_input_dims

* Revert "Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline"" (#3265)

Revert "Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline" (#3201)"

This reverts commit 91a2a80eb2.

* Fix community pipelines (#3266)

* update notebook (#3259)

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>

* [docs] add notes for stateful model changes (#3252)

* [docs] add notes for stateful model changes

* Update docs/source/en/optimization/fp16.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* link to accelerate docs for discarding hooks

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* [LoRA] quality of life improvements in the loading semantics and docs (#3180)

* 👽 qol improvements for LoRA.

* better function name?

* fix: LoRA weight loading with the new format.

* address Patrick's comments.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* change wording around encouraging the use of load_lora_weights().

* fix: function name.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Community Pipelines] EDICT pipeline implementation (#3153)

* EDICT pipeline initial commit

- Starting point taking from https://github.com/Joqsan/edict-diffusion

* refactor __init__() method

* minor refactoring

* refactor scheduler code

- remove scheduler and move its methods to the EDICTPipeline class

* make CFG optional
- refactor encode_prompt().
- include optional generator for sampling with vae.
- minor variable renaming

* add EDICT pipeline description to README.md

* replace preprocess() with VaeImageProcessor

* run make style and make quality commands

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Docs]zh translated docs update (#3245)

* zh translated docs update

* update _toctree

* Update logging.mdx (#2863)

Fix typos

* Add multiple conditions to StableDiffusionControlNetInpaintPipeline (#3125)

* try multi controlnet inpaint

* multi controlnet inpaint

* multi controlnet inpaint

* Let's make sure that dreambooth always uploads to the Hub (#3272)

* Update Dreambooth README

* Adapt all docs as well

* automatically write model card

* fix

* make style

* Diffedit Zero-Shot Inpainting Pipeline (#2837)

* Update Pix2PixZero Auto-correlation Loss

* Add Stable Diffusion DiffEdit pipeline

* Add draft documentation and import code

* Bugfixes and refactoring

* Add option to not decode latents in the inversion process

* Harmonize preprocessing

* Revert "Update Pix2PixZero Auto-correlation Loss"

This reverts commit b218062fed.

* Update annotations

* rename `compute_mask` to `generate_mask`

* Update documentation

* Update docs

* Update Docs

* Fix copy

* Change shape of output latents to batch first

* Update docs

* Add first draft for tests

* Bugfix and update tests

* Add `cross_attention_kwargs` support for all pipeline methods

* Fix Copies

* Add support for PIL image latents

Add support for mask broadcasting

Update docs and tests

Align `mask` argument to `mask_image`

Remove height and width arguments

* Enable MPS Tests

* Move example docstrings

* Fix test

* Fix test

* fix pipeline inheritance

* Harmonize `prepare_image_latents` with StableDiffusionPix2PixZeroPipeline

* Register modules set to `None` in config for `test_save_load_optional_components`

* Move fixed logic to specific test class

* Clean changes to other pipelines

* Update new tests to coordinate with #2953

* Update slow tests for better results

* Safety to avoid potential problems with torch.inference_mode

* Add reference in SD Pipeline Overview

* Fix tests again

* Enforce determinism in noise for generate_mask

* Fix copies

* Widen test tolerance for fp16 based on `test_stable_diffusion_upscale_pipeline_fp16`

* Add LoraLoaderMixin and update `prepare_image_latents`

* clean up repeat and reg

* bugfix

* Remove invalid args from docs

Suppress spurious warning by repeating image before latent to mask gen

* add constant learning rate with custom rule (#3133)

* add constant lr with rules

* add constant with rules in TYPE_TO_SCHEDULER_FUNCTION

* add constant lr rate with rule

* hotfix code quality

* fix doc style

* change name constant_with_rules to piecewise constant

* Allow disabling torch 2_0 attention (#3273)

* Allow disabling torch 2_0 attention

* make style

* Update src/diffusers/models/attention.py

* [doc] add link to training script (#3271)

add link to training script

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>

* temp disable spectogram diffusion tests (#3278)

The note-seq package throws an error on import because the default installed version of Ipython
is not compatible with python 3.8 which we run in the CI.
https://github.com/huggingface/diffusers/actions/runs/4830121056/jobs/8605954838#step:7:9

* Changed sample[0] to images[0] (#3304)

A pipeline object stores the results in `images` not in `sample`.
Current code blocks don't work.

* Typo in tutorial (#3295)

* Torch compile graph fix (#3286)

* fix more

* Fix more

* fix more

* Apply suggestions from code review

* fix

* make style

* make fix-copies

* fix

* make sure torch compile

* Clean

* fix test

* Postprocessing refactor img2img (#3268)

* refactor img2img VaeImageProcessor.postprocess

* remove copy from for init, run_safety_checker, decode_latents

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [Torch 2.0 compile] Fix more torch compile breaks (#3313)

* Fix more torch compile breaks

* add tests

* Fix all

* fix controlnet

* fix more

* Add Horace He as co-author.
>
>
Co-authored-by: Horace He <horacehe2007@yahoo.com>

* Add Horace He as co-author.

Co-authored-by: Horace He <horacehe2007@yahoo.com>

---------

Co-authored-by: Horace He <horacehe2007@yahoo.com>

* fix: scale_lr and sync example readme and docs. (#3299)

* fix: scale_lr and sync example readme and docs.

* fix doc link.

* Update stable_diffusion.mdx (#3310)

fixed import statement

* Fix missing variable assign in DeepFloyd-IF-II (#3315)

Fix missing variable assign

lol

* Correct doc build for patch releases (#3316)

Update build_documentation.yml

* Add Stable Diffusion RePaint to community pipelines (#3320)

* Add Stable Diffsuion RePaint to community pipelines

- Adds Stable Diffsuion RePaint to community pipelines
- Add Readme enty for pipeline

* Fix: Remove wrong import

- Remove wrong import
- Minor change in comments

* Fix: Code formatting of stable_diffusion_repaint

* Fix: ruff errors in stable_diffusion_repaint

* Fix multistep dpmsolver for cosine schedule (suitable for deepfloyd-if) (#3314)

* fix multistep dpmsolver for cosine schedule (deepfloy-if)

* fix a typo

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update all dpmsolver (singlestep, multistep, dpm, dpm++) for cosine noise schedule

* add test, fix style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [docs] Improve LoRA docs (#3311)

* update docs

* add to toctree

* apply feedback

* Added input pretubation (#3292)

* Added input pretubation

* Fixed spelling

* Update write_own_pipeline.mdx (#3323)

* update controlling generation doc with latest goodies. (#3321)

* [Quality] Make style (#3341)

* Fix config dpm (#3343)

* Add the SDE variant of DPM-Solver and DPM-Solver++ (#3344)

* add SDE variant of DPM-Solver and DPM-Solver++

* add test

* fix typo

* fix typo

* Add upsample_size to AttnUpBlock2D, AttnDownBlock2D (#3275)

The argument `upsample_size` needs to be added to these modules to allow compatibility with other blocks that require this argument.

* Add UniDiffuser classes to __init__ files, modify transformer block to support pre- and post-LN, add fast default tests, fix some bugs.

* Update fast tests to use test checkpoints stored on the hub and to better match the reference UniDiffuser implementation.

* Fix code with make style.

* Revert "Fix code style with make style."

This reverts commit 10a174a12c.

* Add self.image_encoder, self.text_decoder to list of models to offload to CPU in the enable_sequential_cpu_offload(...)/enable_model_cpu_offload(...) methods to make test_cpu_offload_forward_pass pass.

* Fix code quality with make style.

* Support using a data type embedding for UniDiffuser-v1.

* Add fast test for checking UniDiffuser-v1 sampling.

* Make changes so that the repository consistency tests pass.

* Add UniDiffuser dummy objects via make fix-copies.

* Fix bugs and make improvements to the UniDiffuser pipeline:
	- Improve batch size inference and fix bugs when num_images_per_prompt or num_prompts_per_image > 1
	- Add tests for num_images_per_prompt, num_prompts_per_image > 1
	- Improve check_inputs, especially regarding checking supplied latents
	- Add reset_mode method so that mode inference can be re-enabled after mode is set manually
	- Fix some warnings related to accessing class members directly instead of through their config
	- Small amount of refactoring in pipeline_unidiffuser.py

* Fix code style with make style.

* Add/edit docstrings for added classes and public pipeline methods. Also do some light refactoring.

* Add documentation for UniDiffuser and fix some typos/formatting in docstrings.

* Fix code with make style.

* Refactor and improve the UniDiffuser convert_from_ckpt.py script.

* Move the UniDiffusers convert_from_ckpy.py script to diffusers/scripts/convert_unidiffuser_to_diffusers.py

* Fix code quality via make style.

* Improve UniDiffuser slow tests.

* make style

* Fix some typos in the UniDiffuser docs.

* Remove outdated logic based on transformers version in UniDiffuser pipeline __init__.py

* Remove dependency on einops by refactoring einops operations to pure torch operations.

* make style

* Add slow test on full checkpoint for joint mode and correct expected image slices/text prefixes.

* make style

* Fix mixed precision issue by wrapping the offending code with the torch.autocast context manager.

* Revert "Fix mixed precision issue by wrapping the offending code with the torch.autocast context manager."

This reverts commit 1a58958ab4.

* Add fast test for CUDA/fp16 model behavior (currently failing).

* Fix the mixed precision issue and add additional tests of the pipeline cuda/fp16 functionality.

* make style

* Use a CLIPVisionModelWithProjection instead of CLIPVisionModel for image_encoder to better match the original UniDiffuser implementation.

* Make style and remove some testing code.

* Fix shape errors for the 'joint' and 'img2text' modes.

* Fix tests and remove some testing code.

* Add option to use fixed latents for UniDiffuserPipelineSlowTests and fix issue in modeling_text_decoder.py.

* Improve UniDiffuser docs, particularly the usage examples, and improve slow tests with new expected outputs.

* make style

* Fix examples to load model in float16.

* In image-to-text mode, sample from the autoencoder moment distribution instead of always getting its mode.

* make style

* When encoding the image using the VAE, scale the image latents by the VAE's scaling factor.

* make style

* Clean up code and make slow tests pass.

* make fix-copies

* [docs] Fix docstring (#3334)

fix docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* if dreambooth lora (#3360)

* update IF stage I pipelines

add fixed variance schedulers and lora loading

* added kv lora attn processor

* allow loading into alternative lora attn processor

* make vae optional

* throw away predicted variance

* allow loading into added kv lora layer

* allow load T5

* allow pre compute text embeddings

* set new variance type in schedulers

* fix copies

* refactor all prompt embedding code

class prompts are now included in pre-encoding code
max tokenizer length is now configurable
embedding attention mask is now configurable

* fix for when variance type is not defined on scheduler

* do not pre compute validation prompt if not present

* add example test for if lora dreambooth

* add check for train text encoder and pre compute text embeddings

* Postprocessing refactor all others (#3337)

* add text2img

* fix-copies

* add

* add all other pipelines

* add

* add

* add

* add

* add

* make style

* style + fix copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>

* [docs] Improve safetensors docstring (#3368)

* clarify safetensor docstring

* fix typo

* apply feedback

* add: a warning message when using xformers in a PT 2.0 env. (#3365)

* add: a warning message when using xformers in a PT 2.0 env.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* StableDiffusionInpaintingPipeline - resize image w.r.t height and width (#3322)

* StableDiffusionInpaintingPipeline now resizes input images and masks w.r.t to passed input height and width. Default is already set to 512. This addresses the common tensor mismatch error. Also moved type check into relevant funciton to keep main pipeline body tidy.

* Fixed StableDiffusionInpaintingPrepareMaskAndMaskedImageTests

Due to previous commit these tests were failing as height and width need to be passed into the prepare_mask_and_masked_image function, I have updated the code and added a height/width variable per unit test as it seemed more appropriate than the current hard coded solution

* Added a resolution test to StableDiffusionInpaintPipelineSlowTests

this unit test simply gets the input and resizes it into some that would fail (e.g. would throw a tensor mismatch error/not a mult of 8). Then passes it through the pipeline and verifies it produces output with correct dims w.r.t the passed height and width

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [docs] Adapt a model (#3326)

* first draft

* apply feedback

* conv_in.weight thrown away

* [docs] Load safetensors (#3333)

* safetensors

* apply feedback

* apply feedback

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [Docs] Fix stable_diffusion.mdx typo (#3398)

Fix typo in last code block. Correct "prommpts" to "prompt"

* Support ControlNet v1.1 shuffle properly (#3340)

* add inferring_controlnet_cond_batch

* Revert "add inferring_controlnet_cond_batch"

This reverts commit abe8d6311d.

* set guess_mode to True
whenever global_pool_conditions is True

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* nit

* add integration test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Tests] better determinism (#3374)

* enable deterministic pytorch and cuda operations.

* disable manual seeding.

* make style && make quality for unet_2d tests.

* enable determinism for the unet2dconditional model.

* add CUBLAS_WORKSPACE_CONFIG for better reproducibility.

* relax tolerance (very weird issue, though).

* revert to torch manual_seed() where needed.

* relax more tolerance.

* better placement of the cuda variable and relax more tolerance.

* enable determinism for 3d condition model.

* relax tolerance.

* add: determinism to alt_diffusion.

* relax tolerance for alt diffusion.

* dance diffusion.

* dance diffusion is flaky.

* test_dict_tuple_outputs_equivalent edit.

* fix two more tests.

* fix more ddim tests.

* fix: argument.

* change to diff in place of difference.

* fix: test_save_load call.

* test_save_load_float16 call.

* fix: expected_max_diff

* fix: paint by example.

* relax tolerance.

* add determinism to 1d unet model.

* torch 2.0 regressions seem to be brutal

* determinism to vae.

* add reason to skipping.

* up tolerance.

* determinism to vq.

* determinism to cuda.

* determinism to the generic test pipeline file.

* refactor general pipelines testing a bit.

* determinism to alt diffusion i2i

* up tolerance for alt diff i2i and audio diff

* up tolerance.

* determinism to audioldm

* increase tolerance for audioldm lms.

* increase tolerance for paint by paint.

* increase tolerance for repaint.

* determinism to cycle diffusion and sd 1.

* relax tol for cycle diffusion 🚲

* relax tol for sd 1.0

* relax tol for controlnet.

* determinism to img var.

* relax tol for img variation.

* tolerance to i2i sd

* make style

* determinism to inpaint.

* relax tolerance for inpaiting.

* determinism for inpainting legacy

* relax tolerance.

* determinism to instruct pix2pix

* determinism to model editing.

* model editing tolerance.

* panorama determinism

* determinism to pix2pix zero.

* determinism to sag.

* sd 2. determinism

* sd. tolerance

* disallow tf32 matmul.

* relax tolerance is all you need.

* make style and determinism to sd 2 depth

* relax tolerance for depth.

* tolerance to diffedit.

* tolerance to sd 2 inpaint.

* up tolerance.

* determinism in upscaling.

* tolerance in upscaler.

* more tolerance relaxation.

* determinism to v pred.

* up tol for v_pred

* unclip determinism

* determinism to unclip img2img

* determinism to text to video.

* determinism to last set of tests

* up tol.

* vq cumsum doesn't have a deterministic kernel

* relax tol

* relax tol

* [docs] Add transformers to install (#3388)

add transformers to install

* [deepspeed] partial ZeRO-3 support (#3076)

* [deepspeed] partial ZeRO-3 support

* cleanup

* improve deepspeed fixes

* Improve

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add omegaconf for tests (#3400)

Add omegaconfg

* Fix various bugs with LoRA Dreambooth and Dreambooth script (#3353)

* Improve checkpointing lora

* fix more

* Improve doc string

* Update src/diffusers/loaders.py

* make stytle

* Apply suggestions from code review

* Update src/diffusers/loaders.py

* Apply suggestions from code review

* Apply suggestions from code review

* better

* Fix all

* Fix multi-GPU dreambooth

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix all

* make style

* make style

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix docker file (#3402)

* up

* up

* fix: deepseepd_plugin retrieval from accelerate state (#3410)

* [Docs] Add `sigmoid` beta_scheduler to docstrings of relevant Schedulers (#3399)

* Add `sigmoid` beta scheduler to `DDPMScheduler` docstring

* Add `sigmoid` beta scheduler to `RePaintScheduler` docstring

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Don't install accelerate and transformers from source (#3415)

* Don't install transformers and accelerate from source (#3414)

* Improve fast tests (#3416)

Update pr_tests.yml

* attention refactor: the trilogy  (#3387)

* Replace `AttentionBlock` with `Attention`

* use _from_deprecated_attn_block check re: @patrickvonplaten

* [Docs] update the PT 2.0 optimization doc with latest findings (#3370)

* add: benchmarking stats for A100 and V100.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address patrick's comments.

* add: rtx 4090 stats

* ⚔ benchmark reports done

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* 3313 pr link.

* add: plots.

Co-authored-by: Pedro <pedro@huggingface.co>

* fix formattimg

* update number percent.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix style rendering (#3433)

* Fix style rendering.

* Fix typo

* unCLIP scheduler do not use note (#3417)

* Replace deprecated command with environment file (#3409)

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix warning message pipeline loading (#3446)

* add stable diffusion tensorrt img2img pipeline (#3419)

* add stable diffusion tensorrt img2img pipeline

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update docstrings

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* Refactor controlnet and add img2img and inpaint (#3386)

* refactor controlnet and add img2img and inpaint

* First draft to get pipelines to work

* make style

* Fix more

* Fix more

* More tests

* Fix more

* Make inpainting work

* make style and more tests

* Apply suggestions from code review

* up

* make style

* Fix imports

* Fix more

* Fix more

* Improve examples

* add test

* Make sure import is correctly deprecated

* Make sure everything works in compile mode

* make sure authorship is correctly attributed

* [Scheduler] DPM-Solver (++) Inverse Scheduler (#3335)

* Add DPM-Solver Multistep Inverse Scheduler

* Add draft tests for DiffEdit

* Add inverse sde-dpmsolver steps to tune image diversity from inverted latents

* Fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Docs] Fix incomplete docstring for resnet.py (#3438)

Fix incomplete docstrings for resnet.py

* fix tiled vae blend extent range (#3384)

fix tiled vae bleand extent range

* Small update to "Next steps" section (#3443)

Small update to "Next steps" section:

- PyTorch 2 is recommended.
- Updated improvement figures.

* Allow arbitrary aspect ratio in IFSuperResolutionPipeline (#3298)

* Update pipeline_if_superresolution.py

Allow arbitrary aspect ratio in IFSuperResolutionPipeline by using the input image shape

* IFSuperResolutionPipeline: allow the user to override the height and width through the arguments

* update IFSuperResolutionPipeline width/height doc string to match StableDiffusionInpaintPipeline conventions

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Adding 'strength' parameter to StableDiffusionInpaintingPipeline  (#3424)

* Added explanation of 'strength' parameter

* Added get_timesteps function which relies on new strength parameter

* Added `strength` parameter which defaults to 1.

* Swapped ordering so `noise_timestep` can be calculated before masking the image

this is required when you aren't applying 100% noise to the masked region, e.g. strength < 1.

* Added strength to check_inputs, throws error if out of range

* Changed `prepare_latents` to initialise latents w.r.t strength

inspired from the stable diffusion img2img pipeline, init latents are initialised by converting the init image into a VAE latent and adding noise (based upon the strength parameter passed in), e.g. random when strength = 1, or the init image at strength = 0.

* WIP: Added a unit test for the new strength parameter in the StableDiffusionInpaintingPipeline

still need to add correct regression values

* Created a is_strength_max to initialise from pure random noise

* Updated unit tests w.r.t new strength parameter + fixed new strength unit test

* renamed parameter to avoid confusion with variable of same name

* Updated regression values for new strength test - now passes

* removed 'copied from' comment as this method is now different and divergent from the cpy

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Ensure backwards compatibility for prepare_mask_and_masked_image

created a return_image boolean and initialised to false

* Ensure backwards compatibility for prepare_latents

* Fixed copy check typo

* Fixes w.r.t backward compibility changes

* make style

* keep function argument ordering same for backwards compatibility in callees with copied from statements

* make fix-copies

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: William Berman <WLBberman@gmail.com>

* [WIP] Bugfix - Pipeline.from_pretrained is broken when the pipeline is partially downloaded (#3448)

Added bugfix using f strings.

* Fix gradient checkpointing bugs in freezing part of models (requires_grad=False) (#3404)

* gradient checkpointing bug fix

* bug fix; changes for reviews

* reformat

* reformat

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Make dreambooth lora more robust to orig unet (#3462)

* Make dreambooth lora more robust to orig unet

* up

* Reduce peak VRAM by releasing large attention tensors (as soon as they're unnecessary) (#3463)

Release large tensors in attention (as soon as they're no longer required). Reduces peak VRAM by nearly 2 GB for 1024x1024 (even after slicing), and the savings scale up with image size.

* Add min snr to text2img lora training script (#3459)

add min snr to text2img lora training script

* Add inpaint lora scale support (#3460)

* add inpaint lora scale support

* add inpaint lora scale test

---------

Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>

* [From ckpt] Fix from_ckpt (#3466)

* Correct from_ckpt

* make style

* Update full dreambooth script to work with IF (#3425)

* Add IF dreambooth docs (#3470)

* parameterize pass single args through tuple (#3477)

* attend and excite tests disable determinism on the class level (#3478)

* dreambooth docs torch.compile note (#3471)

* dreambooth docs torch.compile note

* Update examples/dreambooth/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add: if entry in the dreambooth training docs. (#3472)

* [docs] Textual inversion inference (#3473)

* add textual inversion inference to docs

* add to toctree

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [docs] Distributed inference (#3376)

* distributed inference

* move to inference section

* apply feedback

* update with split_between_processes

* apply feedback

* [{Up,Down}sample1d] explicit view kernel size as number elements in flattened indices (#3479)

explicit view kernel size as number elements in flattened indices

* mps & onnx tests rework (#3449)

* Remove ONNX tests from PR.

They are already a part of push_tests.yml.

* Remove mps tests from PRs.

They are already performed on push.

* Fix workflow name for fast push tests.

* Extract mps tests to a workflow.

For better control/filtering.

* Remove --extra-index-url from mps tests

* Increase tolerance of mps test

This test passes in my Mac (Ventura 13.3) but fails in the CI hardware
(Ventura 13.2). I ran the local tests following the same steps that
exist in the CI workflow.

* Temporarily run mps tests on pr

So we can test.

* Revert "Temporarily run mps tests on pr"

Tests passed, go back to running on push.

* [Attention processor] Better warning message when shifting to `AttnProcessor2_0` (#3457)

* add: debugging to enabling memory efficient processing

* add: better warning message.

* [Docs] add note on local directory path. (#3397)

add note on local directory path.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Refactor full determinism (#3485)

* up

* fix more

* Apply suggestions from code review

* fix more

* fix more

* Check it

* Remove 16:8

* fix more

* fix more

* fix more

* up

* up

* Test only stable diffusion

* Test only two files

* up

* Try out spinning up processes that can be killed

* up

* Apply suggestions from code review

* up

* up

* Fix DPM single (#3413)

* Fix DPM single

* add test

* fix one more bug

* Apply suggestions from code review

Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>

---------

Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>

* Add `use_Karras_sigmas` to DPMSolverSinglestepScheduler (#3476)

* add use_karras_sigmas

* add karras test

* add doc

* Adds local_files_only bool to prevent forced online connection (#3486)

* make style

* [Docs] Korean translation (optimization, training) (#3488)

* feat) optimization kr translation

* fix) typo, italic setting

* feat) dreambooth, text2image kr

* feat) lora kr

* fix) LoRA

* fix) fp16 fix

* fix) doc-builder style

* fix) fp16 일부 단어 수정

* fix) fp16 style fix

* fix) opt, training docs update

* feat) toctree update

* feat) toctree update

---------

Co-authored-by: Chanran Kim <seriousran@gmail.com>

* DataLoader respecting EXIF data in Training Images (#3465)

* DataLoader will now bake in any transforms or image manipulations contained in the EXIF

Images may have rotations stored in EXIF. Training using such images will cause those transforms to be ignored while training and thus produce unexpected results

* Fixed the Dataloading EXIF issue in main DreamBooth training as well

* Run make style (black & isort)

* make style

* feat: allow disk offload for diffuser models (#3285)

* allow disk offload for diffuser models

* sort import

* add max_memory argument

* Changed sample[0] to images[0] (#3304)

A pipeline object stores the results in `images` not in `sample`.
Current code blocks don't work.

* Typo in tutorial (#3295)

* Torch compile graph fix (#3286)

* fix more

* Fix more

* fix more

* Apply suggestions from code review

* fix

* make style

* make fix-copies

* fix

* make sure torch compile

* Clean

* fix test

* Postprocessing refactor img2img (#3268)

* refactor img2img VaeImageProcessor.postprocess

* remove copy from for init, run_safety_checker, decode_latents

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [Torch 2.0 compile] Fix more torch compile breaks (#3313)

* Fix more torch compile breaks

* add tests

* Fix all

* fix controlnet

* fix more

* Add Horace He as co-author.
>
>
Co-authored-by: Horace He <horacehe2007@yahoo.com>

* Add Horace He as co-author.

Co-authored-by: Horace He <horacehe2007@yahoo.com>

---------

Co-authored-by: Horace He <horacehe2007@yahoo.com>

* fix: scale_lr and sync example readme and docs. (#3299)

* fix: scale_lr and sync example readme and docs.

* fix doc link.

* Update stable_diffusion.mdx (#3310)

fixed import statement

* Fix missing variable assign in DeepFloyd-IF-II (#3315)

Fix missing variable assign

lol

* Correct doc build for patch releases (#3316)

Update build_documentation.yml

* Add Stable Diffusion RePaint to community pipelines (#3320)

* Add Stable Diffsuion RePaint to community pipelines

- Adds Stable Diffsuion RePaint to community pipelines
- Add Readme enty for pipeline

* Fix: Remove wrong import

- Remove wrong import
- Minor change in comments

* Fix: Code formatting of stable_diffusion_repaint

* Fix: ruff errors in stable_diffusion_repaint

* Fix multistep dpmsolver for cosine schedule (suitable for deepfloyd-if) (#3314)

* fix multistep dpmsolver for cosine schedule (deepfloy-if)

* fix a typo

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update all dpmsolver (singlestep, multistep, dpm, dpm++) for cosine noise schedule

* add test, fix style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [docs] Improve LoRA docs (#3311)

* update docs

* add to toctree

* apply feedback

* Added input pretubation (#3292)

* Added input pretubation

* Fixed spelling

* Update write_own_pipeline.mdx (#3323)

* update controlling generation doc with latest goodies. (#3321)

* [Quality] Make style (#3341)

* Fix config dpm (#3343)

* Add the SDE variant of DPM-Solver and DPM-Solver++ (#3344)

* add SDE variant of DPM-Solver and DPM-Solver++

* add test

* fix typo

* fix typo

* Add upsample_size to AttnUpBlock2D, AttnDownBlock2D (#3275)

The argument `upsample_size` needs to be added to these modules to allow compatibility with other blocks that require this argument.

* Rename --only_save_embeds to --save_as_full_pipeline (#3206)

* Set --only_save_embeds to False by default

Due to how the option is named, it makes more sense to behave like this.

* Refactor only_save_embeds to save_as_full_pipeline

* [AudioLDM] Generalise conversion script (#3328)

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix TypeError when using prompt_embeds and negative_prompt (#2982)

* test: Added test case

* fix: fixed type checking issue on _encode_prompt

* fix: fixed copies consistency

* fix: one copy was not sufficient

* Fix pipeline class on README (#3345)

Update README.md

* Inpainting: typo in docs (#3331)

Typo in docs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add `use_Karras_sigmas` to LMSDiscreteScheduler (#3351)

* add karras sigma to lms discrete scheduler

* add test for lms_scheduler karras

* reformat test lms

* Batched load of textual inversions (#3277)

* Batched load of textual inversions

- Only call resize_token_embeddings once per batch as it is the most expensive operation
- Allow pretrained_model_name_or_path and token to be an optional list
- Remove Dict from type annotation pretrained_model_name_or_path as it was not supported in this function
- Add comment that single files (e.g. .pt/.safetensors) are supported
- Add comment for token parameter
- Convert token override log message from warning to info

* Update src/diffusers/loaders.py

Check for duplicate tokens

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update condition for None tokens

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make fix-copies

* [docs] Fix docstring (#3334)

fix docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* if dreambooth lora (#3360)

* update IF stage I pipelines

add fixed variance schedulers and lora loading

* added kv lora attn processor

* allow loading into alternative lora attn processor

* make vae optional

* throw away predicted variance

* allow loading into added kv lora layer

* allow load T5

* allow pre compute text embeddings

* set new variance type in schedulers

* fix copies

* refactor all prompt embedding code

class prompts are now included in pre-encoding code
max tokenizer length is now configurable
embedding attention mask is now configurable

* fix for when variance type is not defined on scheduler

* do not pre compute validation prompt if not present

* add example test for if lora dreambooth

* add check for train text encoder and pre compute text embeddings

* Postprocessing refactor all others (#3337)

* add text2img

* fix-copies

* add

* add all other pipelines

* add

* add

* add

* add

* add

* make style

* style + fix copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>

* [docs] Improve safetensors docstring (#3368)

* clarify safetensor docstring

* fix typo

* apply feedback

* add: a warning message when using xformers in a PT 2.0 env. (#3365)

* add: a warning message when using xformers in a PT 2.0 env.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* StableDiffusionInpaintingPipeline - resize image w.r.t height and width (#3322)

* StableDiffusionInpaintingPipeline now resizes input images and masks w.r.t to passed input height and width. Default is already set to 512. This addresses the common tensor mismatch error. Also moved type check into relevant funciton to keep main pipeline body tidy.

* Fixed StableDiffusionInpaintingPrepareMaskAndMaskedImageTests

Due to previous commit these tests were failing as height and width need to be passed into the prepare_mask_and_masked_image function, I have updated the code and added a height/width variable per unit test as it seemed more appropriate than the current hard coded solution

* Added a resolution test to StableDiffusionInpaintPipelineSlowTests

this unit test simply gets the input and resizes it into some that would fail (e.g. would throw a tensor mismatch error/not a mult of 8). Then passes it through the pipeline and verifies it produces output with correct dims w.r.t the passed height and width

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [docs] Adapt a model (#3326)

* first draft

* apply feedback

* conv_in.weight thrown away

* [docs] Load safetensors (#3333)

* safetensors

* apply feedback

* apply feedback

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [Docs] Fix stable_diffusion.mdx typo (#3398)

Fix typo in last code block. Correct "prommpts" to "prompt"

* Support ControlNet v1.1 shuffle properly (#3340)

* add inferring_controlnet_cond_batch

* Revert "add inferring_controlnet_cond_batch"

This reverts commit abe8d6311d.

* set guess_mode to True
whenever global_pool_conditions is True

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* nit

* add integration test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Tests] better determinism (#3374)

* enable deterministic pytorch and cuda operations.

* disable manual seeding.

* make style && make quality for unet_2d tests.

* enable determinism for the unet2dconditional model.

* add CUBLAS_WORKSPACE_CONFIG for better reproducibility.

* relax tolerance (very weird issue, though).

* revert to torch manual_seed() where needed.

* relax more tolerance.

* better placement of the cuda variable and relax more tolerance.

* enable determinism for 3d condition model.

* relax tolerance.

* add: determinism to alt_diffusion.

* relax tolerance for alt diffusion.

* dance diffusion.

* dance diffusion is flaky.

* test_dict_tuple_outputs_equivalent edit.

* fix two more tests.

* fix more ddim tests.

* fix: argument.

* change to diff in place of difference.

* fix: test_save_load call.

* test_save_load_float16 call.

* fix: expected_max_diff

* fix: paint by example.

* relax tolerance.

* add determinism to 1d unet model.

* torch 2.0 regressions seem to be brutal

* determinism to vae.

* add reason to skipping.

* up tolerance.

* determinism to vq.

* determinism to cuda.

* determinism to the generic test pipeline file.

* refactor general pipelines testing a bit.

* determinism to alt diffusion i2i

* up tolerance for alt diff i2i and audio diff

* up tolerance.

* determinism to audioldm

* increase tolerance for audioldm lms.

* increase tolerance for paint by paint.

* increase tolerance for repaint.

* determinism to cycle diffusion and sd 1.

* relax tol for cycle diffusion 🚲

* relax tol for sd 1.0

* relax tol for controlnet.

* determinism to img var.

* relax tol for img variation.

* tolerance to i2i sd

* make style

* determinism to inpaint.

* relax tolerance for inpaiting.

* determinism for inpainting legacy

* relax tolerance.

* determinism to instruct pix2pix

* determinism to model editing.

* model editing tolerance.

* panorama determinism

* determinism to pix2pix zero.

* determinism to sag.

* sd 2. determinism

* sd. tolerance

* disallow tf32 matmul.

* relax tolerance is all you need.

* make style and determinism to sd 2 depth

* relax tolerance for depth.

* tolerance to diffedit.

* tolerance to sd 2 inpaint.

* up tolerance.

* determinism in upscaling.

* tolerance in upscaler.

* more tolerance relaxation.

* determinism to v pred.

* up tol for v_pred

* unclip determinism

* determinism to unclip img2img

* determinism to text to video.

* determinism to last set of tests

* up tol.

* vq cumsum doesn't have a deterministic kernel

* relax tol

* relax tol

* [docs] Add transformers to install (#3388)

add transformers to install

* [deepspeed] partial ZeRO-3 support (#3076)

* [deepspeed] partial ZeRO-3 support

* cleanup

* improve deepspeed fixes

* Improve

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add omegaconf for tests (#3400)

Add omegaconfg

* Fix various bugs with LoRA Dreambooth and Dreambooth script (#3353)

* Improve checkpointing lora

* fix more

* Improve doc string

* Update src/diffusers/loaders.py

* make stytle

* Apply suggestions from code review

* Update src/diffusers/loaders.py

* Apply suggestions from code review

* Apply suggestions from code review

* better

* Fix all

* Fix multi-GPU dreambooth

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix all

* make style

* make style

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix docker file (#3402)

* up

* up

* fix: deepseepd_plugin retrieval from accelerate state (#3410)

* [Docs] Add `sigmoid` beta_scheduler to docstrings of relevant Schedulers (#3399)

* Add `sigmoid` beta scheduler to `DDPMScheduler` docstring

* Add `sigmoid` beta scheduler to `RePaintScheduler` docstring

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Don't install accelerate and transformers from source (#3415)

* Don't install transformers and accelerate from source (#3414)

* Improve fast tests (#3416)

Update pr_tests.yml

* attention refactor: the trilogy  (#3387)

* Replace `AttentionBlock` with `Attention`

* use _from_deprecated_attn_block check re: @patrickvonplaten

* [Docs] update the PT 2.0 optimization doc with latest findings (#3370)

* add: benchmarking stats for A100 and V100.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address patrick's comments.

* add: rtx 4090 stats

* ⚔ benchmark reports done

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* 3313 pr link.

* add: plots.

Co-authored-by: Pedro <pedro@huggingface.co>

* fix formattimg

* update number percent.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix style rendering (#3433)

* Fix style rendering.

* Fix typo

* unCLIP scheduler do not use note (#3417)

* Replace deprecated command with environment file (#3409)

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix warning message pipeline loading (#3446)

* add stable diffusion tensorrt img2img pipeline (#3419)

* add stable diffusion tensorrt img2img pipeline

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update docstrings

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* Refactor controlnet and add img2img and inpaint (#3386)

* refactor controlnet and add img2img and inpaint

* First draft to get pipelines to work

* make style

* Fix more

* Fix more

* More tests

* Fix more

* Make inpainting work

* make style and more tests

* Apply suggestions from code review

* up

* make style

* Fix imports

* Fix more

* Fix more

* Improve examples

* add test

* Make sure import is correctly deprecated

* Make sure everything works in compile mode

* make sure authorship is correctly attributed

* [Scheduler] DPM-Solver (++) Inverse Scheduler (#3335)

* Add DPM-Solver Multistep Inverse Scheduler

* Add draft tests for DiffEdit

* Add inverse sde-dpmsolver steps to tune image diversity from inverted latents

* Fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Docs] Fix incomplete docstring for resnet.py (#3438)

Fix incomplete docstrings for resnet.py

* fix tiled vae blend extent range (#3384)

fix tiled vae bleand extent range

* Small update to "Next steps" section (#3443)

Small update to "Next steps" section:

- PyTorch 2 is recommended.
- Updated improvement figures.

* Allow arbitrary aspect ratio in IFSuperResolutionPipeline (#3298)

* Update pipeline_if_superresolution.py

Allow arbitrary aspect ratio in IFSuperResolutionPipeline by using the input image shape

* IFSuperResolutionPipeline: allow the user to override the height and width through the arguments

* update IFSuperResolutionPipeline width/height doc string to match StableDiffusionInpaintPipeline conventions

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Adding 'strength' parameter to StableDiffusionInpaintingPipeline  (#3424)

* Added explanation of 'strength' parameter

* Added get_timesteps function which relies on new strength parameter

* Added `strength` parameter which defaults to 1.

* Swapped ordering so `noise_timestep` can be calculated before masking the image

this is required when you aren't applying 100% noise to the masked region, e.g. strength < 1.

* Added strength to check_inputs, throws error if out of range

* Changed `prepare_latents` to initialise latents w.r.t strength

inspired from the stable diffusion img2img pipeline, init latents are initialised by converting the init image into a VAE latent and adding noise (based upon the strength parameter passed in), e.g. random when strength = 1, or the init image at strength = 0.

* WIP: Added a unit test for the new strength parameter in the StableDiffusionInpaintingPipeline

still need to add correct regression values

* Created a is_strength_max to initialise from pure random noise

* Updated unit tests w.r.t new strength parameter + fixed new strength unit test

* renamed parameter to avoid confusion with variable of same name

* Updated regression values for new strength test - now passes

* removed 'copied from' comment as this method is now different and divergent from the cpy

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Ensure backwards compatibility for prepare_mask_and_masked_image

created a return_image boolean and initialised to false

* Ensure backwards compatibility for prepare_latents

* Fixed copy check typo

* Fixes w.r.t backward compibility changes

* make style

* keep function argument ordering same for backwards compatibility in callees with copied from statements

* make fix-copies

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: William Berman <WLBberman@gmail.com>

* [WIP] Bugfix - Pipeline.from_pretrained is broken when the pipeline is partially downloaded (#3448)

Added bugfix using f strings.

* Fix gradient checkpointing bugs in freezing part of models (requires_grad=False) (#3404)

* gradient checkpointing bug fix

* bug fix; changes for reviews

* reformat

* reformat

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Make dreambooth lora more robust to orig unet (#3462)

* Make dreambooth lora more robust to orig unet

* up

* Reduce peak VRAM by releasing large attention tensors (as soon as they're unnecessary) (#3463)

Release large tensors in attention (as soon as they're no longer required). Reduces peak VRAM by nearly 2 GB for 1024x1024 (even after slicing), and the savings scale up with image size.

* Add min snr to text2img lora training script (#3459)

add min snr to text2img lora training script

* Add inpaint lora scale support (#3460)

* add inpaint lora scale support

* add inpaint lora scale test

---------

Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>

* [From ckpt] Fix from_ckpt (#3466)

* Correct from_ckpt

* make style

* Update full dreambooth script to work with IF (#3425)

* Add IF dreambooth docs (#3470)

* parameterize pass single args through tuple (#3477)

* attend and excite tests disable determinism on the class level (#3478)

* dreambooth docs torch.compile note (#3471)

* dreambooth docs torch.compile note

* Update examples/dreambooth/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add: if entry in the dreambooth training docs. (#3472)

* [docs] Textual inversion inference (#3473)

* add textual inversion inference to docs

* add to toctree

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [docs] Distributed inference (#3376)

* distributed inference

* move to inference section

* apply feedback

* update with split_between_processes

* apply feedback

* [{Up,Down}sample1d] explicit view kernel size as number elements in flattened indices (#3479)

explicit view kernel size as number elements in flattened indices

* mps & onnx tests rework (#3449)

* Remove ONNX tests from PR.

They are already a part of push_tests.yml.

* Remove mps tests from PRs.

They are already performed on push.

* Fix workflow name for fast push tests.

* Extract mps tests to a workflow.

For better control/filtering.

* Remove --extra-index-url from mps tests

* Increase tolerance of mps test

This test passes in my Mac (Ventura 13.3) but fails in the CI hardware
(Ventura 13.2). I ran the local tests following the same steps that
exist in the CI workflow.

* Temporarily run mps tests on pr

So we can test.

* Revert "Temporarily run mps tests on pr"

Tests passed, go back to running on push.

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Ilia Larchenko <41329713+IliaLarchenko@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Horace He <horacehe2007@yahoo.com>
Co-authored-by: Umar <55330742+mu94-csl@users.noreply.github.com>
Co-authored-by: Mylo <36931363+gitmylo@users.noreply.github.com>
Co-authored-by: Markus Pobitzer <markuspobitzer@gmail.com>
Co-authored-by: Cheng Lu <lucheng.lc15@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Isamu Isozaki <isamu.website@gmail.com>
Co-authored-by: Cesar Aybar <csaybar@gmail.com>
Co-authored-by: Will Rice <will@spokestack.io>
Co-authored-by: Adrià Arrufat <1671644+arrufat@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: At-sushi <dkahw210@kyoto.zaq.ne.jp>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Isotr0py <41363108+Isotr0py@users.noreply.github.com>
Co-authored-by: pdoane <pdoane2@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Rupert Menneer <71332436+rupertmenneer@users.noreply.github.com>
Co-authored-by: sudowind <wfpkueecs@163.com>
Co-authored-by: Takuma Mori <takuma104@gmail.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Laureηt <laurentfainsin@protonmail.com>
Co-authored-by: Jongwoo Han <jongwooo.han@gmail.com>
Co-authored-by: asfiyab-nvidia <117682710+asfiyab-nvidia@users.noreply.github.com>
Co-authored-by: clarencechen <clarencechenct@gmail.com>
Co-authored-by: Laureηt <laurent@fainsin.bzh>
Co-authored-by: superlabs-dev <133080491+superlabs-dev@users.noreply.github.com>
Co-authored-by: Dev Aggarwal <devxpy@gmail.com>
Co-authored-by: Vimarsh Chaturvedi <vimarsh.c@gmail.com>
Co-authored-by: 7eu7d7 <31194890+7eu7d7@users.noreply.github.com>
Co-authored-by: cmdr2 <shashank.shekhar.global@gmail.com>
Co-authored-by: wfng92 <43742196+wfng92@users.noreply.github.com>
Co-authored-by: Glaceon-Hyy <ffheyy0017@gmail.com>
Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>

* [Community] reference only control (#3435)

* add reference only control

* add reference only control

* add reference only control

* fix lint

* fix lint

* reference adain

* bugfix EulerAncestralDiscreteScheduler

* fix style fidelity rule

* fix default output size

* del unused line

* fix deterministic

* Support for cross-attention bias / mask (#2634)

* Cross-attention masks

prefer qualified symbol, fix accidental Optional

prefer qualified symbol in AttentionProcessor

prefer qualified symbol in embeddings.py

qualified symbol in transformed_2d

qualify FloatTensor in unet_2d_blocks

move new transformer_2d params attention_mask, encoder_attention_mask to the end of the section which is assumed (e.g. by functions such as checkpoint()) to have a stable positional param interface. regard return_dict as a special-case which is assumed to be injected separately from positional params (e.g. by create_custom_forward()).

move new encoder_attention_mask param to end of CrossAttn block interfaces and Unet2DCondition interface, to maintain positional param interface.

regenerate modeling_text_unet.py

remove unused import

unet_2d_condition encoder_attention_mask docs

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

versatile_diffusion/modeling_text_unet.py encoder_attention_mask docs

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

transformer_2d encoder_attention_mask docs

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

unet_2d_blocks.py: add parameter name comments

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

revert description. bool-to-bias treatment happens in unet_2d_condition only.

comment parameter names

fix copies, style

* encoder_attention_mask for SimpleCrossAttnDownBlock2D, SimpleCrossAttnUpBlock2D

* encoder_attention_mask for UNetMidBlock2DSimpleCrossAttn

* support attention_mask, encoder_attention_mask in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D, KAttentionBlock. fix binding of attention_mask, cross_attention_kwargs params in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D checkpoint invocations.

* fix mistake made during merge conflict resolution

* regenerate versatile_diffusion

* pass time embedding into checkpointed attention invocation

* always assume encoder_attention_mask is a mask (i.e. not a bias).

* style, fix-copies

* add tests for cross-attention masks

* add test for padding of attention mask

* explain mask's query_tokens dim. fix explanation about broadcasting over channels; we actually broadcast over query tokens

* support both masks and biases in Transformer2DModel#forward. document behaviour

* fix-copies

* delete attention_mask docs on the basis I never tested self-attention masking myself. not comfortable explaining it, since I don't actually understand how a self-attn mask can work in its current form: the key length will be different in every ResBlock (we don't downsample the mask when we downsample the image).

* review feedback: the standard Unet blocks shouldn't pass temb to attn (only to resnet). remove from KCrossAttnDownBlock2D,KCrossAttnUpBlock2D#forward.

* remove encoder_attention_mask param from SimpleCrossAttn{Up,Down}Block2D,UNetMidBlock2DSimpleCrossAttn, and mask-choice in those blocks' #forward, on the basis that they only do one type of attention, so the consumer can pass whichever type of attention_mask is appropriate.

* put attention mask padding back to how it was (since the SD use-case it enabled wasn't important, and it breaks the original unclip use-case). disable the test which was added.

* fix-copies

* style

* fix-copies

* put encoder_attention_mask param back into Simple block forward interfaces, to ensure consistency of forward interface.

* restore passing of emb to KAttentionBlock#forward, on the basis that removal caused test failures. restore also the passing of emb to checkpointed calls to KAttentionBlock#forward.

* make simple unet2d blocks use encoder_attention_mask, but only when attention_mask is None. this should fix UnCLIP compatibility.

* fix copies

* do not scale the initial global step by gradient accumulation steps when loading from checkpoint (#3506)

* Remove CPU latents logic for UniDiffuserPipelineFastTests.

* make style

* Revert "Clean up code and make slow tests pass."

This reverts commit ec7fb8735b.

* Revert bad commit and clean up code.

* add: contributor note.

* Batched load of textual inversions (#3277)

* Batched load of textual inversions

- Only call resize_token_embeddings once per batch as it is the most expensive operation
- Allow pretrained_model_name_or_path and token to be an optional list
- Remove Dict from type annotation pretrained_model_name_or_path as it was not supported in this function
- Add comment that single files (e.g. .pt/.safetensors) are supported
- Add comment for token parameter
- Convert token override log message from warning to info

* Update src/diffusers/loaders.py

Check for duplicate tokens

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update condition for None tokens

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Revert "add: contributor note."

This reverts commit 302fde9409.

* Re-add contributor note and refactored fast tests fixed latents code to remove CPU specific logic.

* make style

* Refactored the code:
	- Updated the checkpoint ids to the new ids where appropriate
	- Refactored the UniDiffuserTextDecoder methods to return only tensors (and made other changes to support this)
	- Cleaned up the code following suggestions by patrickvonplaten

* make style

* Remove padding logic from UniDiffuserTextDecoder.generate_beam since the inputs are already padded to a consistent length.

* Update checkpoint id for small test v1 checkpoint to hf-internal-testing/unidiffuser-test-v1.

* make style

* Make improvements to the documentation.

* Move ImageTextPipelineOutput documentation from /api/pipelines/unidiffuser.mdx to /api/diffusion_pipeline.mdx.

* Change order of arguments for UniDiffuserTextDecoder.generate_beam.

* make style

* Update docs/source/en/api/pipelines/unidiffuser.mdx

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>
Co-authored-by: Ernie Chu <51432514+ernestchu@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Andranik Movsisyan <48154088+19and99@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Andreas Steiner <andstein@google.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Joseph Coffland <github@joe.coffland.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Takuma Mori <takuma104@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>
Co-authored-by: Tommaso De Rossi <beats.by.morse@gmail.com>
Co-authored-by: Cristian Garcia <cgarcia.e88@gmail.com>
Co-authored-by: cmdr2 <secondary.cmdr2@gmail.com>
Co-authored-by: 1lint <105617163+1lint@users.noreply.github.com>
Co-authored-by: asfiyab-nvidia <117682710+asfiyab-nvidia@users.noreply.github.com>
Co-authored-by: Chanchana Sornsoontorn <off9955555@gmail.com>
Co-authored-by: hwuebben <wbben123@yahoo.de>
Co-authored-by: superhero-7 <57797766+superhero-7@users.noreply.github.com>
Co-authored-by: root <fulong_ye@163.com>
Co-authored-by: nupurkmr9 <nupurkmr9@gmail.com>
Co-authored-by: Nupur Kumari <nupurkumari@Nupurs-MacBook-Pro.local>
Co-authored-by: Nupur Kumari <nupurkumari@nupurs-mbp.wifi.local.cmu.edu>
Co-authored-by: Mishig <mishig.davaadorj@coloradocollege.edu>
Co-authored-by: XinyuYe-Intel <xinyu.ye@intel.com>
Co-authored-by: clarencechen <clarencechenct@gmail.com>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Youssef Adarrab <104783077+youssefadr@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Chengrui Wang <80876977+crywang@users.noreply.github.com>
Co-authored-by: SkyTNT <SKYTNT@outlook.com>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
Co-authored-by: Isaac <34376531+init-22@users.noreply.github.com>
Co-authored-by: pdoane <pdoane2@gmail.com>
Co-authored-by: Yuchen Fan <fyc0624@gmail.com>
Co-authored-by: Nipun Jindal <jindal.nipun@gmail.com>
Co-authored-by: njindal <njindal@adobe.com>
Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
Co-authored-by: Xie Zejian <xiezej@gmail.com>
Co-authored-by: Jair Trejo <jairtrejo@gmail.com>
Co-authored-by: Robert Dargavel Smith <teticio@gmail.com>
Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Joqsan <6027118+Joqsan@users.noreply.github.com>
Co-authored-by: NimenDavid <312648004@qq.com>
Co-authored-by: M. Tolga Cangöz <46008593+standardAI@users.noreply.github.com>
Co-authored-by: timegate <timegate@kaist.ac.kr>
Co-authored-by: Jason Kuan <jason9075@users.noreply.github.com>
Co-authored-by: Ilia Larchenko <41329713+IliaLarchenko@users.noreply.github.com>
Co-authored-by: Horace He <horacehe2007@yahoo.com>
Co-authored-by: Umar <55330742+mu94-csl@users.noreply.github.com>
Co-authored-by: Mylo <36931363+gitmylo@users.noreply.github.com>
Co-authored-by: Markus Pobitzer <markuspobitzer@gmail.com>
Co-authored-by: Cheng Lu <lucheng.lc15@gmail.com>
Co-authored-by: Isamu Isozaki <isamu.website@gmail.com>
Co-authored-by: Cesar Aybar <csaybar@gmail.com>
Co-authored-by: Will Rice <will@spokestack.io>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Rupert Menneer <71332436+rupertmenneer@users.noreply.github.com>
Co-authored-by: sudowind <wfpkueecs@163.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Laureηt <laurentfainsin@protonmail.com>
Co-authored-by: Jongwoo Han <jongwooo.han@gmail.com>
Co-authored-by: Laureηt <laurent@fainsin.bzh>
Co-authored-by: superlabs-dev <133080491+superlabs-dev@users.noreply.github.com>
Co-authored-by: Dev Aggarwal <devxpy@gmail.com>
Co-authored-by: Vimarsh Chaturvedi <vimarsh.c@gmail.com>
Co-authored-by: 7eu7d7 <31194890+7eu7d7@users.noreply.github.com>
Co-authored-by: cmdr2 <shashank.shekhar.global@gmail.com>
Co-authored-by: wfng92 <43742196+wfng92@users.noreply.github.com>
Co-authored-by: Glaceon-Hyy <ffheyy0017@gmail.com>
Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>
Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>
Co-authored-by: Isotr0py <41363108+Isotr0py@users.noreply.github.com>
Co-authored-by: w4ffl35 <w4ffl35@ml1.net>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>
Co-authored-by: Chanran Kim <seriousran@gmail.com>
Co-authored-by: Ambrosiussen <paul@ambrosiussen.com>
Co-authored-by: Hari Krishna <37787894+hari10599@users.noreply.github.com>
Co-authored-by: Adrià Arrufat <1671644+arrufat@users.noreply.github.com>
Co-authored-by: At-sushi <dkahw210@kyoto.zaq.ne.jp>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: takuoko <to78314910@gmail.com>
Co-authored-by: Birch-san <Birch-san@users.noreply.github.com>
2023-05-26 17:27:30 +05:30
Steven Liu
7948db81c5 [docs] Add AttnProcessor to docs (#3474)
* add attnprocessor to docs

* fix path to class

* create separate page for attnprocessors

* fix path

* fix path for real

* fill in docstrings

* apply feedback

* apply feedback
2023-05-26 17:11:42 +05:30
Patrick von Platen
bf16a97018 Fix controlnet guess mode euler (#3571)
* Fix guess mode controlnet for euler-like schedulers

* make style

* Co-authored-by: Chanchana Sornsoontorn <off.chanchana@gmail.com>

* Add co author Co-authored-by: Chanchana Sornsoontorn <off.chanchana@gmail.com>

* 2nd try
Co-authored-by: Chanchana Sornsoontorn <off.chanchana@gmail.com>
2023-05-26 11:31:51 +01:00
Patrick von Platen
66356e7dd5 Correct inpainting controlnet docs (#3572) 2023-05-26 11:02:30 +01:00
vikasmech
ffa33d631a renamed variable to input_ and output_ (#3507)
* renamed variable to input_ and output_

* changed input
_ to intputs and output_ to outputs
2023-05-26 10:34:11 +01:00
Emin Demirci
d8ce53a8c4 Fix loaded_token reference before definition (#3523) 2023-05-26 10:31:02 +01:00
Patrick von Platen
d114d80fd2 [Stable Diffusion Inpainting] Allow standard text-to-img checkpoints to be useable for SD inpainting (#3533)
* Add default to inpaint

* Make sure controlnet also works with normal sd for inpaint

* Add tests

* improve

* Correct encode images function

* Correct inpaint controlnet

* Improve text2img inpanit

* make style

* up

* up

* up

* up

* fix more
2023-05-26 09:47:42 +01:00
YiYi Xu
e5215dee9a fix broken change for vq pipeline (#3563)
fix vq_model

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-05-25 14:55:31 -10:00
YiYi Xu
03b7a84cbe Add Kandinsky 2.1 (#3308)
add kandinsky2.1

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Ayush Mangal <43698245+ayushtues@users.noreply.github.com>
Co-authored-by: ayushmangal <ayushmangal@microsoft.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-05-25 11:28:34 -10:00
Patrick von Platen
f19f128735 Add open parti prompts to docs (#3549)
* Add open parti prompts

* More changes
2023-05-25 11:11:20 +01:00
Isotr0py
a94977b8b3 Fix panorama to support all schedulers (#3546)
* refactor blocks init

* refactor blocks loop

* remove unused function and warnings

* fix scheduler update location

* reformat code

* reformat code again

* fix PNDM test case

* reformat pndm test case
2023-05-24 17:58:08 +05:30
Sayak Paul
8e69708b0d [Examples/DreamBooth] refactor save_model_card utility in dreambooth examples (#3543)
refactor save_model_card utility in dreambooth examples.
2023-05-24 16:16:28 +05:30
Will Berman
db56f8a4f5 explicit broadcasts for assignments (#3535) 2023-05-24 11:17:41 +01:00
Will Berman
c13dbd5c3a fix attention mask pad check (#3531) 2023-05-23 13:11:53 -07:00
Pedro Cuenca
bde2cb5d9b Run torch.compile tests in separate subprocesses (#3503)
* Run ControlNet compile test in a separate subprocess

`torch.compile()` spawns several subprocesses and the GPU memory used
was not reclaimed after the test ran. This approach was taken from
`transformers`.

* Style

* Prepare a couple more compile tests to run in subprocess.

* Use require_torch_2 decorator.

* Test inpaint_compile in subprocess.

* Run img2img compile test in subprocess.

* Run stable diffusion compile test in subprocess.

* style

* Temporarily trigger on pr to test.

* Revert "Temporarily trigger on pr to test."

This reverts commit 82d76868dd.
2023-05-23 19:24:17 +02:00
Patrick von Platen
abab61d49e Update README.md 2023-05-23 17:29:18 +01:00
Patrick von Platen
b402604de4 Update README.md (#3525) 2023-05-23 17:28:39 +01:00
Patrick von Platen
84ce50f08e Improve README (#3524)
Update README.md
2023-05-23 16:53:34 +01:00
Patrick von Platen
9e2734a710 Make sure Diffusers works even if Hub is down (#3447)
* Make sure Diffusers works even if Hub is down

* Make sure hub down is well tested
2023-05-23 14:22:43 +01:00
Patrick von Platen
d4197bf4d7 Allow custom pipeline loading (#3504) 2023-05-23 13:20:55 +01:00
takuoko
b134f6a8b6 [Community] ControlNet Reference (#3508)
add controlnet reference and bugfix

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-23 13:20:34 +01:00
yingjieh
edc6505193 [Community Pipelines]Accelerate inference of stable diffusion by IPEX on CPU (#3105)
* add stable_diffusion_ipex community pipeline

* Update readme.md

* reformat

* reformat

* Update examples/community/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/community/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/community/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/community/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update README.md

* Update README.md

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* style

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-05-23 10:55:14 +02:00
Isotr0py
2f997f30ab Fix bug in panorama pipeline when using dpmsolver scheduler (#3499)
fix panorama pipeline with dpmsolver scheduler
2023-05-23 08:55:15 +05:30
Will Berman
67cd460154 do not scale the initial global step by gradient accumulation steps when loading from checkpoint (#3506) 2023-05-22 15:19:56 -07:00
Birch-san
64bf5d33b7 Support for cross-attention bias / mask (#2634)
* Cross-attention masks

prefer qualified symbol, fix accidental Optional

prefer qualified symbol in AttentionProcessor

prefer qualified symbol in embeddings.py

qualified symbol in transformed_2d

qualify FloatTensor in unet_2d_blocks

move new transformer_2d params attention_mask, encoder_attention_mask to the end of the section which is assumed (e.g. by functions such as checkpoint()) to have a stable positional param interface. regard return_dict as a special-case which is assumed to be injected separately from positional params (e.g. by create_custom_forward()).

move new encoder_attention_mask param to end of CrossAttn block interfaces and Unet2DCondition interface, to maintain positional param interface.

regenerate modeling_text_unet.py

remove unused import

unet_2d_condition encoder_attention_mask docs

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

versatile_diffusion/modeling_text_unet.py encoder_attention_mask docs

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

transformer_2d encoder_attention_mask docs

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

unet_2d_blocks.py: add parameter name comments

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

revert description. bool-to-bias treatment happens in unet_2d_condition only.

comment parameter names

fix copies, style

* encoder_attention_mask for SimpleCrossAttnDownBlock2D, SimpleCrossAttnUpBlock2D

* encoder_attention_mask for UNetMidBlock2DSimpleCrossAttn

* support attention_mask, encoder_attention_mask in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D, KAttentionBlock. fix binding of attention_mask, cross_attention_kwargs params in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D checkpoint invocations.

* fix mistake made during merge conflict resolution

* regenerate versatile_diffusion

* pass time embedding into checkpointed attention invocation

* always assume encoder_attention_mask is a mask (i.e. not a bias).

* style, fix-copies

* add tests for cross-attention masks

* add test for padding of attention mask

* explain mask's query_tokens dim. fix explanation about broadcasting over channels; we actually broadcast over query tokens

* support both masks and biases in Transformer2DModel#forward. document behaviour

* fix-copies

* delete attention_mask docs on the basis I never tested self-attention masking myself. not comfortable explaining it, since I don't actually understand how a self-attn mask can work in its current form: the key length will be different in every ResBlock (we don't downsample the mask when we downsample the image).

* review feedback: the standard Unet blocks shouldn't pass temb to attn (only to resnet). remove from KCrossAttnDownBlock2D,KCrossAttnUpBlock2D#forward.

* remove encoder_attention_mask param from SimpleCrossAttn{Up,Down}Block2D,UNetMidBlock2DSimpleCrossAttn, and mask-choice in those blocks' #forward, on the basis that they only do one type of attention, so the consumer can pass whichever type of attention_mask is appropriate.

* put attention mask padding back to how it was (since the SD use-case it enabled wasn't important, and it breaks the original unclip use-case). disable the test which was added.

* fix-copies

* style

* fix-copies

* put encoder_attention_mask param back into Simple block forward interfaces, to ensure consistency of forward interface.

* restore passing of emb to KAttentionBlock#forward, on the basis that removal caused test failures. restore also the passing of emb to checkpointed calls to KAttentionBlock#forward.

* make simple unet2d blocks use encoder_attention_mask, but only when attention_mask is None. this should fix UnCLIP compatibility.

* fix copies
2023-05-22 17:27:15 +01:00
takuoko
c4359d63e3 [Community] reference only control (#3435)
* add reference only control

* add reference only control

* add reference only control

* fix lint

* fix lint

* reference adain

* bugfix EulerAncestralDiscreteScheduler

* fix style fidelity rule

* fix default output size

* del unused line

* fix deterministic
2023-05-22 16:21:54 +01:00
Hari Krishna
f3d570c273 feat: allow disk offload for diffuser models (#3285)
* allow disk offload for diffuser models

* sort import

* add max_memory argument

* Changed sample[0] to images[0] (#3304)

A pipeline object stores the results in `images` not in `sample`.
Current code blocks don't work.

* Typo in tutorial (#3295)

* Torch compile graph fix (#3286)

* fix more

* Fix more

* fix more

* Apply suggestions from code review

* fix

* make style

* make fix-copies

* fix

* make sure torch compile

* Clean

* fix test

* Postprocessing refactor img2img (#3268)

* refactor img2img VaeImageProcessor.postprocess

* remove copy from for init, run_safety_checker, decode_latents

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [Torch 2.0 compile] Fix more torch compile breaks (#3313)

* Fix more torch compile breaks

* add tests

* Fix all

* fix controlnet

* fix more

* Add Horace He as co-author.
>
>
Co-authored-by: Horace He <horacehe2007@yahoo.com>

* Add Horace He as co-author.

Co-authored-by: Horace He <horacehe2007@yahoo.com>

---------

Co-authored-by: Horace He <horacehe2007@yahoo.com>

* fix: scale_lr and sync example readme and docs. (#3299)

* fix: scale_lr and sync example readme and docs.

* fix doc link.

* Update stable_diffusion.mdx (#3310)

fixed import statement

* Fix missing variable assign in DeepFloyd-IF-II (#3315)

Fix missing variable assign

lol

* Correct doc build for patch releases (#3316)

Update build_documentation.yml

* Add Stable Diffusion RePaint to community pipelines (#3320)

* Add Stable Diffsuion RePaint to community pipelines

- Adds Stable Diffsuion RePaint to community pipelines
- Add Readme enty for pipeline

* Fix: Remove wrong import

- Remove wrong import
- Minor change in comments

* Fix: Code formatting of stable_diffusion_repaint

* Fix: ruff errors in stable_diffusion_repaint

* Fix multistep dpmsolver for cosine schedule (suitable for deepfloyd-if) (#3314)

* fix multistep dpmsolver for cosine schedule (deepfloy-if)

* fix a typo

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update all dpmsolver (singlestep, multistep, dpm, dpm++) for cosine noise schedule

* add test, fix style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [docs] Improve LoRA docs (#3311)

* update docs

* add to toctree

* apply feedback

* Added input pretubation (#3292)

* Added input pretubation

* Fixed spelling

* Update write_own_pipeline.mdx (#3323)

* update controlling generation doc with latest goodies. (#3321)

* [Quality] Make style (#3341)

* Fix config dpm (#3343)

* Add the SDE variant of DPM-Solver and DPM-Solver++ (#3344)

* add SDE variant of DPM-Solver and DPM-Solver++

* add test

* fix typo

* fix typo

* Add upsample_size to AttnUpBlock2D, AttnDownBlock2D (#3275)

The argument `upsample_size` needs to be added to these modules to allow compatibility with other blocks that require this argument.

* Rename --only_save_embeds to --save_as_full_pipeline (#3206)

* Set --only_save_embeds to False by default

Due to how the option is named, it makes more sense to behave like this.

* Refactor only_save_embeds to save_as_full_pipeline

* [AudioLDM] Generalise conversion script (#3328)

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix TypeError when using prompt_embeds and negative_prompt (#2982)

* test: Added test case

* fix: fixed type checking issue on _encode_prompt

* fix: fixed copies consistency

* fix: one copy was not sufficient

* Fix pipeline class on README (#3345)

Update README.md

* Inpainting: typo in docs (#3331)

Typo in docs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add `use_Karras_sigmas` to LMSDiscreteScheduler (#3351)

* add karras sigma to lms discrete scheduler

* add test for lms_scheduler karras

* reformat test lms

* Batched load of textual inversions (#3277)

* Batched load of textual inversions

- Only call resize_token_embeddings once per batch as it is the most expensive operation
- Allow pretrained_model_name_or_path and token to be an optional list
- Remove Dict from type annotation pretrained_model_name_or_path as it was not supported in this function
- Add comment that single files (e.g. .pt/.safetensors) are supported
- Add comment for token parameter
- Convert token override log message from warning to info

* Update src/diffusers/loaders.py

Check for duplicate tokens

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update condition for None tokens

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make fix-copies

* [docs] Fix docstring (#3334)

fix docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* if dreambooth lora (#3360)

* update IF stage I pipelines

add fixed variance schedulers and lora loading

* added kv lora attn processor

* allow loading into alternative lora attn processor

* make vae optional

* throw away predicted variance

* allow loading into added kv lora layer

* allow load T5

* allow pre compute text embeddings

* set new variance type in schedulers

* fix copies

* refactor all prompt embedding code

class prompts are now included in pre-encoding code
max tokenizer length is now configurable
embedding attention mask is now configurable

* fix for when variance type is not defined on scheduler

* do not pre compute validation prompt if not present

* add example test for if lora dreambooth

* add check for train text encoder and pre compute text embeddings

* Postprocessing refactor all others (#3337)

* add text2img

* fix-copies

* add

* add all other pipelines

* add

* add

* add

* add

* add

* make style

* style + fix copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>

* [docs] Improve safetensors docstring (#3368)

* clarify safetensor docstring

* fix typo

* apply feedback

* add: a warning message when using xformers in a PT 2.0 env. (#3365)

* add: a warning message when using xformers in a PT 2.0 env.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* StableDiffusionInpaintingPipeline - resize image w.r.t height and width (#3322)

* StableDiffusionInpaintingPipeline now resizes input images and masks w.r.t to passed input height and width. Default is already set to 512. This addresses the common tensor mismatch error. Also moved type check into relevant funciton to keep main pipeline body tidy.

* Fixed StableDiffusionInpaintingPrepareMaskAndMaskedImageTests

Due to previous commit these tests were failing as height and width need to be passed into the prepare_mask_and_masked_image function, I have updated the code and added a height/width variable per unit test as it seemed more appropriate than the current hard coded solution

* Added a resolution test to StableDiffusionInpaintPipelineSlowTests

this unit test simply gets the input and resizes it into some that would fail (e.g. would throw a tensor mismatch error/not a mult of 8). Then passes it through the pipeline and verifies it produces output with correct dims w.r.t the passed height and width

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [docs] Adapt a model (#3326)

* first draft

* apply feedback

* conv_in.weight thrown away

* [docs] Load safetensors (#3333)

* safetensors

* apply feedback

* apply feedback

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [Docs] Fix stable_diffusion.mdx typo (#3398)

Fix typo in last code block. Correct "prommpts" to "prompt"

* Support ControlNet v1.1 shuffle properly (#3340)

* add inferring_controlnet_cond_batch

* Revert "add inferring_controlnet_cond_batch"

This reverts commit abe8d6311d.

* set guess_mode to True
whenever global_pool_conditions is True

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* nit

* add integration test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Tests] better determinism (#3374)

* enable deterministic pytorch and cuda operations.

* disable manual seeding.

* make style && make quality for unet_2d tests.

* enable determinism for the unet2dconditional model.

* add CUBLAS_WORKSPACE_CONFIG for better reproducibility.

* relax tolerance (very weird issue, though).

* revert to torch manual_seed() where needed.

* relax more tolerance.

* better placement of the cuda variable and relax more tolerance.

* enable determinism for 3d condition model.

* relax tolerance.

* add: determinism to alt_diffusion.

* relax tolerance for alt diffusion.

* dance diffusion.

* dance diffusion is flaky.

* test_dict_tuple_outputs_equivalent edit.

* fix two more tests.

* fix more ddim tests.

* fix: argument.

* change to diff in place of difference.

* fix: test_save_load call.

* test_save_load_float16 call.

* fix: expected_max_diff

* fix: paint by example.

* relax tolerance.

* add determinism to 1d unet model.

* torch 2.0 regressions seem to be brutal

* determinism to vae.

* add reason to skipping.

* up tolerance.

* determinism to vq.

* determinism to cuda.

* determinism to the generic test pipeline file.

* refactor general pipelines testing a bit.

* determinism to alt diffusion i2i

* up tolerance for alt diff i2i and audio diff

* up tolerance.

* determinism to audioldm

* increase tolerance for audioldm lms.

* increase tolerance for paint by paint.

* increase tolerance for repaint.

* determinism to cycle diffusion and sd 1.

* relax tol for cycle diffusion 🚲

* relax tol for sd 1.0

* relax tol for controlnet.

* determinism to img var.

* relax tol for img variation.

* tolerance to i2i sd

* make style

* determinism to inpaint.

* relax tolerance for inpaiting.

* determinism for inpainting legacy

* relax tolerance.

* determinism to instruct pix2pix

* determinism to model editing.

* model editing tolerance.

* panorama determinism

* determinism to pix2pix zero.

* determinism to sag.

* sd 2. determinism

* sd. tolerance

* disallow tf32 matmul.

* relax tolerance is all you need.

* make style and determinism to sd 2 depth

* relax tolerance for depth.

* tolerance to diffedit.

* tolerance to sd 2 inpaint.

* up tolerance.

* determinism in upscaling.

* tolerance in upscaler.

* more tolerance relaxation.

* determinism to v pred.

* up tol for v_pred

* unclip determinism

* determinism to unclip img2img

* determinism to text to video.

* determinism to last set of tests

* up tol.

* vq cumsum doesn't have a deterministic kernel

* relax tol

* relax tol

* [docs] Add transformers to install (#3388)

add transformers to install

* [deepspeed] partial ZeRO-3 support (#3076)

* [deepspeed] partial ZeRO-3 support

* cleanup

* improve deepspeed fixes

* Improve

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add omegaconf for tests (#3400)

Add omegaconfg

* Fix various bugs with LoRA Dreambooth and Dreambooth script (#3353)

* Improve checkpointing lora

* fix more

* Improve doc string

* Update src/diffusers/loaders.py

* make stytle

* Apply suggestions from code review

* Update src/diffusers/loaders.py

* Apply suggestions from code review

* Apply suggestions from code review

* better

* Fix all

* Fix multi-GPU dreambooth

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix all

* make style

* make style

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix docker file (#3402)

* up

* up

* fix: deepseepd_plugin retrieval from accelerate state (#3410)

* [Docs] Add `sigmoid` beta_scheduler to docstrings of relevant Schedulers (#3399)

* Add `sigmoid` beta scheduler to `DDPMScheduler` docstring

* Add `sigmoid` beta scheduler to `RePaintScheduler` docstring

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Don't install accelerate and transformers from source (#3415)

* Don't install transformers and accelerate from source (#3414)

* Improve fast tests (#3416)

Update pr_tests.yml

* attention refactor: the trilogy  (#3387)

* Replace `AttentionBlock` with `Attention`

* use _from_deprecated_attn_block check re: @patrickvonplaten

* [Docs] update the PT 2.0 optimization doc with latest findings (#3370)

* add: benchmarking stats for A100 and V100.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address patrick's comments.

* add: rtx 4090 stats

* ⚔ benchmark reports done

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* 3313 pr link.

* add: plots.

Co-authored-by: Pedro <pedro@huggingface.co>

* fix formattimg

* update number percent.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix style rendering (#3433)

* Fix style rendering.

* Fix typo

* unCLIP scheduler do not use note (#3417)

* Replace deprecated command with environment file (#3409)

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix warning message pipeline loading (#3446)

* add stable diffusion tensorrt img2img pipeline (#3419)

* add stable diffusion tensorrt img2img pipeline

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update docstrings

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* Refactor controlnet and add img2img and inpaint (#3386)

* refactor controlnet and add img2img and inpaint

* First draft to get pipelines to work

* make style

* Fix more

* Fix more

* More tests

* Fix more

* Make inpainting work

* make style and more tests

* Apply suggestions from code review

* up

* make style

* Fix imports

* Fix more

* Fix more

* Improve examples

* add test

* Make sure import is correctly deprecated

* Make sure everything works in compile mode

* make sure authorship is correctly attributed

* [Scheduler] DPM-Solver (++) Inverse Scheduler (#3335)

* Add DPM-Solver Multistep Inverse Scheduler

* Add draft tests for DiffEdit

* Add inverse sde-dpmsolver steps to tune image diversity from inverted latents

* Fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Docs] Fix incomplete docstring for resnet.py (#3438)

Fix incomplete docstrings for resnet.py

* fix tiled vae blend extent range (#3384)

fix tiled vae bleand extent range

* Small update to "Next steps" section (#3443)

Small update to "Next steps" section:

- PyTorch 2 is recommended.
- Updated improvement figures.

* Allow arbitrary aspect ratio in IFSuperResolutionPipeline (#3298)

* Update pipeline_if_superresolution.py

Allow arbitrary aspect ratio in IFSuperResolutionPipeline by using the input image shape

* IFSuperResolutionPipeline: allow the user to override the height and width through the arguments

* update IFSuperResolutionPipeline width/height doc string to match StableDiffusionInpaintPipeline conventions

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Adding 'strength' parameter to StableDiffusionInpaintingPipeline  (#3424)

* Added explanation of 'strength' parameter

* Added get_timesteps function which relies on new strength parameter

* Added `strength` parameter which defaults to 1.

* Swapped ordering so `noise_timestep` can be calculated before masking the image

this is required when you aren't applying 100% noise to the masked region, e.g. strength < 1.

* Added strength to check_inputs, throws error if out of range

* Changed `prepare_latents` to initialise latents w.r.t strength

inspired from the stable diffusion img2img pipeline, init latents are initialised by converting the init image into a VAE latent and adding noise (based upon the strength parameter passed in), e.g. random when strength = 1, or the init image at strength = 0.

* WIP: Added a unit test for the new strength parameter in the StableDiffusionInpaintingPipeline

still need to add correct regression values

* Created a is_strength_max to initialise from pure random noise

* Updated unit tests w.r.t new strength parameter + fixed new strength unit test

* renamed parameter to avoid confusion with variable of same name

* Updated regression values for new strength test - now passes

* removed 'copied from' comment as this method is now different and divergent from the cpy

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Ensure backwards compatibility for prepare_mask_and_masked_image

created a return_image boolean and initialised to false

* Ensure backwards compatibility for prepare_latents

* Fixed copy check typo

* Fixes w.r.t backward compibility changes

* make style

* keep function argument ordering same for backwards compatibility in callees with copied from statements

* make fix-copies

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: William Berman <WLBberman@gmail.com>

* [WIP] Bugfix - Pipeline.from_pretrained is broken when the pipeline is partially downloaded (#3448)

Added bugfix using f strings.

* Fix gradient checkpointing bugs in freezing part of models (requires_grad=False) (#3404)

* gradient checkpointing bug fix

* bug fix; changes for reviews

* reformat

* reformat

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Make dreambooth lora more robust to orig unet (#3462)

* Make dreambooth lora more robust to orig unet

* up

* Reduce peak VRAM by releasing large attention tensors (as soon as they're unnecessary) (#3463)

Release large tensors in attention (as soon as they're no longer required). Reduces peak VRAM by nearly 2 GB for 1024x1024 (even after slicing), and the savings scale up with image size.

* Add min snr to text2img lora training script (#3459)

add min snr to text2img lora training script

* Add inpaint lora scale support (#3460)

* add inpaint lora scale support

* add inpaint lora scale test

---------

Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>

* [From ckpt] Fix from_ckpt (#3466)

* Correct from_ckpt

* make style

* Update full dreambooth script to work with IF (#3425)

* Add IF dreambooth docs (#3470)

* parameterize pass single args through tuple (#3477)

* attend and excite tests disable determinism on the class level (#3478)

* dreambooth docs torch.compile note (#3471)

* dreambooth docs torch.compile note

* Update examples/dreambooth/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add: if entry in the dreambooth training docs. (#3472)

* [docs] Textual inversion inference (#3473)

* add textual inversion inference to docs

* add to toctree

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [docs] Distributed inference (#3376)

* distributed inference

* move to inference section

* apply feedback

* update with split_between_processes

* apply feedback

* [{Up,Down}sample1d] explicit view kernel size as number elements in flattened indices (#3479)

explicit view kernel size as number elements in flattened indices

* mps & onnx tests rework (#3449)

* Remove ONNX tests from PR.

They are already a part of push_tests.yml.

* Remove mps tests from PRs.

They are already performed on push.

* Fix workflow name for fast push tests.

* Extract mps tests to a workflow.

For better control/filtering.

* Remove --extra-index-url from mps tests

* Increase tolerance of mps test

This test passes in my Mac (Ventura 13.3) but fails in the CI hardware
(Ventura 13.2). I ran the local tests following the same steps that
exist in the CI workflow.

* Temporarily run mps tests on pr

So we can test.

* Revert "Temporarily run mps tests on pr"

Tests passed, go back to running on push.

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Ilia Larchenko <41329713+IliaLarchenko@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Horace He <horacehe2007@yahoo.com>
Co-authored-by: Umar <55330742+mu94-csl@users.noreply.github.com>
Co-authored-by: Mylo <36931363+gitmylo@users.noreply.github.com>
Co-authored-by: Markus Pobitzer <markuspobitzer@gmail.com>
Co-authored-by: Cheng Lu <lucheng.lc15@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Isamu Isozaki <isamu.website@gmail.com>
Co-authored-by: Cesar Aybar <csaybar@gmail.com>
Co-authored-by: Will Rice <will@spokestack.io>
Co-authored-by: Adrià Arrufat <1671644+arrufat@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: At-sushi <dkahw210@kyoto.zaq.ne.jp>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Isotr0py <41363108+Isotr0py@users.noreply.github.com>
Co-authored-by: pdoane <pdoane2@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Rupert Menneer <71332436+rupertmenneer@users.noreply.github.com>
Co-authored-by: sudowind <wfpkueecs@163.com>
Co-authored-by: Takuma Mori <takuma104@gmail.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Laureηt <laurentfainsin@protonmail.com>
Co-authored-by: Jongwoo Han <jongwooo.han@gmail.com>
Co-authored-by: asfiyab-nvidia <117682710+asfiyab-nvidia@users.noreply.github.com>
Co-authored-by: clarencechen <clarencechenct@gmail.com>
Co-authored-by: Laureηt <laurent@fainsin.bzh>
Co-authored-by: superlabs-dev <133080491+superlabs-dev@users.noreply.github.com>
Co-authored-by: Dev Aggarwal <devxpy@gmail.com>
Co-authored-by: Vimarsh Chaturvedi <vimarsh.c@gmail.com>
Co-authored-by: 7eu7d7 <31194890+7eu7d7@users.noreply.github.com>
Co-authored-by: cmdr2 <shashank.shekhar.global@gmail.com>
Co-authored-by: wfng92 <43742196+wfng92@users.noreply.github.com>
Co-authored-by: Glaceon-Hyy <ffheyy0017@gmail.com>
Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>
2023-05-22 16:11:08 +01:00
Patrick von Platen
2b56e8ca68 make style 2023-05-22 16:49:46 +02:00
Ambrosiussen
b8b5daaee3 DataLoader respecting EXIF data in Training Images (#3465)
* DataLoader will now bake in any transforms or image manipulations contained in the EXIF

Images may have rotations stored in EXIF. Training using such images will cause those transforms to be ignored while training and thus produce unexpected results

* Fixed the Dataloading EXIF issue in main DreamBooth training as well

* Run make style (black & isort)
2023-05-22 15:49:35 +01:00
Seongsu Park
229fd8cbca [Docs] Korean translation (optimization, training) (#3488)
* feat) optimization kr translation

* fix) typo, italic setting

* feat) dreambooth, text2image kr

* feat) lora kr

* fix) LoRA

* fix) fp16 fix

* fix) doc-builder style

* fix) fp16 일부 단어 수정

* fix) fp16 style fix

* fix) opt, training docs update

* feat) toctree update

* feat) toctree update

---------

Co-authored-by: Chanran Kim <seriousran@gmail.com>
2023-05-22 15:46:16 +01:00
Patrick von Platen
a2874af297 make style 2023-05-22 16:44:48 +02:00
w4ffl35
0160e5146f Adds local_files_only bool to prevent forced online connection (#3486) 2023-05-22 15:44:36 +01:00
Isotr0py
194b0a425d Add use_Karras_sigmas to DPMSolverSinglestepScheduler (#3476)
* add use_karras_sigmas

* add karras test

* add doc
2023-05-22 15:43:56 +01:00
Patrick von Platen
6dd3871ae0 Fix DPM single (#3413)
* Fix DPM single

* add test

* fix one more bug

* Apply suggestions from code review

Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>

---------

Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>
2023-05-22 14:32:39 +01:00
Patrick von Platen
51843fd7d0 Refactor full determinism (#3485)
* up

* fix more

* Apply suggestions from code review

* fix more

* fix more

* Check it

* Remove 16:8

* fix more

* fix more

* fix more

* up

* up

* Test only stable diffusion

* Test only two files

* up

* Try out spinning up processes that can be killed

* up

* Apply suggestions from code review

* up

* up
2023-05-22 11:15:11 +01:00
Sayak Paul
49ad61c204 [Docs] add note on local directory path. (#3397)
add note on local directory path.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-21 15:26:56 +05:30
Sayak Paul
4bbc51d94d [Attention processor] Better warning message when shifting to AttnProcessor2_0 (#3457)
* add: debugging to enabling memory efficient processing

* add: better warning message.
2023-05-21 15:26:47 +05:30
Pedro Cuenca
f7b4f51cc2 mps & onnx tests rework (#3449)
* Remove ONNX tests from PR.

They are already a part of push_tests.yml.

* Remove mps tests from PRs.

They are already performed on push.

* Fix workflow name for fast push tests.

* Extract mps tests to a workflow.

For better control/filtering.

* Remove --extra-index-url from mps tests

* Increase tolerance of mps test

This test passes in my Mac (Ventura 13.3) but fails in the CI hardware
(Ventura 13.2). I ran the local tests following the same steps that
exist in the CI workflow.

* Temporarily run mps tests on pr

So we can test.

* Revert "Temporarily run mps tests on pr"

Tests passed, go back to running on push.
2023-05-20 13:43:07 +02:00
Will Berman
85eff637aa [{Up,Down}sample1d] explicit view kernel size as number elements in flattened indices (#3479)
explicit view kernel size as number elements in flattened indices
2023-05-19 10:45:56 -07:00
Steven Liu
e589bdb956 [docs] Distributed inference (#3376)
* distributed inference

* move to inference section

* apply feedback

* update with split_between_processes

* apply feedback
2023-05-19 10:07:33 -07:00
Steven Liu
00c76f6ff1 [docs] Textual inversion inference (#3473)
* add textual inversion inference to docs

* add to toctree

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-05-19 09:47:27 -07:00
Sayak Paul
e343443565 add: if entry in the dreambooth training docs. (#3472) 2023-05-19 07:47:28 +05:30
Will Berman
8d646f2294 dreambooth docs torch.compile note (#3471)
* dreambooth docs torch.compile note

* Update examples/dreambooth/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-05-19 07:40:14 +05:30
Will Berman
8917769499 attend and excite tests disable determinism on the class level (#3478) 2023-05-18 10:24:49 -07:00
Will Berman
49b7ccfb96 parameterize pass single args through tuple (#3477) 2023-05-18 10:14:29 -07:00
Will Berman
7200985eab Add IF dreambooth docs (#3470) 2023-05-17 11:56:10 -07:00
Will Berman
c9f939bf98 Update full dreambooth script to work with IF (#3425) 2023-05-17 10:42:20 -07:00
Patrick von Platen
2858d7e15e [From ckpt] Fix from_ckpt (#3466)
* Correct from_ckpt

* make style
2023-05-17 13:26:53 +01:00
Glaceon-Hyy
88295f92d9 Add inpaint lora scale support (#3460)
* add inpaint lora scale support

* add inpaint lora scale test

---------

Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>
2023-05-17 16:58:19 +05:30
wfng92
2faf91dbde Add min snr to text2img lora training script (#3459)
add min snr to text2img lora training script
2023-05-17 16:37:45 +05:30
cmdr2
bd78f63a54 Reduce peak VRAM by releasing large attention tensors (as soon as they're unnecessary) (#3463)
Release large tensors in attention (as soon as they're no longer required). Reduces peak VRAM by nearly 2 GB for 1024x1024 (even after slicing), and the savings scale up with image size.
2023-05-17 11:24:59 +01:00
Patrick von Platen
3ebd2d1f9e Make dreambooth lora more robust to orig unet (#3462)
* Make dreambooth lora more robust to orig unet

* up
2023-05-17 11:20:13 +01:00
7eu7d7
15f1bab13b Fix gradient checkpointing bugs in freezing part of models (requires_grad=False) (#3404)
* gradient checkpointing bug fix

* bug fix; changes for reviews

* reformat

* reformat

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-17 11:06:04 +01:00
Vimarsh Chaturvedi
415c616712 [WIP] Bugfix - Pipeline.from_pretrained is broken when the pipeline is partially downloaded (#3448)
Added bugfix using f strings.
2023-05-17 11:05:33 +01:00
Rupert Menneer
c09c4f3ab7 Adding 'strength' parameter to StableDiffusionInpaintingPipeline (#3424)
* Added explanation of 'strength' parameter

* Added get_timesteps function which relies on new strength parameter

* Added `strength` parameter which defaults to 1.

* Swapped ordering so `noise_timestep` can be calculated before masking the image

this is required when you aren't applying 100% noise to the masked region, e.g. strength < 1.

* Added strength to check_inputs, throws error if out of range

* Changed `prepare_latents` to initialise latents w.r.t strength

inspired from the stable diffusion img2img pipeline, init latents are initialised by converting the init image into a VAE latent and adding noise (based upon the strength parameter passed in), e.g. random when strength = 1, or the init image at strength = 0.

* WIP: Added a unit test for the new strength parameter in the StableDiffusionInpaintingPipeline

still need to add correct regression values

* Created a is_strength_max to initialise from pure random noise

* Updated unit tests w.r.t new strength parameter + fixed new strength unit test

* renamed parameter to avoid confusion with variable of same name

* Updated regression values for new strength test - now passes

* removed 'copied from' comment as this method is now different and divergent from the cpy

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Ensure backwards compatibility for prepare_mask_and_masked_image

created a return_image boolean and initialised to false

* Ensure backwards compatibility for prepare_latents

* Fixed copy check typo

* Fixes w.r.t backward compibility changes

* make style

* keep function argument ordering same for backwards compatibility in callees with copied from statements

* make fix-copies

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: William Berman <WLBberman@gmail.com>
2023-05-17 11:05:16 +01:00
Dev Aggarwal
6070b32fcf Allow arbitrary aspect ratio in IFSuperResolutionPipeline (#3298)
* Update pipeline_if_superresolution.py

Allow arbitrary aspect ratio in IFSuperResolutionPipeline by using the input image shape

* IFSuperResolutionPipeline: allow the user to override the height and width through the arguments

* update IFSuperResolutionPipeline width/height doc string to match StableDiffusionInpaintPipeline conventions

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-16 19:21:07 -07:00
Pedro Cuenca
0392eceba8 Small update to "Next steps" section (#3443)
Small update to "Next steps" section:

- PyTorch 2 is recommended.
- Updated improvement figures.
2023-05-16 19:35:47 +01:00
superlabs-dev
92ea5baca2 fix tiled vae blend extent range (#3384)
fix tiled vae bleand extent range
2023-05-16 19:33:47 +01:00
Laureηt
754fac82d2 [Docs] Fix incomplete docstring for resnet.py (#3438)
Fix incomplete docstrings for resnet.py
2023-05-16 19:33:34 +01:00
clarencechen
17f9aed79c [Scheduler] DPM-Solver (++) Inverse Scheduler (#3335)
* Add DPM-Solver Multistep Inverse Scheduler

* Add draft tests for DiffEdit

* Add inverse sde-dpmsolver steps to tune image diversity from inverted latents

* Fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-16 19:26:53 +01:00
Patrick von Platen
886575ee43 Refactor controlnet and add img2img and inpaint (#3386)
* refactor controlnet and add img2img and inpaint

* First draft to get pipelines to work

* make style

* Fix more

* Fix more

* More tests

* Fix more

* Make inpainting work

* make style and more tests

* Apply suggestions from code review

* up

* make style

* Fix imports

* Fix more

* Fix more

* Improve examples

* add test

* Make sure import is correctly deprecated

* Make sure everything works in compile mode

* make sure authorship is correctly attributed
2023-05-16 19:07:21 +01:00
asfiyab-nvidia
9d44e2fb66 add stable diffusion tensorrt img2img pipeline (#3419)
* add stable diffusion tensorrt img2img pipeline

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update docstrings

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
2023-05-16 14:28:01 +01:00
Patrick von Platen
d2285f5158 fix warning message pipeline loading (#3446) 2023-05-16 12:58:24 +01:00
Jongwoo Han
326f326e17 Replace deprecated command with environment file (#3409)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-16 12:51:10 +01:00
Will Berman
29b1325a5a unCLIP scheduler do not use note (#3417) 2023-05-15 09:47:14 -06:00
Pedro Cuenca
7a32b6beeb Fix style rendering (#3433)
* Fix style rendering.

* Fix typo
2023-05-15 14:32:34 +05:30
Sayak Paul
bdefabd1a8 [Docs] update the PT 2.0 optimization doc with latest findings (#3370)
* add: benchmarking stats for A100 and V100.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address patrick's comments.

* add: rtx 4090 stats

* ⚔ benchmark reports done

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* 3313 pr link.

* add: plots.

Co-authored-by: Pedro <pedro@huggingface.co>

* fix formattimg

* update number percent.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-05-13 15:12:01 +05:30
Will Berman
909742dbd6 attention refactor: the trilogy (#3387)
* Replace `AttentionBlock` with `Attention`

* use _from_deprecated_attn_block check re: @patrickvonplaten
2023-05-12 08:54:09 -06:00
Patrick von Platen
28f404349d Improve fast tests (#3416)
Update pr_tests.yml
2023-05-12 14:01:03 +01:00
Patrick von Platen
03e5126978 Don't install transformers and accelerate from source (#3414) 2023-05-12 13:15:23 +01:00
Patrick von Platen
b1b92f4a98 Don't install accelerate and transformers from source (#3415) 2023-05-12 13:14:04 +01:00
Laureηt
7f6373d264 [Docs] Add sigmoid beta_scheduler to docstrings of relevant Schedulers (#3399)
* Add `sigmoid` beta scheduler to `DDPMScheduler` docstring

* Add `sigmoid` beta scheduler to `RePaintScheduler` docstring

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-12 12:48:26 +01:00
Sayak Paul
3a237f4fa2 fix: deepseepd_plugin retrieval from accelerate state (#3410) 2023-05-12 10:02:22 +01:00
Patrick von Platen
1a5797c6d4 Fix docker file (#3402)
* up

* up
2023-05-11 20:28:37 +01:00
Patrick von Platen
f92253015c Fix various bugs with LoRA Dreambooth and Dreambooth script (#3353)
* Improve checkpointing lora

* fix more

* Improve doc string

* Update src/diffusers/loaders.py

* make stytle

* Apply suggestions from code review

* Update src/diffusers/loaders.py

* Apply suggestions from code review

* Apply suggestions from code review

* better

* Fix all

* Fix multi-GPU dreambooth

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix all

* make style

* make style

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-05-11 19:28:09 +01:00
Patrick von Platen
58c6f9cb71 Add omegaconf for tests (#3400)
Add omegaconfg
2023-05-11 18:03:27 +01:00
Stas Bekman
af2a237676 [deepspeed] partial ZeRO-3 support (#3076)
* [deepspeed] partial ZeRO-3 support

* cleanup

* improve deepspeed fixes

* Improve

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-11 16:59:20 +01:00
Steven Liu
d71db894eb [docs] Add transformers to install (#3388)
add transformers to install
2023-05-11 08:52:28 -07:00
Sayak Paul
90f5f3c4d4 [Tests] better determinism (#3374)
* enable deterministic pytorch and cuda operations.

* disable manual seeding.

* make style && make quality for unet_2d tests.

* enable determinism for the unet2dconditional model.

* add CUBLAS_WORKSPACE_CONFIG for better reproducibility.

* relax tolerance (very weird issue, though).

* revert to torch manual_seed() where needed.

* relax more tolerance.

* better placement of the cuda variable and relax more tolerance.

* enable determinism for 3d condition model.

* relax tolerance.

* add: determinism to alt_diffusion.

* relax tolerance for alt diffusion.

* dance diffusion.

* dance diffusion is flaky.

* test_dict_tuple_outputs_equivalent edit.

* fix two more tests.

* fix more ddim tests.

* fix: argument.

* change to diff in place of difference.

* fix: test_save_load call.

* test_save_load_float16 call.

* fix: expected_max_diff

* fix: paint by example.

* relax tolerance.

* add determinism to 1d unet model.

* torch 2.0 regressions seem to be brutal

* determinism to vae.

* add reason to skipping.

* up tolerance.

* determinism to vq.

* determinism to cuda.

* determinism to the generic test pipeline file.

* refactor general pipelines testing a bit.

* determinism to alt diffusion i2i

* up tolerance for alt diff i2i and audio diff

* up tolerance.

* determinism to audioldm

* increase tolerance for audioldm lms.

* increase tolerance for paint by paint.

* increase tolerance for repaint.

* determinism to cycle diffusion and sd 1.

* relax tol for cycle diffusion 🚲

* relax tol for sd 1.0

* relax tol for controlnet.

* determinism to img var.

* relax tol for img variation.

* tolerance to i2i sd

* make style

* determinism to inpaint.

* relax tolerance for inpaiting.

* determinism for inpainting legacy

* relax tolerance.

* determinism to instruct pix2pix

* determinism to model editing.

* model editing tolerance.

* panorama determinism

* determinism to pix2pix zero.

* determinism to sag.

* sd 2. determinism

* sd. tolerance

* disallow tf32 matmul.

* relax tolerance is all you need.

* make style and determinism to sd 2 depth

* relax tolerance for depth.

* tolerance to diffedit.

* tolerance to sd 2 inpaint.

* up tolerance.

* determinism in upscaling.

* tolerance in upscaler.

* more tolerance relaxation.

* determinism to v pred.

* up tol for v_pred

* unclip determinism

* determinism to unclip img2img

* determinism to text to video.

* determinism to last set of tests

* up tol.

* vq cumsum doesn't have a deterministic kernel

* relax tol

* relax tol
2023-05-11 16:38:14 +01:00
Takuma Mori
01c056f094 Support ControlNet v1.1 shuffle properly (#3340)
* add inferring_controlnet_cond_batch

* Revert "add inferring_controlnet_cond_batch"

This reverts commit abe8d6311d.

* set guess_mode to True
whenever global_pool_conditions is True

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* nit

* add integration test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-11 14:58:07 +01:00
sudowind
e0b56d2b18 [Docs] Fix stable_diffusion.mdx typo (#3398)
Fix typo in last code block. Correct "prommpts" to "prompt"
2023-05-11 15:10:16 +02:00
Patrick von Platen
f740d357c9 make style 2023-05-11 11:31:49 +02:00
Steven Liu
5e746753d6 [docs] Load safetensors (#3333)
* safetensors

* apply feedback

* apply feedback

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-11 10:31:27 +01:00
Steven Liu
c49e9ede4d [docs] Adapt a model (#3326)
* first draft

* apply feedback

* conv_in.weight thrown away
2023-05-10 16:02:48 -07:00
Patrick von Platen
82e6fa56f0 make style 2023-05-10 20:16:18 +02:00
Rupert Menneer
edb087a217 StableDiffusionInpaintingPipeline - resize image w.r.t height and width (#3322)
* StableDiffusionInpaintingPipeline now resizes input images and masks w.r.t to passed input height and width. Default is already set to 512. This addresses the common tensor mismatch error. Also moved type check into relevant funciton to keep main pipeline body tidy.

* Fixed StableDiffusionInpaintingPrepareMaskAndMaskedImageTests

Due to previous commit these tests were failing as height and width need to be passed into the prepare_mask_and_masked_image function, I have updated the code and added a height/width variable per unit test as it seemed more appropriate than the current hard coded solution

* Added a resolution test to StableDiffusionInpaintPipelineSlowTests

this unit test simply gets the input and resizes it into some that would fail (e.g. would throw a tensor mismatch error/not a mult of 8). Then passes it through the pipeline and verifies it produces output with correct dims w.r.t the passed height and width

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-10 19:14:25 +01:00
Sayak Paul
94a0c644a8 add: a warning message when using xformers in a PT 2.0 env. (#3365)
* add: a warning message when using xformers in a PT 2.0 env.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-10 07:22:04 +05:30
Steven Liu
26832aa5ef [docs] Improve safetensors docstring (#3368)
* clarify safetensor docstring

* fix typo

* apply feedback
2023-05-09 16:15:05 -07:00
YiYi Xu
c559479592 Postprocessing refactor all others (#3337)
* add text2img

* fix-copies

* add

* add all other pipelines

* add

* add

* add

* add

* add

* make style

* style + fix copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-05-09 22:28:30 +01:00
Will Berman
a757b2db6e if dreambooth lora (#3360)
* update IF stage I pipelines

add fixed variance schedulers and lora loading

* added kv lora attn processor

* allow loading into alternative lora attn processor

* make vae optional

* throw away predicted variance

* allow loading into added kv lora layer

* allow load T5

* allow pre compute text embeddings

* set new variance type in schedulers

* fix copies

* refactor all prompt embedding code

class prompts are now included in pre-encoding code
max tokenizer length is now configurable
embedding attention mask is now configurable

* fix for when variance type is not defined on scheduler

* do not pre compute validation prompt if not present

* add example test for if lora dreambooth

* add check for train text encoder and pre compute text embeddings
2023-05-09 10:24:36 -07:00
Steven Liu
571bc1ea11 [docs] Fix docstring (#3334)
fix docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-08 12:08:23 -07:00
Patrick von Platen
f381402ec8 make fix-copies 2023-05-08 10:55:02 +02:00
pdoane
3d8b3d7cd8 Batched load of textual inversions (#3277)
* Batched load of textual inversions

- Only call resize_token_embeddings once per batch as it is the most expensive operation
- Allow pretrained_model_name_or_path and token to be an optional list
- Remove Dict from type annotation pretrained_model_name_or_path as it was not supported in this function
- Add comment that single files (e.g. .pt/.safetensors) are supported
- Add comment for token parameter
- Convert token override log message from warning to info

* Update src/diffusers/loaders.py

Check for duplicate tokens

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update condition for None tokens

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-08 09:54:30 +01:00
Isotr0py
0ffac97933 Add use_Karras_sigmas to LMSDiscreteScheduler (#3351)
* add karras sigma to lms discrete scheduler

* add test for lms_scheduler karras

* reformat test lms
2023-05-06 12:19:27 +01:00
Lysandre Debut
b0966f5801 Inpainting: typo in docs (#3331)
Typo in docs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-06 12:13:33 +01:00
Lucca Zenóbio
0407c3e7d0 Fix pipeline class on README (#3345)
Update README.md
2023-05-06 12:06:52 +01:00
At-sushi
7ce3fa010a Fix TypeError when using prompt_embeds and negative_prompt (#2982)
* test: Added test case

* fix: fixed type checking issue on _encode_prompt

* fix: fixed copies consistency

* fix: one copy was not sufficient
2023-05-06 12:04:07 +01:00
Sanchit Gandhi
abd86d1c17 [AudioLDM] Generalise conversion script (#3328)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-06 12:00:42 +01:00
Adrià Arrufat
e9aa0925a8 Rename --only_save_embeds to --save_as_full_pipeline (#3206)
* Set --only_save_embeds to False by default

Due to how the option is named, it makes more sense to behave like this.

* Refactor only_save_embeds to save_as_full_pipeline
2023-05-06 12:00:30 +01:00
Will Rice
36f43ea75a Add upsample_size to AttnUpBlock2D, AttnDownBlock2D (#3275)
The argument `upsample_size` needs to be added to these modules to allow compatibility with other blocks that require this argument.
2023-05-05 19:50:41 +01:00
Cheng Lu
27522b585b Add the SDE variant of DPM-Solver and DPM-Solver++ (#3344)
* add SDE variant of DPM-Solver and DPM-Solver++

* add test

* fix typo

* fix typo
2023-05-05 16:03:47 +01:00
Patrick von Platen
8d4c7d0ea0 Fix config dpm (#3343) 2023-05-05 12:02:33 +01:00
Patrick von Platen
29ad75dc3b [Quality] Make style (#3341) 2023-05-05 10:06:09 +01:00
Sayak Paul
379197a2f0 update controlling generation doc with latest goodies. (#3321) 2023-05-05 11:22:29 +05:30
Cesar Aybar
79c0e24a14 Update write_own_pipeline.mdx (#3323) 2023-05-04 10:58:27 -07:00
Isamu Isozaki
fa9e35fca4 Added input pretubation (#3292)
* Added input pretubation

* Fixed spelling
2023-05-04 18:12:32 +05:30
Steven Liu
4bae76e453 [docs] Improve LoRA docs (#3311)
* update docs

* add to toctree

* apply feedback
2023-05-04 11:28:44 +05:30
Cheng Lu
022479416f Fix multistep dpmsolver for cosine schedule (suitable for deepfloyd-if) (#3314)
* fix multistep dpmsolver for cosine schedule (deepfloy-if)

* fix a typo

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update all dpmsolver (singlestep, multistep, dpm, dpm++) for cosine noise schedule

* add test, fix style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-03 18:00:59 +01:00
Markus Pobitzer
2dd408504a Add Stable Diffusion RePaint to community pipelines (#3320)
* Add Stable Diffsuion RePaint to community pipelines

- Adds Stable Diffsuion RePaint to community pipelines
- Add Readme enty for pipeline

* Fix: Remove wrong import

- Remove wrong import
- Minor change in comments

* Fix: Code formatting of stable_diffusion_repaint

* Fix: ruff errors in stable_diffusion_repaint
2023-05-03 17:59:49 +01:00
Patrick von Platen
79bd909dbd Correct doc build for patch releases (#3316)
Update build_documentation.yml
2023-05-03 17:33:41 +01:00
Mylo
63a8ef7b73 Fix missing variable assign in DeepFloyd-IF-II (#3315)
Fix missing variable assign

lol
2023-05-03 17:31:04 +01:00
Umar
0ccad2ad2d Update stable_diffusion.mdx (#3310)
fixed import statement
2023-05-03 15:53:14 +01:00
Sayak Paul
efc48da23b fix: scale_lr and sync example readme and docs. (#3299)
* fix: scale_lr and sync example readme and docs.

* fix doc link.
2023-05-03 10:13:05 +05:30
Patrick von Platen
5c7a35a259 [Torch 2.0 compile] Fix more torch compile breaks (#3313)
* Fix more torch compile breaks

* add tests

* Fix all

* fix controlnet

* fix more

* Add Horace He as co-author.
>
>
Co-authored-by: Horace He <horacehe2007@yahoo.com>

* Add Horace He as co-author.

Co-authored-by: Horace He <horacehe2007@yahoo.com>

---------

Co-authored-by: Horace He <horacehe2007@yahoo.com>
2023-05-02 18:51:00 +01:00
YiYi Xu
a7f25b4a88 Postprocessing refactor img2img (#3268)
* refactor img2img VaeImageProcessor.postprocess

* remove copy from for init, run_safety_checker, decode_latents

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-05-01 07:54:09 -10:00
Patrick von Platen
0e82fb19e1 Torch compile graph fix (#3286)
* fix more

* Fix more

* fix more

* Apply suggestions from code review

* fix

* make style

* make fix-copies

* fix

* make sure torch compile

* Clean

* fix test
2023-05-01 16:45:43 +02:00
Ilia Larchenko
709cf554f6 Typo in tutorial (#3295) 2023-05-01 15:44:30 +02:00
Ilia Larchenko
536684eb2f Changed sample[0] to images[0] (#3304)
A pipeline object stores the results in `images` not in `sample`.
Current code blocks don't work.
2023-05-01 15:33:51 +02:00
Will Berman
384c83aa9a temp disable spectogram diffusion tests (#3278)
The note-seq package throws an error on import because the default installed version of Ipython
is not compatible with python 3.8 which we run in the CI.
https://github.com/huggingface/diffusers/actions/runs/4830121056/jobs/8605954838#step:7:9
2023-04-28 12:05:53 -07:00
YiYi Xu
14b460614b [doc] add link to training script (#3271)
add link to training script

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
2023-04-28 07:14:30 -10:00
Patrick von Platen
4d35d7fea3 Allow disabling torch 2_0 attention (#3273)
* Allow disabling torch 2_0 attention

* make style

* Update src/diffusers/models/attention.py
2023-04-28 13:31:11 +02:00
Jason Kuan
a7b0671c07 add constant learning rate with custom rule (#3133)
* add constant lr with rules

* add constant with rules in TYPE_TO_SCHEDULER_FUNCTION

* add constant lr rate with rule

* hotfix code quality

* fix doc style

* change name constant_with_rules to piecewise constant
2023-04-28 16:29:56 +05:30
clarencechen
be0bfcec4d Diffedit Zero-Shot Inpainting Pipeline (#2837)
* Update Pix2PixZero Auto-correlation Loss

* Add Stable Diffusion DiffEdit pipeline

* Add draft documentation and import code

* Bugfixes and refactoring

* Add option to not decode latents in the inversion process

* Harmonize preprocessing

* Revert "Update Pix2PixZero Auto-correlation Loss"

This reverts commit b218062fed.

* Update annotations

* rename `compute_mask` to `generate_mask`

* Update documentation

* Update docs

* Update Docs

* Fix copy

* Change shape of output latents to batch first

* Update docs

* Add first draft for tests

* Bugfix and update tests

* Add `cross_attention_kwargs` support for all pipeline methods

* Fix Copies

* Add support for PIL image latents

Add support for mask broadcasting

Update docs and tests

Align `mask` argument to `mask_image`

Remove height and width arguments

* Enable MPS Tests

* Move example docstrings

* Fix test

* Fix test

* fix pipeline inheritance

* Harmonize `prepare_image_latents` with StableDiffusionPix2PixZeroPipeline

* Register modules set to `None` in config for `test_save_load_optional_components`

* Move fixed logic to specific test class

* Clean changes to other pipelines

* Update new tests to coordinate with #2953

* Update slow tests for better results

* Safety to avoid potential problems with torch.inference_mode

* Add reference in SD Pipeline Overview

* Fix tests again

* Enforce determinism in noise for generate_mask

* Fix copies

* Widen test tolerance for fp16 based on `test_stable_diffusion_upscale_pipeline_fp16`

* Add LoraLoaderMixin and update `prepare_image_latents`

* clean up repeat and reg

* bugfix

* Remove invalid args from docs

Suppress spurious warning by repeating image before latent to mask gen
2023-04-28 16:28:26 +05:30
Patrick von Platen
d464214464 Let's make sure that dreambooth always uploads to the Hub (#3272)
* Update Dreambooth README

* Adapt all docs as well

* automatically write model card

* fix

* make style
2023-04-28 11:39:50 +01:00
timegate
6290668254 Add multiple conditions to StableDiffusionControlNetInpaintPipeline (#3125)
* try multi controlnet inpaint

* multi controlnet inpaint

* multi controlnet inpaint
2023-04-28 10:58:10 +01:00
M. Tolga Cangöz
73cc43109b Update logging.mdx (#2863)
Fix typos
2023-04-28 10:57:27 +01:00
NimenDavid
0614fd2038 [Docs]zh translated docs update (#3245)
* zh translated docs update

* update _toctree
2023-04-28 10:23:02 +01:00
Joqsan
462b4edd31 [Community Pipelines] EDICT pipeline implementation (#3153)
* EDICT pipeline initial commit

- Starting point taking from https://github.com/Joqsan/edict-diffusion

* refactor __init__() method

* minor refactoring

* refactor scheduler code

- remove scheduler and move its methods to the EDICTPipeline class

* make CFG optional
- refactor encode_prompt().
- include optional generator for sampling with vae.
- minor variable renaming

* add EDICT pipeline description to README.md

* replace preprocess() with VaeImageProcessor

* run make style and make quality commands

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-04-28 10:11:29 +01:00
Sayak Paul
71de5b7051 [LoRA] quality of life improvements in the loading semantics and docs (#3180)
* 👽 qol improvements for LoRA.

* better function name?

* fix: LoRA weight loading with the new format.

* address Patrick's comments.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* change wording around encouraging the use of load_lora_weights().

* fix: function name.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-04-28 11:36:49 +05:30
Will Berman
256e6960cb [docs] add notes for stateful model changes (#3252)
* [docs] add notes for stateful model changes

* Update docs/source/en/optimization/fp16.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* link to accelerate docs for discarding hooks

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-04-27 11:05:08 -07:00
YiYi Xu
329d1df8f2 update notebook (#3259)
Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
2023-04-27 07:03:56 -10:00
Patrick von Platen
364d59d13b Fix community pipelines (#3266) 2023-04-27 17:12:08 +01:00
Patrick von Platen
2ced899cc7 Revert "Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline"" (#3265)
Revert "Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline" (#3201)"

This reverts commit 91a2a80eb2.
2023-04-27 16:45:37 +01:00
Robert Dargavel Smith
b63419a28a AudioDiffusionPipeline - fix encode method after config changes (#3114)
* config fixes

* deprecate get_input_dims
2023-04-27 16:27:41 +01:00
Jair Trejo
eb29dbad17 Fix typo in textual inversion JAX training script (#3123)
The pipeline is built as `pipe` but then used as `pipeline`.
2023-04-27 16:24:12 +01:00
Xie Zejian
d92c4d5ab7 fix typo in score sde pipeline (#3132) 2023-04-27 15:39:14 +01:00
apolinário
eade4308da Update IF name to XL (#3262)
Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
2023-04-27 14:26:58 +01:00
Ernie Chu
fa31da29e5 [docs] Update interface in repaint.mdx (#3119)
Update repaint.mdx

accomodate to #1701
2023-04-27 13:24:51 +01:00
Isaac
77bfb56241 adding required parameters while calling the get_up_block and get_down_block (#3210)
* removed unnecessary parameters from get_up_block and get_down_block functions

* adding resnet_skip_time_act, resnet_out_scale_factor and cross_attention_norm to get_up_block and get_down_block functions

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-04-27 17:01:43 +05:30
Pedro Cuenca
70ef774fa0 Remove required from tracker_project_name (#3260)
Remove required from tracker_project_name.

As observed by https://github.com/off99555 in https://github.com/huggingface/diffusers/issues/2695#issuecomment-1470755050, it already has a default value.
2023-04-27 16:59:18 +05:30
Nipun Jindal
0b64c2c6c3 [Stochastic Sampler][Slow Test]: Cuda test fixes (#3257)
[Slow Test]: Cuda test fixes

Co-authored-by: njindal <njindal@adobe.com>
2023-04-27 14:52:38 +05:30
Nipun Jindal
fd512d7461 [2064]: Add stochastic sampler (sample_dpmpp_sde) (#3020)
* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* Review comments

* [Review comment]: Add is_torchsde_available()

* [Review comment]: Test and docs

* [Review comment]

* [Review comment]

* [Review comment]

* [Review comment]

* [Review comment]

---------

Co-authored-by: njindal <njindal@adobe.com>
2023-04-27 11:18:38 +05:30
Pedro Cuenca
e0a2bd15f9 Write model card in controlnet training script (#3229)
Write model card in controlnet training script.
2023-04-26 21:22:27 +02:00
Pedro Cuenca
c399de396d [docs] only mention one stage (#3246)
* [docs] only mention one stage

* add blurb on auto accepting

---------

Co-authored-by: William Berman <WLBberman@gmail.com>
2023-04-26 12:06:50 -07:00
Patrick von Platen
f842396367 Post release for 0.16.0 (#3244)
* Post release

* fix more
2023-04-26 17:43:09 +01:00
Patrick von Platen
6ba0efb9a1 Release: v0.16.0 2023-04-26 13:35:01 +02:00
Sanchit Gandhi
46ceba5b35 [AudioLDM] Update docs to use updated ckpt (#3240)
* [AudioLDM] Update docs to use updated ckpt

* make style
2023-04-26 12:33:08 +01:00
Sayak Paul
977162c02b Adds a document on token merging (#3208)
* add document on token merging.

* fix headline.

* fix: headline.

* add some samples for comparison.
2023-04-26 16:25:48 +05:30
Patrick von Platen
744663f8dc fix fast test (#3241) 2023-04-26 11:44:19 +01:00
Patrick von Platen
abbf3c1adf Allow fp16 attn for x4 upscaler (#3239)
* Add all files

* update

* Make sure vae is memory efficient for PT 1

* make style
2023-04-26 11:16:06 +01:00
Patrick von Platen
da2ce1a6b9 Allow return pt x4 (#3236)
* Add all files

* update
2023-04-26 09:34:34 +01:00
Patrick von Platen
e51f19aee8 add model (#3230)
* add

* clean

* up

* clean up more

* fix more tests

* Improve docs further

* improve

* more fixes docs

* Improve docs more

* Update src/diffusers/models/unet_2d_condition.py

* fix

* up

* update doc links

* make fix-copies

* add safety checker and watermarker to stage 3 doc page code snippets

* speed optimizations docs

* memory optimization docs

* make style

* add watermarking snippets to doc string examples

* make style

* use pt_to_pil helper functions in doc strings

* skip mps tests

* Improve safety

* make style

* new logic

* fix

* fix bad onnx design

* make new stable diffusion upscale pipeline model arguments optional

* define has_nsfw_concept when non-pil output type

* lowercase linked to notebook name

---------

Co-authored-by: William Berman <WLBberman@gmail.com>
2023-04-25 14:20:43 -07:00
Patrick von Platen
1ffcc924bc Fix docs text inversion (#3166)
* Fix docs text inversion

* Apply suggestions from code review
2023-04-25 14:18:40 +01:00
Yuchen Fan
730e01ec93 Sync cache version check from transformers (#3179)
sync cache version check from transformers
2023-04-25 14:18:25 +01:00
pdoane
0d196f9f45 Fix issue in maybe_convert_prompt (#3188)
When the token used for textual inversion does not have any special symbols (e.g. it is not surrounded by <>), the tokenizer does not properly split the replacement tokens.  Adding a space for the padding tokens fixes this.
2023-04-25 14:17:57 +01:00
Patrick von Platen
131312caba Add ControlNet v1.1 docs (#3226)
Add v1.1 docs
2023-04-25 14:12:35 +01:00
Isaac
e9edbfc251 adding enable_vae_tiling and disable_vae_tiling functions (#3225)
adding enable_vae_tiling and disable_val_tiling functions
2023-04-25 14:12:21 +01:00
Lucca Zenóbio
0ddc5bf7b9 fix mixed precision training on train_dreambooth_inpaint_lora (#3138)
cast to weight dtype
2023-04-25 15:22:57 +05:30
Patrick von Platen
c5933c9c89 [Bug fix] Fix batch size attention head size mismatch (#3214) 2023-04-25 00:44:00 +02:00
Will Berman
91a2a80eb2 Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline" (#3201)
Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline (#3197)"

This reverts commit 9965cb50ea.
2023-04-22 12:36:55 -07:00
Patrick von Platen
425192fe15 Make sure VAE attention works with Torch 2_0 (#3200)
* Make sure attention works with Torch 2_0

* make style

* Fix more
2023-04-22 17:29:29 +01:00
SkyTNT
9965cb50ea [Community Pipelines] Update lpw_stable_diffusion pipeline (#3197)
* Update lpw_stable_diffusion.py

* fix cpu offload
2023-04-22 15:07:45 +01:00
Chengrui Wang
20e426cb5d Fix bug in train_dreambooth_lora (#3183)
* Update train_dreambooth_lora.py

fix bug

* Update train_dreambooth_lora.py
2023-04-22 09:04:28 +05:30
Sanchit Gandhi
90eac14f72 [AudioLDM] Fix dtype of returned waveform (#3189) 2023-04-21 19:24:37 +01:00
Youssef Adarrab
11f527ac0f Add Karras sigmas to HeunDiscreteScheduler (#3160)
* Add karras pattern to discrete heun scheduler

* Add integration test

* Fix failing CI on pytorch test on M1 (mps)

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-04-21 19:21:04 +01:00
Patrick von Platen
2c04e5855c Multi Vector Textual Inversion (#3144)
* Multi Vector

* Improve

* fix multi token

* improve test

* make style

* Update examples/test_examples.py

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* update

* Finish

* Apply suggestions from code review

---------

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2023-04-21 19:06:19 +01:00
Steven Liu
391cfcd7d7 [docs] Clarify training args (#3146)
* clarify training arg

* apply feedback
2023-04-21 11:03:44 -07:00
YiYi Xu
bc0392a0cb make from_flax work for controlnet (#3161)
fix from_flax

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-04-21 19:01:36 +01:00
asfiyab-nvidia
05d9baeacd Fix TensorRT community pipeline device set function (#3157)
pass silence_dtype_warnings as kwarg

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-04-21 18:53:10 +01:00
Sayak Paul
e573ae06e2 Update custom_diffusion.mdx to credit the author (#3163)
* Update custom_diffusion.mdx

* fix: unnecessary list comprehension.
2023-04-21 18:44:08 +01:00
Steven Liu
2f6351b001 [docs] Deterministic algorithms (#3172)
deterministic algos
2023-04-21 10:38:34 -07:00
Patrick von Platen
9c856118c7 Add model offload to x4 upscaler (#3187)
* Add model offload to x4 upscaler

* fix
2023-04-21 17:47:33 +01:00
regisss
9bce375f77 Update Habana Gaudi documentation (#3169)
* Update Habana Gaudi doc

* Fix tables
2023-04-21 17:24:43 +01:00
Sayak Paul
3045fb2763 [DreamBooth] add text encoder LoRA support in the DreamBooth training script (#3130)
* add: LoRA text encoder support for DreamBooth example.

* fix initialization.

* fix: modification call.

* add: entry in the readme.

* use dog dataset from hub.

* fix: params to clip.

* add entry to the LoRA doc.

* add: tests for lora.

* remove unnecessary list comprehension./
2023-04-20 17:25:17 +05:30
clarencechen
7b0ba4820a Update Noise Autocorrelation Loss Function for Pix2PixZero Pipeline (#2942)
* Update Pix2PixZero Auto-correlation Loss

* Add fast inversion tests

* Clarify purpose and mark as deprecated

Fix inversion prompt broadcasting

* Register modules set to `None` in config for `test_save_load_optional_components`

* Update new tests to coordinate with #2953
2023-04-20 12:13:47 +01:00
Patrick von Platen
8d5906a331 Merge branch 'main' of https://github.com/huggingface/diffusers 2023-04-20 13:09:33 +02:00
Patrick von Platen
17470057d2 make style 2023-04-20 13:09:20 +02:00
XinyuYe-Intel
a5b242d30d Added distillation for quantization example on textual inversion. (#2760)
* Added distillation for quantization example on textual inversion.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* refined readme and code style.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* Update text2images.py

* refined code of model load and added compatibility check.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* fixed code style.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* fix C403 [*] Unnecessary `list` comprehension (rewrite as a `set` comprehension)

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

---------

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>
2023-04-20 11:55:42 +01:00
Mishig
a121e05feb Update custom_diffusion.mdx (#3165)
Add missing newlines for rendering the links correctly
2023-04-20 11:04:06 +02:00
nupurkmr9
3979aac996 adding custom diffusion training to diffusers examples (#3031)
* diffusers==0.14.0 update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion

* custom diffusion

* custom diffusion

* custom diffusion

* custom diffusion

* apply formatting and get rid of bare except.

* refactor readme and other minor changes.

* misc refactor.

* fix: repo_id issue and loaders logging bug.

* fix: save_model_card.

* fix: save_model_card.

* fix: save_model_card.

* add: doc entry.

* refactor doc,.

* custom diffusion

* custom diffusion

* custom diffusion

* apply style.

* remove tralining whitespace.

* fix: toctree entry.

* remove unnecessary print.

* custom diffusion

* custom diffusion

* custom diffusion test

* custom diffusion xformer update

* custom diffusion xformer update

* custom diffusion xformer update

---------

Co-authored-by: Nupur Kumari <nupurkumari@Nupurs-MacBook-Pro.local>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nupur Kumari <nupurkumari@nupurs-mbp.wifi.local.cmu.edu>
2023-04-20 09:31:42 +02:00
Will Berman
7e6886f5e9 controlnet training resize inputs to multiple of 8 (#3135)
controlnet training center crop input images to multiple of 8

The pipeline code resizes inputs to multiples of 8.
Not doing this resizing in the training script is causing
the encoded image to have different height/width dimensions
than the encoded conditioning image (which uses a separate
encoder that's part of the controlnet model).

We resize and center crop the inputs to make sure they're the
same size (as well as all other images in the batch). We also
check that the initial resolution is a multiple of 8.
2023-04-19 10:46:51 -07:00
superhero-7
a4c91be73b Modified altdiffusion pipline to support altdiffusion-m18 (#2993)
* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

---------

Co-authored-by: root <fulong_ye@163.com>
2023-04-19 18:00:29 +01:00
hwuebben
3becd368b1 Update pipeline_stable_diffusion_inpaint_legacy.py (#2903)
* Update pipeline_stable_diffusion_inpaint_legacy.py

* fix preprocessing of Pil images with adequate batch size

* revert map

* add tests

* reformat

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* next try to fix the style

* wth is this

* Update testing_utils.py

* Update testing_utils.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-04-19 17:58:13 +01:00
Chanchana Sornsoontorn
c8fdfe4572 Correct Transformer2DModel.forward docstring (#3074)
⚙️chore(transformer_2d) update function signature for encoder_hidden_states
2023-04-19 17:51:58 +01:00
asfiyab-nvidia
bba1c1de15 Add TensorRT SD/txt2img Community Pipeline to diffusers along with TensorRT utils (#2974)
* Add SD/txt2img Community Pipeline to diffusers along with TensorRT utils

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update installation command

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update tensorrt installation

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* changes
1. Update setting of cache directory
2. Address comments: merge utils and pipeline code.
3. Address comments: Add section in README

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* apply make style

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-04-19 17:51:03 +01:00
1lint
86ecd4b795 add from_ckpt method as Mixin (#2318)
* add mixin class for pipeline from original sd ckpt

* Improve

* make style

* merge main into

* Improve more

* fix more

* up

* Apply suggestions from code review

* finish docs

* rename

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-04-19 17:07:36 +01:00
cmdr2
bdeff4d64a [ckpt loader] Allow loading the Inpaint and Img2Img pipelines, while loading a ckpt model (#2705)
* [ckpt loader] Allow loading the Inpaint and Img2Img pipelines, while loading a ckpt model

* Address review comment from PR

* PyLint formatting

* Some more pylint fixes, unrelated to our change

* Another pylint fix

* Styling fix
2023-04-19 13:37:07 +01:00
Will Berman
fc1883918f class labels timestep embeddings projection dtype cast (#3137)
This mimics the dtype cast for the standard time embeddings
2023-04-18 15:05:41 -07:00
Will Berman
f0c74e9a75 Add unet act fn to other model components (#3136)
Adding act fn config to the unet timestep class embedding and conv
activation.

The custom activation defaults to silu which is the default
activation function for both the conv act and the timestep class
embeddings so default behavior is not changed.

The only unet which use the custom activation is the stable diffusion
latent upscaler https://huggingface.co/stabilityai/sd-x2-latent-upscaler/blob/main/unet/config.json
(I ran a script against the hub to confirm).
The latent upscaler does not use the conv activation nor the timestep
class embeddings so we don't change its behavior.
2023-04-18 14:13:16 -07:00
Patrick von Platen
4bc157ffa9 Correct textual inversion readme (#3145)
* Update README.md

* Apply suggestions from code review
2023-04-18 16:35:12 +01:00
Patrick von Platen
f2df39fa0e make style 2023-04-18 14:03:17 +02:00
Cristian Garcia
8ecdd3ef65 Optimize log_validation in train_controlnet_flax (#3110)
extract pipeline from log_validation
2023-04-18 13:03:00 +01:00
YiYi Xu
cd8b7507c2 speed up attend-and-excite fast tests (#3079) 2023-04-18 13:02:25 +01:00
Sayak Paul
3b641eabe9 feat: verfication of multi-gpu support for select examples. (#3126)
* feat: verfication of multi-gpu support for select examples.

* add: multi-gpu training sections to the relvant doc pages.
2023-04-18 08:36:13 +05:30
Patrick von Platen
703307efcc Fix config deprecation (#3129)
* Better deprecation message

* Better deprecation message

* Better doc string

* Fixes

* fix more

* fix more

* Improve __getattr__

* correct more

* fix more

* fix

* Improve more

* more improvements

* fix more

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* make style

* Fix all rest & add tests & remove old deprecation fns

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-04-17 17:16:28 +01:00
Patrick von Platen
ed8fd38337 Improve deprecation warnings (#3131) 2023-04-17 16:19:11 +01:00
Patrick von Platen
ca783a0f1f [Bug fix] Make sure correct timesteps are chosen for img2img (#3128)
Make sure correct timesteps are chosen for img2img
2023-04-17 11:52:40 +01:00
Patrick von Platen
beb848e2b6 [Bug fix] Fix img2img processor with safety checker (#3127)
Fix img2img processor with safety checker
2023-04-17 10:53:04 +01:00
Patrick von Platen
cfc99adf0f Add global pooling to controlnet (#3121) 2023-04-16 19:07:23 +02:00
Tommaso De Rossi
807f69b328 Fix breaking change in pipeline_stable_diffusion_controlnet.py (#3118)
fix breaking change
2023-04-16 19:04:11 +02:00
Will Berman
b811964a7b ddpm custom timesteps (#3007)
add custom timesteps test

add custom timesteps descending order check

docs

timesteps -> custom_timesteps

can only pass one of num_inference_steps and timesteps
2023-04-14 12:39:38 -07:00
YiYi Xu
1bd4c9e93d remvoe one line as requested by gc team (#3077)
remvoe one line
2023-04-14 06:39:25 -10:00
YiYi Xu
eb2ef31606 fix default value for attend-and-excite (#3099)
* fix default
2023-04-13 17:54:54 -10:00
Takuma Mori
5c9dd0af95 Add to support Guess Mode for StableDiffusionControlnetPipleline (#2998)
* add guess mode (WIP)

* fix uncond/cond order

* support guidance_scale=1.0 and batch != 1

* remove magic coeff

* add docstring

* add intergration test

* add document to controlnet.mdx

* made the comments a bit more explanatory

* fix table
2023-04-14 08:37:34 +05:30
Steven Liu
d0f258206d [docs] Update community pipeline docs (#2989)
* update community pipeline docs

* fix formatting

* explain sharing workflows
2023-04-13 13:46:28 -07:00
Joseph Coffland
3eaead0c4a Allow SD attend and excite pipeline to work with any size output images (#2835)
Allow stable diffusion attend and excite pipeline to work with any size output image. Re: #2476, #2603
2023-04-13 05:54:16 -10:00
Patrick von Platen
3bf5ce21ad Throw deprecation warning for return_cached_folder (#3092)
Throw deprecation warning
2023-04-13 13:33:11 +01:00
Patrick von Platen
3a9d7d9758 [Tests] parallelize (#3078)
* [Tests] parallelize

* finish folder structuring

* Parallelize tests more

* Correct saving of pipelines

* make sure logging level is correct

* try again

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-04-13 13:32:57 +01:00
YiYi Xu
e748b3c6e1 doc string example remove from_pt (#3083) 2023-04-13 09:45:23 +02:00
Patrick von Platen
46c52f9b96 [Pipelines] Make sure that None functions are correctly not saved (#3080) 2023-04-13 00:25:10 +02:00
Andreas Steiner
d06e06940b Adds profiling flags, computes train metrics average. (#3053)
* WIP controlnet training

- bugfix --streaming
- bugfix running report_to!='wandb'
- adds memory profile before validation

* Adds final logging statement.

* Sets train epochs to 11.

Looking at a longer ~16ep run, we see only good validation images
after ~11ep:

https://wandb.ai/andsteing/controlnet_fill50k/runs/3j2hx6n8

* Removes --logging_dir (it's not used).

* Adds --profile flags.

* Updates --output_dir=runs/fill-circle-{timestamp}.

* Compute mean of `train_metrics`.

Previously `train_metrics[-1]` was logged, resulting in very bumpy train
metrics.

* Improves logging a bit.

- adds l2_grads gradient norm logging
- adds steps_per_sec
- sets walltime as x coordinate of train/step
- logs controlnet_params config

* Adds --ccache (doesn't really help though).

* minor fix in controlnet flax example (#2986)

* fix the error when push_to_hub but not log validation

* contronet_from_pt & controlnet_revision

* add intermediate checkpointing to the guide

* Bugfix --profile_steps

* Sets `RACKER_PROJECT_NAME='controlnet_fill50k'`.

* Logs fractional epoch.

* Adds relative `walltime` metric.

* Adds `StepTraceAnnotation` and uses `global_step` insetad of `step`.

* Applied `black`.

* Streamlines commands in README a bit.

* Removes `--ccache`.

This makes only a very small difference (~1 min) with this model size, so removing
the option introduced in cdb3cc.

* Re-ran `black`.

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Converts spaces to tab.

* Removes repeated args.

* Skips first step (compilation) in profiling

* Updates README with profiling instructions.

* Unifies tabs/spaces in README.

* Re-ran style & quality.

---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-04-12 08:29:18 -10:00
Patrick von Platen
0a73b4d3cd [Post release] v0.16.0dev (#3072) 2023-04-12 17:18:30 +01:00
Sayak Paul
e126a82cc5 [Tests] Speed up panorama tests (#3067)
* fix: norm group test for UNet3D.

* chore: speed up the panorama tests (fast).

* set default value of _test_inference_batch_single_identical.

* fix: batch_sizes default value.
2023-04-12 16:25:54 +01:00
378 changed files with 56768 additions and 6173 deletions

View File

@@ -27,7 +27,7 @@ runs:
- name: Get date
id: get-date
shell: bash
run: echo "::set-output name=today::$(/bin/date -u '+%Y%m%d')d"
run: echo "today=$(/bin/date -u '+%Y%m%d')d" >> $GITHUB_OUTPUT
- name: Setup miniconda cache
id: miniconda-cache
uses: actions/cache@v2
@@ -143,4 +143,4 @@ runs:
echo "There is ${AVAIL}KB free space left in $MOUNT, continue"
fi
fi
done
done

View File

@@ -5,7 +5,7 @@ on:
branches:
- main
- doc-builder*
- v*-release
- v*-patch
jobs:
build:

View File

@@ -21,22 +21,22 @@ jobs:
fail-fast: false
matrix:
config:
- name: Fast PyTorch CPU tests on Ubuntu
framework: pytorch
- name: Fast PyTorch Pipeline CPU tests
framework: pytorch_pipelines
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu
- name: Fast Flax CPU tests on Ubuntu
report: torch_cpu_pipelines
- name: Fast PyTorch Models & Schedulers CPU tests
framework: pytorch_models
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_models_schedulers
- name: Fast Flax CPU tests
framework: flax
runner: docker-cpu
image: diffusers/diffusers-flax-cpu
report: flax_cpu
- name: Fast ONNXRuntime CPU tests on Ubuntu
framework: onnxruntime
runner: docker-cpu
image: diffusers/diffusers-onnxruntime-cpu
report: onnx_cpu
- name: PyTorch Example CPU tests on Ubuntu
- name: PyTorch Example CPU tests
framework: pytorch_examples
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
@@ -64,20 +64,26 @@ jobs:
run: |
apt-get update && apt-get install libsndfile1-dev -y
python -m pip install -e .[quality,test]
python -m pip install -U git+https://github.com/huggingface/transformers
python -m pip install git+https://github.com/huggingface/accelerate
- name: Environment
run: |
python utils/print_env.py
- name: Run fast PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch' }}
- name: Run fast PyTorch Pipeline CPU tests
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
tests/pipelines
- name: Run fast PyTorch Model Scheduler CPU tests
if: ${{ matrix.config.framework == 'pytorch_models' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/models tests/schedulers tests/others
- name: Run fast Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
@@ -85,15 +91,7 @@ jobs:
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run fast ONNXRuntime CPU tests
if: ${{ matrix.config.framework == 'onnxruntime' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
tests
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
@@ -112,56 +110,3 @@ jobs:
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports
run_fast_tests_apple_m1:
name: Fast PyTorch MPS tests on MacOS
runs-on: [ self-hosted, apple-m1 ]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Clean checkout
shell: arch -arch arm64 bash {0}
run: |
git clean -fxd
- name: Setup miniconda
uses: ./.github/actions/setup-miniconda
with:
python-version: 3.9
- name: Install dependencies
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip
${CONDA_RUN} python -m pip install -e .[quality,test]
${CONDA_RUN} python -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
${CONDA_RUN} python -m pip install git+https://github.com/huggingface/accelerate
${CONDA_RUN} python -m pip install -U git+https://github.com/huggingface/transformers
- name: Environment
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python utils/print_env.py
- name: Run fast PyTorch tests on M1 (MPS)
shell: arch -arch arm64 bash {0}
env:
HF_HOME: /System/Volumes/Data/mnt/cache
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
${CONDA_RUN} python -m pytest -n 0 -s -v --make-reports=tests_torch_mps tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_mps_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_torch_mps_test_reports
path: reports

View File

@@ -17,6 +17,7 @@ jobs:
run_slow_tests:
strategy:
fail-fast: false
max-parallel: 1
matrix:
config:
- name: Slow PyTorch CUDA tests on Ubuntu
@@ -61,8 +62,6 @@ jobs:
- name: Install dependencies
run: |
python -m pip install -e .[quality,test]
python -m pip install -U git+https://github.com/huggingface/transformers
python -m pip install git+https://github.com/huggingface/accelerate
- name: Environment
run: |
@@ -72,6 +71,9 @@ jobs:
if: ${{ matrix.config.framework == 'pytorch' }}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
@@ -131,8 +133,6 @@ jobs:
- name: Install dependencies
run: |
python -m pip install -e .[quality,test,training]
python -m pip install git+https://github.com/huggingface/accelerate
python -m pip install -U git+https://github.com/huggingface/transformers
- name: Environment
run: |

View File

@@ -1,4 +1,4 @@
name: Slow tests on main
name: Fast tests on main
on:
push:
@@ -62,8 +62,6 @@ jobs:
run: |
apt-get update && apt-get install libsndfile1-dev -y
python -m pip install -e .[quality,test]
python -m pip install -U git+https://github.com/huggingface/transformers
python -m pip install git+https://github.com/huggingface/accelerate
- name: Environment
run: |
@@ -110,56 +108,3 @@ jobs:
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports
run_fast_tests_apple_m1:
name: Fast PyTorch MPS tests on MacOS
runs-on: [ self-hosted, apple-m1 ]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Clean checkout
shell: arch -arch arm64 bash {0}
run: |
git clean -fxd
- name: Setup miniconda
uses: ./.github/actions/setup-miniconda
with:
python-version: 3.9
- name: Install dependencies
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip
${CONDA_RUN} python -m pip install -e .[quality,test]
${CONDA_RUN} python -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
${CONDA_RUN} python -m pip install git+https://github.com/huggingface/accelerate
${CONDA_RUN} python -m pip install -U git+https://github.com/huggingface/transformers
- name: Environment
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python utils/print_env.py
- name: Run fast PyTorch tests on M1 (MPS)
shell: arch -arch arm64 bash {0}
env:
HF_HOME: /System/Volumes/Data/mnt/cache
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
${CONDA_RUN} python -m pytest -n 0 -s -v --make-reports=tests_torch_mps tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_mps_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_torch_mps_test_reports
path: reports

68
.github/workflows/push_tests_mps.yml vendored Normal file
View File

@@ -0,0 +1,68 @@
name: Fast mps tests on main
on:
push:
branches:
- main
env:
DIFFUSERS_IS_CI: yes
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 600
RUN_SLOW: no
jobs:
run_fast_tests_apple_m1:
name: Fast PyTorch MPS tests on MacOS
runs-on: [ self-hosted, apple-m1 ]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Clean checkout
shell: arch -arch arm64 bash {0}
run: |
git clean -fxd
- name: Setup miniconda
uses: ./.github/actions/setup-miniconda
with:
python-version: 3.9
- name: Install dependencies
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip
${CONDA_RUN} python -m pip install -e .[quality,test]
${CONDA_RUN} python -m pip install torch torchvision torchaudio
${CONDA_RUN} python -m pip install accelerate --upgrade
${CONDA_RUN} python -m pip install transformers --upgrade
- name: Environment
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python utils/print_env.py
- name: Run fast PyTorch tests on M1 (MPS)
shell: arch -arch arm64 bash {0}
env:
HF_HOME: /System/Volumes/Data/mnt/cache
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
${CONDA_RUN} python -m pytest -n 0 -s -v --make-reports=tests_torch_mps tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_mps_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_torch_mps_test_reports
path: reports

View File

@@ -125,14 +125,14 @@ Awesome! Tell us what problem it solved for you.
You can open a feature request [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=).
#### 2.3 Feedback.
#### 2.3 Feedback.
Feedback about the library design and why it is good or not good helps the core maintainers immensely to build a user-friendly library. To understand the philosophy behind the current design philosophy, please have a look [here](https://huggingface.co/docs/diffusers/conceptual/philosophy). If you feel like a certain design choice does not fit with the current design philosophy, please explain why and how it should be changed. If a certain design choice follows the design philosophy too much, hence restricting use cases, explain why and how it should be changed.
If a certain design choice is very useful for you, please also leave a note as this is great feedback for future design decisions.
You can open an issue about feedback [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
#### 2.4 Technical questions.
#### 2.4 Technical questions.
Technical questions are mainly about why certain code of the library was written in a certain way, or what a certain part of the code does. Please make sure to link to the code in question and please provide detail on
why this part of the code is difficult to understand.
@@ -394,8 +394,8 @@ passes. You should run the tests impacted by your changes like this:
```bash
$ pytest tests/<TEST_TO_RUN>.py
```
Before you run the tests, please make sure you install the dependencies required for testing. You can do so
Before you run the tests, please make sure you install the dependencies required for testing. You can do so
with this command:
```bash

View File

@@ -27,18 +27,18 @@ In a nutshell, Diffusers is built to be a natural extension of PyTorch. Therefor
## Simple over easy
As PyTorch states, **explicit is better than implicit** and **simple is better than complex**. This design philosophy is reflected in multiple parts of the library:
As PyTorch states, **explicit is better than implicit** and **simple is better than complex**. This design philosophy is reflected in multiple parts of the library:
- We follow PyTorch's API with methods like [`DiffusionPipeline.to`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.to) to let the user handle device management.
- Raising concise error messages is preferred to silently correct erroneous input. Diffusers aims at teaching the user, rather than making the library as easy to use as possible.
- Complex model vs. scheduler logic is exposed instead of magically handled inside. Schedulers/Samplers are separated from diffusion models with minimal dependencies on each other. This forces the user to write the unrolled denoising loop. However, the separation allows for easier debugging and gives the user more control over adapting the denoising process or switching out diffusion models or schedulers.
- Separately trained components of the diffusion pipeline, *e.g.* the text encoder, the unet, and the variational autoencoder, each have their own model class. This forces the user to handle the interaction between the different model components, and the serialization format separates the model components into different files. However, this allows for easier debugging and customization. Dreambooth or textual inversion training
- Separately trained components of the diffusion pipeline, *e.g.* the text encoder, the unet, and the variational autoencoder, each have their own model class. This forces the user to handle the interaction between the different model components, and the serialization format separates the model components into different files. However, this allows for easier debugging and customization. Dreambooth or textual inversion training
is very simple thanks to diffusers' ability to separate single components of the diffusion pipeline.
## Tweakable, contributor-friendly over abstraction
For large parts of the library, Diffusers adopts an important design principle of the [Transformers library](https://github.com/huggingface/transformers), which is to prefer copy-pasted code over hasty abstractions. This design principle is very opinionated and stands in stark contrast to popular design principles such as [Don't repeat yourself (DRY)](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).
For large parts of the library, Diffusers adopts an important design principle of the [Transformers library](https://github.com/huggingface/transformers), which is to prefer copy-pasted code over hasty abstractions. This design principle is very opinionated and stands in stark contrast to popular design principles such as [Don't repeat yourself (DRY)](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).
In short, just like Transformers does for modeling files, diffusers prefers to keep an extremely low level of abstraction and very self-contained code for pipelines and schedulers.
Functions, long code blocks, and even classes can be copied across multiple files which at first can look like a bad, sloppy design choice that makes the library unmaintainable.
Functions, long code blocks, and even classes can be copied across multiple files which at first can look like a bad, sloppy design choice that makes the library unmaintainable.
**However**, this design has proven to be extremely successful for Transformers and makes a lot of sense for community-driven, open-source machine learning libraries because:
- Machine Learning is an extremely fast-moving field in which paradigms, model architectures, and algorithms are changing rapidly, which therefore makes it very difficult to define long-lasting code abstractions.
- Machine Learning practitioners like to be able to quickly tweak existing code for ideation and research and therefore prefer self-contained code over one that contains many abstractions.
@@ -47,10 +47,10 @@ Functions, long code blocks, and even classes can be copied across multiple file
At Hugging Face, we call this design the **single-file policy** which means that almost all of the code of a certain class should be written in a single, self-contained file. To read more about the philosophy, you can have a look
at [this blog post](https://huggingface.co/blog/transformers-design-philosophy).
In diffusers, we follow this philosophy for both pipelines and schedulers, but only partly for diffusion models. The reason we don't follow this design fully for diffusion models is because almost all diffusion pipelines, such
In diffusers, we follow this philosophy for both pipelines and schedulers, but only partly for diffusion models. The reason we don't follow this design fully for diffusion models is because almost all diffusion pipelines, such
as [DDPM](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/ddpm), [Stable Diffusion](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/stable_diffusion/overview#stable-diffusion-pipelines), [UnCLIP (Dalle-2)](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/unclip#overview) and [Imagen](https://imagen.research.google/) all rely on the same diffusion model, the [UNet](https://huggingface.co/docs/diffusers/api/models#diffusers.UNet2DConditionModel).
Great, now you should have generally understood why 🧨 Diffusers is designed the way it is 🤗.
Great, now you should have generally understood why 🧨 Diffusers is designed the way it is 🤗.
We try to apply these design principles consistently across the library. Nevertheless, there are some minor exceptions to the philosophy or some unlucky design choices. If you have feedback regarding the design, we would ❤️ to hear it [directly on GitHub](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
## Design Philosophy in Details
@@ -89,7 +89,7 @@ The following design principles are followed:
- Models should by default have the highest precision and lowest performance setting.
- To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
- Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
### Schedulers
@@ -97,9 +97,9 @@ readable longterm, such as [UNet blocks](https://github.com/huggingface/diffuser
Schedulers are responsible to guide the denoising process for inference as well as to define a noise schedule for training. They are designed as individual classes with loadable configuration files and strongly follow the **single-file policy**.
The following design principles are followed:
- All schedulers are found in [`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
- Schedulers are **not** allowed to import from large utils files and shall be kept very self-contained.
- One scheduler python file corresponds to one scheduler algorithm (as might be defined in a paper).
- All schedulers are found in [`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
- Schedulers are **not** allowed to import from large utils files and shall be kept very self-contained.
- One scheduler python file corresponds to one scheduler algorithm (as might be defined in a paper).
- If schedulers share similar functionalities, we can make use of the `#Copied from` mechanism.
- Schedulers all inherit from `SchedulerMixin` and `ConfigMixin`.
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./using-diffusers/schedulers.mdx).

142
README.md
View File

@@ -1,6 +1,6 @@
<p align="center">
<br>
<img src="./docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<img src="https://github.com/huggingface/diffusers/blob/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<br>
<p>
<p align="center">
@@ -30,7 +30,7 @@ We recommend installing 🤗 Diffusers in a virtual environment from PyPi or Con
### PyTorch
With `pip` (official package):
```bash
pip install --upgrade diffusers[torch]
```
@@ -59,8 +59,9 @@ Generating outputs is super easy with 🤗 Diffusers. To generate an image from
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
```
@@ -99,58 +100,14 @@ Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to l
| **Documentation** | **What can I learn?** |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tutorial | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| Loading | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| Pipelines for inference | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| Optimization | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
## Supported pipelines
| Pipeline | Paper | Tasks |
|---|---|:---:|
| [alt_diffusion](./api/pipelines/alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
| [audio_diffusion](./api/pipelines/audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation |
| [controlnet](./api/pipelines/stable_diffusion/controlnet) | [**ControlNet with Stable Diffusion**](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation |
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [paint_by_example](./api/pipelines/paint_by_example) | [**Paint by Example: Exemplar-based Image Editing with Diffusion Models**](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./api/pipelines/score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [**Semantic Guidance**](https://arxiv.org/abs/2301.12247) | Text-Guided Generation |
| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation |
| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation |
| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting |
| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [**MultiDiffusion**](https://multidiffusion.github.io/) | Text-to-Panorama Generation |
| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [**InstructPix2Pix**](https://github.com/timothybrooks/instruct-pix2pix) | Text-Guided Image Editing|
| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [**Zero-shot Image-to-Image Translation**](https://pix2pixzero.github.io/) | Text-Guided Image Editing |
| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [**Attend and Excite for Stable Diffusion**](https://attendandexcite.github.io/Attend-and-Excite/) | Text-to-Image Generation |
| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [**Self-Attention Guidance**](https://ku-cvlab.github.io/Self-Attention-Guidance) | Text-to-Image Generation |
| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [**Stable Diffusion Image Variations**](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [**Stable Diffusion Latent Upscaler**](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Depth-Conditional Stable Diffusion**](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation |
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Text-to-Image Generation |
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Image-to-Image Text-Guided Generation |
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
## Contribution
We ❤️ contributions from the open-source community!
We ❤️ contributions from the open-source community!
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
@@ -160,6 +117,87 @@ You can look out for [issues](https://github.com/huggingface/diffusers/issues) y
Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or
just hang out ☕.
## Popular Tasks & Pipelines
<table>
<tr>
<th>Task</th>
<th>Pipeline</th>
<th>🤗 Hub</th>
</tr>
<tr style="border-top: 2px solid black">
<td>Unconditional Image Generation</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/ddpm"> DDPM </a></td>
<td><a href="https://huggingface.co/google/ddpm-ema-church-256"> google/ddpm-ema-church-256 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unclip</a></td>
<td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/if">if</a></td>
<td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet">Controlnet</a></td>
<td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/pix2pix">Instruct Pix2Pix</a></td>
<td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpaint</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Image Variation</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td>
<td><a href="https://huggingface.co/lambdalabs/sd-image-variations-diffusers"> lambdalabs/sd-image-variations-diffusers </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Super Resolution</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale">Stable Diffusion Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler"> stabilityai/stable-diffusion-x4-upscaler </a></td>
</tr>
<tr>
<td>Super Resolution</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler"> stabilityai/sd-x2-latent-upscaler </a></td>
</tr>
</table>
## Popular libraries using 🧨 Diffusers
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything
- https://github.com/ashawkey/stable-dreamfusion
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +3000 other amazing GitHub repositories 💪
Thank you for using us ❤️
## Credits
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:

View File

@@ -26,7 +26,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
torchaudio && \
python3 -m pip install --no-cache-dir \
accelerate \
datasets \
@@ -37,6 +37,9 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
numpy \
scipy \
tensorboard \
transformers
transformers \
omegaconf \
pytorch-lightning \
xformers
CMD ["/bin/bash"]

View File

@@ -6,4 +6,4 @@ INSTALL_CONTENT = """
# ! pip install git+https://github.com/huggingface/diffusers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]

View File

@@ -25,9 +25,11 @@
- local: using-diffusers/schedulers
title: Load and compare different schedulers
- local: using-diffusers/custom_pipeline_overview
title: Load and add custom pipelines
- local: using-diffusers/kerascv
title: Load KerasCV Stable Diffusion checkpoints
title: Load community pipelines
- local: using-diffusers/using_safetensors
title: Load safetensors
- local: using-diffusers/other-formats
title: Load different Stable Diffusion formats
title: Loading & Hub
- sections:
- local: using-diffusers/pipeline_overview
@@ -42,16 +44,18 @@
title: Text-guided image-inpainting
- local: using-diffusers/depth2img
title: Text-guided depth-to-image
- local: using-diffusers/textual_inversion_inference
title: Textual inversion
- local: training/distributed_inference
title: Distributed inference with multiple GPUs
- local: using-diffusers/reusing_seeds
title: Improve image quality with deterministic generation
- local: using-diffusers/reproducibility
title: Create reproducible pipelines
- local: using-diffusers/custom_pipeline_examples
title: Community Pipelines
title: Community pipelines
- local: using-diffusers/contribute_pipeline
title: How to contribute a Pipeline
- local: using-diffusers/using_safetensors
title: Using safetensors
title: How to contribute a community pipeline
- local: using-diffusers/stable_diffusion_jax_how_to
title: Stable Diffusion in JAX/Flax
- local: using-diffusers/weighted_prompts
@@ -60,6 +64,10 @@
- sections:
- local: training/overview
title: Overview
- local: training/create_dataset
title: Create a dataset for training
- local: training/adapt_a_model
title: Adapt a model to a new task
- local: training/unconditional_training
title: Unconditional image generation
- local: training/text_inversion
@@ -74,6 +82,8 @@
title: ControlNet
- local: training/instructpix2pix
title: InstructPix2Pix Training
- local: training/custom_diffusion
title: Custom Diffusion
title: Training
- sections:
- local: using-diffusers/rl
@@ -103,6 +113,8 @@
title: MPS
- local: optimization/habana
title: Habana Gaudi
- local: optimization/tome
title: Token Merging
title: Optimization/Special Hardware
- sections:
- local: conceptual/philosophy
@@ -120,6 +132,8 @@
- sections:
- local: api/models
title: Models
- local: api/attnprocessor
title: Attention Processor
- local: api/diffusion_pipeline
title: Diffusion Pipeline
- local: api/logging
@@ -130,16 +144,22 @@
title: Outputs
- local: api/loaders
title: Loaders
- local: api/utilities
title: Utilities
title: Main Classes
- sections:
- local: api/pipelines/overview
title: Overview
- local: api/pipelines/alt_diffusion
title: AltDiffusion
- local: api/pipelines/attend_and_excite
title: Attend and Excite
- local: api/pipelines/audio_diffusion
title: Audio Diffusion
- local: api/pipelines/audioldm
title: AudioLDM
- local: api/pipelines/controlnet
title: ControlNet
- local: api/pipelines/cycle_diffusion
title: Cycle Diffusion
- local: api/pipelines/dance_diffusion
@@ -148,24 +168,36 @@
title: DDIM
- local: api/pipelines/ddpm
title: DDPM
- local: api/pipelines/diffedit
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/if
title: IF
- local: api/pipelines/pix2pix
title: InstructPix2Pix
- local: api/pipelines/kandinsky
title: Kandinsky
- local: api/pipelines/latent_diffusion
title: Latent Diffusion
- local: api/pipelines/panorama
title: MultiDiffusion Panorama
- local: api/pipelines/paint_by_example
title: PaintByExample
- local: api/pipelines/pix2pix_zero
title: Pix2Pix Zero
- local: api/pipelines/pndm
title: PNDM
- local: api/pipelines/repaint
title: RePaint
- local: api/pipelines/stable_diffusion_safe
title: Safe Stable Diffusion
- local: api/pipelines/score_sde_ve
title: Score SDE VE
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion
title: Semantic Guidance
- local: api/pipelines/spectrogram_diffusion
title: "Spectrogram Diffusion"
title: Spectrogram Diffusion
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
@@ -179,31 +211,21 @@
title: Depth-to-Image
- local: api/pipelines/stable_diffusion/image_variation
title: Image-Variation
- local: api/pipelines/stable_diffusion/upscale
title: Super-Resolution
- local: api/pipelines/stable_diffusion/stable_diffusion_safe
title: Safe Stable Diffusion
- local: api/pipelines/stable_diffusion/stable_diffusion_2
title: Stable Diffusion 2
- local: api/pipelines/stable_diffusion/latent_upscale
title: Stable-Diffusion-Latent-Upscaler
- local: api/pipelines/stable_diffusion/pix2pix
title: InstructPix2Pix
- local: api/pipelines/stable_diffusion/attend_and_excite
title: Attend and Excite
- local: api/pipelines/stable_diffusion/pix2pix_zero
title: Pix2Pix Zero
- local: api/pipelines/stable_diffusion/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/stable_diffusion/panorama
title: MultiDiffusion Panorama
- local: api/pipelines/stable_diffusion/controlnet
title: Text-to-Image Generation with ControlNet Conditioning
- local: api/pipelines/stable_diffusion/model_editing
title: Text-to-Image Model Editing
- local: api/pipelines/stable_diffusion/upscale
title: Super-Resolution
title: Stable Diffusion
- local: api/pipelines/stable_diffusion_2
title: Stable Diffusion 2
- local: api/pipelines/stable_unclip
title: Stable unCLIP
- local: api/pipelines/stochastic_karras_ve
title: Stochastic Karras VE
- local: api/pipelines/model_editing
title: Text-to-Image Model Editing
- local: api/pipelines/text_to_video
title: Text-to-Video
- local: api/pipelines/text_to_video_zero
@@ -212,6 +234,8 @@
title: UnCLIP
- local: api/pipelines/latent_diffusion_uncond
title: Unconditional Latent Diffusion
- local: api/pipelines/unidiffuser
title: UniDiffuser
- local: api/pipelines/versatile_diffusion
title: Versatile Diffusion
- local: api/pipelines/vq_diffusion
@@ -232,12 +256,16 @@
title: DPM Discrete Scheduler
- local: api/schedulers/dpm_discrete_ancestral
title: DPM Discrete Scheduler with ancestral sampling
- local: api/schedulers/dpm_sde
title: DPMSolverSDEScheduler
- local: api/schedulers/euler_ancestral
title: Euler Ancestral Scheduler
- local: api/schedulers/euler
title: Euler scheduler
- local: api/schedulers/heun
title: Heun Scheduler
- local: api/schedulers/multistep_dpm_solver_inverse
title: Inverse Multistep DPM-Solver
- local: api/schedulers/ipndm
title: IPNDM
- local: api/schedulers/lms_discrete

View File

@@ -0,0 +1,42 @@
# Attention Processor
An attention processor is a class for applying different types of attention mechanisms.
## AttnProcessor
[[autodoc]] models.attention_processor.AttnProcessor
## AttnProcessor2_0
[[autodoc]] models.attention_processor.AttnProcessor2_0
## LoRAAttnProcessor
[[autodoc]] models.attention_processor.LoRAAttnProcessor
## LoRAAttnProcessor2_0
[[autodoc]] models.attention_processor.LoRAAttnProcessor2_0
## CustomDiffusionAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor
## AttnAddedKVProcessor
[[autodoc]] models.attention_processor.AttnAddedKVProcessor
## AttnAddedKVProcessor2_0
[[autodoc]] models.attention_processor.AttnAddedKVProcessor2_0
## LoRAAttnAddedKVProcessor
[[autodoc]] models.attention_processor.LoRAAttnAddedKVProcessor
## XFormersAttnProcessor
[[autodoc]] models.attention_processor.XFormersAttnProcessor
## LoRAXFormersAttnProcessor
[[autodoc]] models.attention_processor.LoRAXFormersAttnProcessor
## CustomDiffusionXFormersAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionXFormersAttnProcessor
## SlicedAttnProcessor
[[autodoc]] models.attention_processor.SlicedAttnProcessor
## SlicedAttnAddedKVProcessor
[[autodoc]] models.attention_processor.SlicedAttnAddedKVProcessor

View File

@@ -12,36 +12,25 @@ specific language governing permissions and limitations under the License.
# Pipelines
The [`DiffusionPipeline`] is the easiest way to load any pretrained diffusion pipeline from the [Hub](https://huggingface.co/models?library=diffusers) and to use it in inference.
The [`DiffusionPipeline`] is the easiest way to load any pretrained diffusion pipeline from the [Hub](https://huggingface.co/models?library=diffusers) and use it for inference.
<Tip>
One should not use the Diffusion Pipeline class for training or fine-tuning a diffusion model. Individual
components of diffusion pipelines are usually trained individually, so we suggest to directly work
with [`UNetModel`] and [`UNetConditionModel`].
You shouldn't use the [`DiffusionPipeline`] class for training or finetuning a diffusion model. Individual
components (for example, [`UNetModel`] and [`UNetConditionModel`]) of diffusion pipelines are usually trained individually, so we suggest directly working with instead.
</Tip>
Any diffusion pipeline that is loaded with [`~DiffusionPipeline.from_pretrained`] will automatically
detect the pipeline type, *e.g.* [`StableDiffusionPipeline`] and consequently load each component of the
pipeline and pass them into the `__init__` function of the pipeline, *e.g.* [`~StableDiffusionPipeline.__init__`].
The pipeline type (for example [`StableDiffusionPipeline`]) of any diffusion pipeline loaded with [`~DiffusionPipeline.from_pretrained`] is automatically
detected and pipeline components are loaded and passed to the `__init__` function of the pipeline.
Any pipeline object can be saved locally with [`~DiffusionPipeline.save_pretrained`].
## DiffusionPipeline
[[autodoc]] DiffusionPipeline
- all
- __call__
- device
- to
- components
## ImagePipelineOutput
By default diffusion pipelines return an object of class
[[autodoc]] pipelines.ImagePipelineOutput
## AudioPipelineOutput
By default diffusion pipelines return an object of class
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -36,3 +36,7 @@ API to load such adapter neural networks via the [`loaders.py` module](https://g
### LoraLoaderMixin
[[autodoc]] loaders.LoraLoaderMixin
### FromCkptMixin
[[autodoc]] loaders.FromCkptMixin

View File

@@ -61,7 +61,7 @@ verbose to the most verbose), those levels (with their corresponding int values
critical errors.
- `diffusers.logging.ERROR` (int value, 40): only report errors.
- `diffusers.logging.WARNING` or `diffusers.logging.WARN` (int value, 30): only reports error and
warnings. This the default level used by the library.
warnings. This is the default level used by the library.
- `diffusers.logging.INFO` (int value, 20): reports error, warnings and basic information.
- `diffusers.logging.DEBUG` (int value, 10): report all information.

View File

@@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
# Models
Diffusers contains pretrained models for popular algorithms and modules for creating the next set of diffusion models.
The primary function of these models is to denoise an input sample, by modeling the distribution $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$.
The primary function of these models is to denoise an input sample, by modeling the distribution \\(p_{\theta}(x_{t-1}|x_{t})\\).
The models are built on the base class ['ModelMixin'] that is a `torch.nn.module` with basic functionality for saving and loading models both locally and from the HuggingFace hub.
## ModelMixin

View File

@@ -12,11 +12,11 @@ specific language governing permissions and limitations under the License.
# BaseOutputs
All models have outputs that are instances of subclasses of [`~utils.BaseOutput`]. Those are
data structures containing all the information returned by the model, but that can also be used as tuples or
All models have outputs that are subclasses of [`~utils.BaseOutput`]. Those are
data structures containing all the information returned by the model, but they can also be used as tuples or
dictionaries.
Let's see how this looks in an example:
For example:
```python
from diffusers import DDIMPipeline
@@ -25,31 +25,45 @@ pipeline = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32")
outputs = pipeline()
```
The `outputs` object is a [`~pipelines.ImagePipelineOutput`], as we can see in the
documentation of that class below, it means it has an image attribute.
The `outputs` object is a [`~pipelines.ImagePipelineOutput`] which means it has an image attribute.
You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you will get `None`:
You can access each attribute as you normally would or with a keyword lookup, and if that attribute is not returned by the model, you will get `None`:
```python
outputs.images
```
or via keyword lookup
```python
outputs["images"]
```
When considering our `outputs` object as tuple, it only considers the attributes that don't have `None` values.
Here for instance, we could retrieve images via indexing:
When considering the `outputs` object as a tuple, it only considers the attributes that don't have `None` values.
For instance, retrieving an image by indexing into it returns the tuple `(outputs.images)`:
```python
outputs[:1]
```
which will return the tuple `(outputs.images)` for instance.
<Tip>
To check a specific pipeline or model output, refer to its corresponding API documentation.
</Tip>
## BaseOutput
[[autodoc]] utils.BaseOutput
- to_tuple
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
## FlaxImagePipelineOutput
[[autodoc]] pipelines.pipeline_flax_utils.FlaxImagePipelineOutput
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput
## ImageTextPipelineOutput
[[autodoc]] ImageTextPipelineOutput

View File

@@ -25,14 +25,14 @@ This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit
## Text-to-Audio
The [`AudioLDMPipeline`] can be used to load pre-trained weights from [cvssp/audioldm](https://huggingface.co/cvssp/audioldm) and generate text-conditional audio outputs:
The [`AudioLDMPipeline`] can be used to load pre-trained weights from [cvssp/audioldm-s-full-v2](https://huggingface.co/cvssp/audioldm-s-full-v2) and generate text-conditional audio outputs:
```python
from diffusers import AudioLDMPipeline
import torch
import scipy
repo_id = "cvssp/audioldm"
repo_id = "cvssp/audioldm-s-full-v2"
pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
@@ -56,7 +56,7 @@ Inference:
### How to load and use different schedulers
The AudioLDM pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers
that can be used with the AudioLDM pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`],
that can be used with the AudioLDM pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`],
[`EulerAncestralDiscreteScheduler`] etc. We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest
scheduler there is.
@@ -68,12 +68,14 @@ method, or pass the `scheduler` argument to the `from_pretrained` method of the
>>> from diffusers import AudioLDMPipeline, DPMSolverMultistepScheduler
>>> import torch
>>> pipeline = AudioLDMPipeline.from_pretrained("cvssp/audioldm", torch_dtype=torch.float16)
>>> pipeline = AudioLDMPipeline.from_pretrained("cvssp/audioldm-s-full-v2", torch_dtype=torch.float16)
>>> pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
>>> # or
>>> dpm_scheduler = DPMSolverMultistepScheduler.from_pretrained("cvssp/audioldm", subfolder="scheduler")
>>> pipeline = AudioLDMPipeline.from_pretrained("cvssp/audioldm", scheduler=dpm_scheduler, torch_dtype=torch.float16)
>>> dpm_scheduler = DPMSolverMultistepScheduler.from_pretrained("cvssp/audioldm-s-full-v2", subfolder="scheduler")
>>> pipeline = AudioLDMPipeline.from_pretrained(
... "cvssp/audioldm-s-full-v2", scheduler=dpm_scheduler, torch_dtype=torch.float16
... )
```
## AudioLDMPipeline

View File

@@ -22,7 +22,7 @@ The abstract of the paper is the following:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
This model was contributed by the amazing community contributor [takuma104](https://huggingface.co/takuma104) ❤️ .
This model was contributed by the community contributor [takuma104](https://huggingface.co/takuma104) ❤️ .
Resources:
@@ -33,7 +33,9 @@ Resources:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py) | *Text-to-Image Generation with ControlNet Conditioning* | [Colab Example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb)
| [StableDiffusionControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/controlnet/pipeline_controlnet.py) | *Text-to-Image Generation with ControlNet Conditioning* | [Colab Example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb)
| [StableDiffusionControlNetImg2ImgPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py) | *Image-to-Image Generation with ControlNet Conditioning* |
| [StableDiffusionControlNetInpaintPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_controlnet_inpaint.py) | *Inpainting Generation with ControlNet Conditioning* |
## Usage example
@@ -242,6 +244,41 @@ image.save("./multi_controlnet_output.png")
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/controlnet/multi_controlnet_output.png" width=600/>
### Guess Mode
Guess Mode is [a ControlNet feature that was implemented](https://github.com/lllyasviel/ControlNet#guess-mode--non-prompt-mode) after the publication of [the paper](https://arxiv.org/abs/2302.05543). The description states:
>In this mode, the ControlNet encoder will try best to recognize the content of the input control map, like depth map, edge map, scribbles, etc, even if you remove all prompts.
#### The core implementation:
It adjusts the scale of the output residuals from ControlNet by a fixed ratio depending on the block depth. The shallowest DownBlock corresponds to `0.1`. As the blocks get deeper, the scale increases exponentially, and the scale for the output of the MidBlock becomes `1.0`.
Since the core implementation is just this, **it does not have any impact on prompt conditioning**. While it is common to use it without specifying any prompts, it is also possible to provide prompts if desired.
#### Usage:
Just specify `guess_mode=True` in the pipe() function. A `guidance_scale` between 3.0 and 5.0 is [recommended](https://github.com/lllyasviel/ControlNet#guess-mode--non-prompt-mode).
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet).to(
"cuda"
)
image = pipe("", image=canny_image, guess_mode=True, guidance_scale=3.0).images[0]
image.save("guess_mode_generated.png")
```
#### Output image comparison:
Canny Control Example
|no guess_mode with prompt|guess_mode without prompt|
|---|---|
|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare_guess_mode/output_images/diffusers/output_bird_canny_0.png"><img width="128" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare_guess_mode/output_images/diffusers/output_bird_canny_0.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare_guess_mode/output_images/diffusers/output_bird_canny_0_gm.png"><img width="128" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare_guess_mode/output_images/diffusers/output_bird_canny_0_gm.png"/></a>|
## Available checkpoints
ControlNet requires a *control image* in addition to the text-to-image *prompt*.
@@ -249,7 +286,9 @@ Each pretrained model is trained using a different conditioning method that requ
All checkpoints can be found under the authors' namespace [lllyasviel](https://huggingface.co/lllyasviel).
### ControlNet with Stable Diffusion 1.5
**13.04.2024 Update**: The author has released improved controlnet checkpoints v1.1 - see [here](#controlnet-v1.1).
### ControlNet v1.0
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|---|---|---|---|
@@ -262,6 +301,25 @@ All checkpoints can be found under the authors' namespace [lllyasviel](https://h
|[lllyasviel/sd-controlnet-scribble](https://huggingface.co/lllyasviel/sd-controlnet_scribble)<br/> *Trained with human scribbles* |A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_scribble.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_scribble.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"/></a> |
|[lllyasviel/sd-controlnet-seg](https://huggingface.co/lllyasviel/sd-controlnet_seg)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
### ControlNet v1.1
| Model Name | Control Image Overview| Condition Image | Control Image Example | Generated Image Example |
|---|---|---|---|---|
|[lllyasviel/control_v11p_sd15_canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny)<br/> | *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/> | *Trained with pixel to pixel instruction* | No condition .|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> | Trained with image inpainting | No condition.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"/></a>|
|[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> | Trained with multi-level line segment detection | An image with annotated line segments.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11f1p_sd15_depth](https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth)<br/> | Trained with depth estimation | An image with depth information, usually represented as a grayscale image.|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> | Trained with surface normal estimation | An image with surface normal information, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_seg](https://huggingface.co/lllyasviel/control_v11p_sd15_seg)<br/> | Trained with image segmentation | An image with segmented regions, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> | Trained with line art generation | An image with line art, usually black lines on a white background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with anime line art generation | An image with anime-style line art.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with human pose estimation | An image with human poses, usually represented as a set of keypoints or skeletons.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/> | Trained with scribble-based image generation | An image with scribbles, usually random or user-drawn strokes.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/> | Trained with soft edge image generation | An image with soft edges, usually to create a more painterly or artistic effect.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/> | Trained with image shuffling | An image with shuffled patches or regions.|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11f1e_sd15_tile](https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile)<br/> | Trained with image tiling | A blurry image or part of an image .|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"/></a>|
## StableDiffusionControlNetPipeline
[[autodoc]] StableDiffusionControlNetPipeline
- all
@@ -272,6 +330,31 @@ All checkpoints can be found under the authors' namespace [lllyasviel](https://h
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
## StableDiffusionControlNetImg2ImgPipeline
[[autodoc]] StableDiffusionControlNetImg2ImgPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
## StableDiffusionControlNetInpaintPipeline
[[autodoc]] StableDiffusionControlNetInpaintPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
## FlaxStableDiffusionControlNetPipeline
[[autodoc]] FlaxStableDiffusionControlNetPipeline

View File

@@ -0,0 +1,360 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Zero-shot Diffusion-based Semantic Image Editing with Mask Guidance
## Overview
[DiffEdit: Diffusion-based semantic image editing with mask guidance](https://arxiv.org/abs/2210.11427) by Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord.
The abstract of the paper is the following:
*Image generation has recently seen tremendous advances, with diffusion models allowing to synthesize convincing images for a large variety of text prompts. In this article, we propose DiffEdit, a method to take advantage of text-conditioned diffusion models for the task of semantic image editing, where the goal is to edit an image based on a text query. Semantic image editing is an extension of image generation, with the additional constraint that the generated image should be as similar as possible to a given input image. Current editing methods based on diffusion models usually require to provide a mask, making the task much easier by treating it as a conditional inpainting task. In contrast, our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited, by contrasting predictions of a diffusion model conditioned on different text prompts. Moreover, we rely on latent inference to preserve content in those regions of interest and show excellent synergies with mask-based diffusion. DiffEdit achieves state-of-the-art editing performance on ImageNet. In addition, we evaluate semantic image editing in more challenging settings, using images from the COCO dataset as well as text-based generated images.*
Resources:
* [Paper](https://arxiv.org/abs/2210.11427).
* [Blog Post with Demo](https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html).
* [Implementation on Github](https://github.com/Xiang-cd/DiffEdit-stable-diffusion/).
## Tips
* The pipeline can generate masks that can be fed into other inpainting pipelines. Check out the code examples below to know more.
* In order to generate an image using this pipeline, both an image mask (manually specified or generated using `generate_mask`)
and a set of partially inverted latents (generated using `invert`) _must_ be provided as arguments when calling the pipeline to generate the final edited image.
Refer to the code examples below for more details.
* The function `generate_mask` exposes two prompt arguments, `source_prompt` and `target_prompt`,
that let you control the locations of the semantic edits in the final image to be generated. Let's say,
you wanted to translate from "cat" to "dog". In this case, the edit direction will be "cat -> dog". To reflect
this in the generated mask, you simply have to set the embeddings related to the phrases including "cat" to
`source_prompt_embeds` and "dog" to `target_prompt_embeds`. Refer to the code example below for more details.
* When generating partially inverted latents using `invert`, assign a caption or text embedding describing the
overall image to the `prompt` argument to help guide the inverse latent sampling process. In most cases, the
source concept is sufficently descriptive to yield good results, but feel free to explore alternatives.
Please refer to [this code example](#generating-image-captions-for-inversion) for more details.
* When calling the pipeline to generate the final edited image, assign the source concept to `negative_prompt`
and the target concept to `prompt`. Taking the above example, you simply have to set the embeddings related to
the phrases including "cat" to `negative_prompt_embeds` and "dog" to `prompt_embeds`. Refer to the code example
below for more details.
* If you wanted to reverse the direction in the example above, i.e., "dog -> cat", then it's recommended to:
* Swap the `source_prompt` and `target_prompt` in the arguments to `generate_mask`.
* Change the input prompt for `invert` to include "dog".
* Swap the `prompt` and `negative_prompt` in the arguments to call the pipeline to generate the final edited image.
* Note that the source and target prompts, or their corresponding embeddings, can also be automatically generated. Please, refer to [this discussion](#generating-source-and-target-embeddings) for more details.
## Available Pipelines:
| Pipeline | Tasks
|---|---|
| [StableDiffusionDiffEditPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_diffedit.py) | *Text-Based Image Editing*
<!-- TODO: add Colab -->
## Usage example
### Based on an input image with a caption
When the pipeline is conditioned on an input image, we first obtain partially inverted latents from the input image using a
`DDIMInverseScheduler` with the help of a caption. Then we generate an editing mask to identify relevant regions in the image using the source and target prompts. Finally,
the inverted noise and generated mask is used to start the generation process.
First, let's load our pipeline:
```py
import torch
from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline
sd_model_ckpt = "stabilityai/stable-diffusion-2-1"
pipeline = StableDiffusionDiffEditPipeline.from_pretrained(
sd_model_ckpt,
torch_dtype=torch.float16,
safety_checker=None,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
generator = torch.manual_seed(0)
```
Then, we load an input image to edit using our method:
```py
from diffusers.utils import load_image
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"
raw_image = load_image(img_url).convert("RGB").resize((768, 768))
```
Then, we employ the source and target prompts to generate the editing mask:
```py
# See the "Generating source and target embeddings" section below to
# automate the generation of these captions with a pre-trained model like Flan-T5 as explained below.
source_prompt = "a bowl of fruits"
target_prompt = "a basket of fruits"
mask_image = pipeline.generate_mask(
image=raw_image,
source_prompt=source_prompt,
target_prompt=target_prompt,
generator=generator,
)
```
Then, we employ the caption and the input image to get the inverted latents:
```py
inv_latents = pipeline.invert(prompt=source_prompt, image=raw_image, generator=generator).latents
```
Now, generate the image with the inverted latents and semantically generated mask:
```py
image = pipeline(
prompt=target_prompt,
mask_image=mask_image,
image_latents=inv_latents,
generator=generator,
negative_prompt=source_prompt,
).images[0]
image.save("edited_image.png")
```
## Generating image captions for inversion
The authors originally used the source concept prompt as the caption for generating the partially inverted latents. However, we can also leverage open source and public image captioning models for the same purpose.
Below, we provide an end-to-end example with the [BLIP](https://huggingface.co/docs/transformers/model_doc/blip) model
for generating captions.
First, let's load our automatic image captioning model:
```py
import torch
from transformers import BlipForConditionalGeneration, BlipProcessor
captioner_id = "Salesforce/blip-image-captioning-base"
processor = BlipProcessor.from_pretrained(captioner_id)
model = BlipForConditionalGeneration.from_pretrained(captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True)
```
Then, we define a utility to generate captions from an input image using the model:
```py
@torch.no_grad()
def generate_caption(images, caption_generator, caption_processor):
text = "a photograph of"
inputs = caption_processor(images, text, return_tensors="pt").to(device="cuda", dtype=caption_generator.dtype)
caption_generator.to("cuda")
outputs = caption_generator.generate(**inputs, max_new_tokens=128)
# offload caption generator
caption_generator.to("cpu")
caption = caption_processor.batch_decode(outputs, skip_special_tokens=True)[0]
return caption
```
Then, we load an input image for conditioning and obtain a suitable caption for it:
```py
from diffusers.utils import load_image
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"
raw_image = load_image(img_url).convert("RGB").resize((768, 768))
caption = generate_caption(raw_image, model, processor)
```
Then, we employ the generated caption and the input image to get the inverted latents:
```py
from diffusers import DDIMInverseScheduler, DDIMScheduler
pipeline = StableDiffusionDiffEditPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
)
pipeline = pipeline.to("cuda")
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
generator = torch.manual_seed(0)
inv_latents = pipeline.invert(prompt=caption, image=raw_image, generator=generator).latents
```
Now, generate the image with the inverted latents and semantically generated mask from our source and target prompts:
```py
source_prompt = "a bowl of fruits"
target_prompt = "a basket of fruits"
mask_image = pipeline.generate_mask(
image=raw_image,
source_prompt=source_prompt,
target_prompt=target_prompt,
generator=generator,
)
image = pipeline(
prompt=target_prompt,
mask_image=mask_image,
image_latents=inv_latents,
generator=generator,
negative_prompt=source_prompt,
).images[0]
image.save("edited_image.png")
```
## Generating source and target embeddings
The authors originally required the user to manually provide the source and target prompts for discovering
edit directions. However, we can also leverage open source and public models for the same purpose.
Below, we provide an end-to-end example with the [Flan-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5) model
for generating source an target embeddings.
**1. Load the generation model**:
```py
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", device_map="auto", torch_dtype=torch.float16)
```
**2. Construct a starting prompt**:
```py
source_concept = "bowl"
target_concept = "basket"
source_text = f"Provide a caption for images containing a {source_concept}. "
"The captions should be in English and should be no longer than 150 characters."
target_text = f"Provide a caption for images containing a {target_concept}. "
"The captions should be in English and should be no longer than 150 characters."
```
Here, we're interested in the "bowl -> basket" direction.
**3. Generate prompts**:
We can use a utility like so for this purpose.
```py
@torch.no_grad
def generate_prompts(input_prompt):
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids, temperature=0.8, num_return_sequences=16, do_sample=True, max_new_tokens=128, top_k=10
)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
```
And then we just call it to generate our prompts:
```py
source_prompts = generate_prompts(source_text)
target_prompts = generate_prompts(target_text)
```
We encourage you to play around with the different parameters supported by the
`generate()` method ([documentation](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.generation_tf_utils.TFGenerationMixin.generate)) for the generation quality you are looking for.
**4. Load the embedding model**:
Here, we need to use the same text encoder model used by the subsequent Stable Diffusion model.
```py
from diffusers import StableDiffusionDiffEditPipeline
pipeline = StableDiffusionDiffEditPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
)
pipeline = pipeline.to("cuda")
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
generator = torch.manual_seed(0)
```
**5. Compute embeddings**:
```py
import torch
@torch.no_grad()
def embed_prompts(sentences, tokenizer, text_encoder, device="cuda"):
embeddings = []
for sent in sentences:
text_inputs = tokenizer(
sent,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
embeddings.append(prompt_embeds)
return torch.concatenate(embeddings, dim=0).mean(dim=0).unsqueeze(0)
source_embeddings = embed_prompts(source_prompts, pipeline.tokenizer, pipeline.text_encoder)
target_embeddings = embed_prompts(target_captions, pipeline.tokenizer, pipeline.text_encoder)
```
And you're done! Now, you can use these embeddings directly while calling the pipeline:
```py
from diffusers import DDIMInverseScheduler, DDIMScheduler
from diffusers.utils import load_image
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"
raw_image = load_image(img_url).convert("RGB").resize((768, 768))
mask_image = pipeline.generate_mask(
image=raw_image,
source_prompt_embeds=source_embeds,
target_prompt_embeds=target_embeds,
generator=generator,
)
inv_latents = pipeline.invert(
prompt_embeds=source_embeds,
image=raw_image,
generator=generator,
).latents
images = pipeline(
mask_image=mask_image,
image_latents=inv_latents,
prompt_embeds=target_embeddings,
negative_prompt_embeds=source_embeddings,
generator=generator,
).images
images[0].save("edited_image.png")
```
## StableDiffusionDiffEditPipeline
[[autodoc]] StableDiffusionDiffEditPipeline
- all
- generate_mask
- invert
- __call__

View File

@@ -0,0 +1,523 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# IF
## Overview
DeepFloyd IF is a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding.
The model is a modular composed of a frozen text encoder and three cascaded pixel diffusion modules:
- Stage 1: a base model that generates 64x64 px image based on text prompt,
- Stage 2: a 64x64 px => 256x256 px super-resolution model, and a
- Stage 3: a 256x256 px => 1024x1024 px super-resolution model
Stage 1 and Stage 2 utilize a frozen text encoder based on the T5 transformer to extract text embeddings,
which are then fed into a UNet architecture enhanced with cross-attention and attention pooling.
Stage 3 is [Stability's x4 Upscaling model](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler).
The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66 on the COCO dataset.
Our work underscores the potential of larger UNet architectures in the first stage of cascaded diffusion models and depicts a promising future for text-to-image synthesis.
## Usage
Before you can use IF, you need to accept its usage conditions. To do so:
1. Make sure to have a [Hugging Face account](https://huggingface.co/join) and be logged in
2. Accept the license on the model card of [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0). Accepting the license on the stage I model card will auto accept for the other IF models.
3. Make sure to login locally. Install `huggingface_hub`
```sh
pip install huggingface_hub --upgrade
```
run the login function in a Python shell
```py
from huggingface_hub import login
login()
```
and enter your [Hugging Face Hub access token](https://huggingface.co/docs/hub/security-tokens#what-are-user-access-tokens).
Next we install `diffusers` and dependencies:
```sh
pip install diffusers accelerate transformers safetensors
```
The following sections give more in-detail examples of how to use IF. Specifically:
- [Text-to-Image Generation](#text-to-image-generation)
- [Image-to-Image Generation](#text-guided-image-to-image-generation)
- [Inpainting](#text-guided-inpainting-generation)
- [Reusing model weights](#converting-between-different-pipelines)
- [Speed optimization](#optimizing-for-speed)
- [Memory optimization](#optimizing-for-memory)
**Available checkpoints**
- *Stage-1*
- [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0)
- [DeepFloyd/IF-I-L-v1.0](https://huggingface.co/DeepFloyd/IF-I-L-v1.0)
- [DeepFloyd/IF-I-M-v1.0](https://huggingface.co/DeepFloyd/IF-I-M-v1.0)
- *Stage-2*
- [DeepFloyd/IF-II-L-v1.0](https://huggingface.co/DeepFloyd/IF-II-L-v1.0)
- [DeepFloyd/IF-II-M-v1.0](https://huggingface.co/DeepFloyd/IF-II-M-v1.0)
- *Stage-3*
- [stabilityai/stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler)
**Demo**
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/DeepFloyd/IF)
**Google Colab**
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)
### Text-to-Image Generation
By default diffusers makes use of [model cpu offloading](https://huggingface.co/docs/diffusers/optimization/fp16#model-offloading-for-fast-inference-and-memory-savings)
to run the whole IF pipeline with as little as 14 GB of VRAM.
```python
from diffusers import DiffusionPipeline
from diffusers.utils import pt_to_pil
import torch
# stage 1
stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()
# stage 2
stage_2 = DiffusionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()
# stage 3
safety_modules = {
"feature_extractor": stage_1.feature_extractor,
"safety_checker": stage_1.safety_checker,
"watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()
prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
generator = torch.manual_seed(1)
# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
# stage 1
image = stage_1(
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt"
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(prompt=prompt, image=image, noise_level=100, generator=generator).images
image[0].save("./if_stage_III.png")
```
### Text Guided Image-to-Image Generation
The same IF model weights can be used for text-guided image-to-image translation or image variation.
In this case just make sure to load the weights using the [`IFInpaintingPipeline`] and [`IFInpaintingSuperResolutionPipeline`] pipelines.
**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components()`] function as explained [here](#converting-between-different-pipelines).
```python
from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil
import torch
from PIL import Image
import requests
from io import BytesIO
# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = original_image.resize((768, 512))
# stage 1
stage_1 = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()
# stage 2
stage_2 = IFImg2ImgSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()
# stage 3
safety_modules = {
"feature_extractor": stage_1.feature_extractor,
"safety_checker": stage_1.safety_checker,
"watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()
prompt = "A fantasy landscape in style minecraft"
generator = torch.manual_seed(1)
# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
# stage 1
image = stage_1(
image=original_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
original_image=original_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images
image[0].save("./if_stage_III.png")
```
### Text Guided Inpainting Generation
The same IF model weights can be used for text-guided image-to-image translation or image variation.
In this case just make sure to load the weights using the [`IFInpaintingPipeline`] and [`IFInpaintingSuperResolutionPipeline`] pipelines.
**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components()`] function as explained [here](#converting-between-different-pipelines).
```python
from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil
import torch
from PIL import Image
import requests
from io import BytesIO
# download image
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = original_image
# download mask
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"
response = requests.get(url)
mask_image = Image.open(BytesIO(response.content))
mask_image = mask_image
# stage 1
stage_1 = IFInpaintingPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()
# stage 2
stage_2 = IFInpaintingSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()
# stage 3
safety_modules = {
"feature_extractor": stage_1.feature_extractor,
"safety_checker": stage_1.safety_checker,
"watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()
prompt = "blue sunglasses"
generator = torch.manual_seed(1)
# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
# stage 1
image = stage_1(
image=original_image,
mask_image=mask_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
original_image=original_image,
mask_image=mask_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images
image[0].save("./if_stage_III.png")
```
### Converting between different pipelines
In addition to being loaded with `from_pretrained`, Pipelines can also be loaded directly from each other.
```python
from diffusers import IFPipeline, IFSuperResolutionPipeline
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0")
pipe_2 = IFSuperResolutionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0")
from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline
pipe_1 = IFImg2ImgPipeline(**pipe_1.components)
pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components)
from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline
pipe_1 = IFInpaintingPipeline(**pipe_1.components)
pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components)
```
### Optimizing for speed
The simplest optimization to run IF faster is to move all model components to the GPU.
```py
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")
```
You can also run the diffusion process for a shorter number of timesteps.
This can either be done with the `num_inference_steps` argument
```py
pipe("<prompt>", num_inference_steps=30)
```
Or with the `timesteps` argument
```py
from diffusers.pipelines.deepfloyd_if import fast27_timesteps
pipe("<prompt>", timesteps=fast27_timesteps)
```
When doing image variation or inpainting, you can also decrease the number of timesteps
with the strength argument. The strength argument is the amount of noise to add to
the input image which also determines how many steps to run in the denoising process.
A smaller number will vary the image less but run faster.
```py
pipe = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")
image = pipe(image=image, prompt="<prompt>", strength=0.3).images
```
You can also use [`torch.compile`](../../optimization/torch2.0). Note that we have not exhaustively tested `torch.compile`
with IF and it might not give expected results.
```py
import torch
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")
pipe.text_encoder = torch.compile(pipe.text_encoder)
pipe.unet = torch.compile(pipe.unet)
```
### Optimizing for memory
When optimizing for GPU memory, we can use the standard diffusers cpu offloading APIs.
Either the model based CPU offloading,
```py
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
```
or the more aggressive layer based CPU offloading.
```py
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.enable_sequential_cpu_offload()
```
Additionally, T5 can be loaded in 8bit precision
```py
from transformers import T5EncoderModel
text_encoder = T5EncoderModel.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
)
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0",
text_encoder=text_encoder, # pass the previously instantiated 8bit text encoder
unet=None,
device_map="auto",
)
prompt_embeds, negative_embeds = pipe.encode_prompt("<prompt>")
```
For CPU RAM constrained machines like google colab free tier where we can't load all
model components to the CPU at once, we can manually only load the pipeline with
the text encoder or unet when the respective model components are needed.
```py
from diffusers import IFPipeline, IFSuperResolutionPipeline
import torch
import gc
from transformers import T5EncoderModel
from diffusers.utils import pt_to_pil
text_encoder = T5EncoderModel.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
)
# text to image
pipe = DiffusionPipeline.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0",
text_encoder=text_encoder, # pass the previously instantiated 8bit text encoder
unet=None,
device_map="auto",
)
prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
# Remove the pipeline so we can re-load the pipeline with the unet
del text_encoder
del pipe
gc.collect()
torch.cuda.empty_cache()
pipe = IFPipeline.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
)
generator = torch.Generator().manual_seed(0)
image = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
output_type="pt",
generator=generator,
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
# Remove the pipeline so we can load the super-resolution pipeline
del pipe
gc.collect()
torch.cuda.empty_cache()
# First super resolution
pipe = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
)
generator = torch.Generator().manual_seed(0)
image = pipe(
image=image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
output_type="pt",
generator=generator,
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
```
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_if.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py) | *Text-to-Image Generation* | - |
| [pipeline_if_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py) | *Text-to-Image Generation* | - |
| [pipeline_if_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py) | *Image-to-Image Generation* | - |
| [pipeline_if_img2img_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py) | *Image-to-Image Generation* | - |
| [pipeline_if_inpainting.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py) | *Image-to-Image Generation* | - |
| [pipeline_if_inpainting_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py) | *Image-to-Image Generation* | - |
## IFPipeline
[[autodoc]] IFPipeline
- all
- __call__
## IFSuperResolutionPipeline
[[autodoc]] IFSuperResolutionPipeline
- all
- __call__
## IFImg2ImgPipeline
[[autodoc]] IFImg2ImgPipeline
- all
- __call__
## IFImg2ImgSuperResolutionPipeline
[[autodoc]] IFImg2ImgSuperResolutionPipeline
- all
- __call__
## IFInpaintingPipeline
[[autodoc]] IFInpaintingPipeline
- all
- __call__
## IFInpaintingSuperResolutionPipeline
[[autodoc]] IFInpaintingSuperResolutionPipeline
- all
- __call__

View File

@@ -0,0 +1,351 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky
## Overview
Kandinsky 2.1 inherits best practices from [DALL-E 2](https://arxiv.org/abs/2204.06125) and [Latent Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/latent_diffusion), while introducing some new ideas.
It uses [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for encoding images and text, and a diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach enhances the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.
The Kandinsky model is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov) and the original codebase can be found [here](https://github.com/ai-forever/Kandinsky-2)
## Available Pipelines:
| Pipeline | Tasks |
|---|---|
| [pipeline_kandinsky.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky.py) | *Text-to-Image Generation* |
| [pipeline_kandinsky_inpaint.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py) | *Image-Guided Image Generation* |
## Usage example
In the following, we will walk you through some examples of how to use the Kandinsky pipelines to create some visually aesthetic artwork.
### Text-to-Image Generation
For text-to-image generation, we need to use both [`KandinskyPriorPipeline`] and [`KandinskyPipeline`].
The first step is to encode text prompts with CLIP and then diffuse the CLIP text embeddings to CLIP image embeddings,
as first proposed in [DALL-E 2](https://cdn.openai.com/papers/dall-e-2.pdf).
Let's throw a fun prompt at Kandinsky to see what it comes up with.
```py
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
```
First, let's instantiate the prior pipeline and the text-to-image pipeline. Both
pipelines are diffusion models.
```py
from diffusers import DiffusionPipeline
import torch
pipe_prior = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16)
pipe_prior.to("cuda")
t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.to("cuda")
```
Now we pass the prompt through the prior to generate image embeddings. The prior
returns both the image embeddings corresponding to the prompt and negative/unconditional image
embeddings corresponding to an empty string.
```py
generator = torch.Generator(device="cuda").manual_seed(12)
image_embeds, negative_image_embeds = pipe_prior(prompt, generator=generator).to_tuple()
```
<Tip warning={true}>
The text-to-image pipeline expects both `image_embeds`, `negative_image_embeds` and the original
`prompt` as the text-to-image pipeline uses another text encoder to better guide the second diffusion
process of `t2i_pipe`.
By default, the prior returns unconditioned negative image embeddings corresponding to the negative prompt of `""`.
For better results, you can also pass a `negative_prompt` to the prior. This will increase the effective batch size
of the prior by a factor of 2.
```py
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt, generator=generator).to_tuple()
```
</Tip>
Next, we can pass the embeddings as well as the prompt to the text-to-image pipeline. Remember that
in case you are using a customized negative prompt, that you should pass this one also to the text-to-image pipelines
with `negative_prompt=negative_prompt`:
```py
image = t2i_pipe(prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds).images[0]
image.save("cheeseburger_monster.png")
```
One cheeseburger monster coming up! Enjoy!
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/cheeseburger.png)
The Kandinsky model works extremely well with creative prompts. Here is some of the amazing art that can be created using the exact same process but with different prompts.
```python
prompt = "bird eye view shot of a full body woman with cyan light orange magenta makeup, digital art, long braided hair her face separated by makeup in the style of yin Yang surrealism, symmetrical face, real image, contrasting tone, pastel gradient background"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/hair.png)
```python
prompt = "A car exploding into colorful dust"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/dusts.png)
```python
prompt = "editorial photography of an organic, almost liquid smoke style armchair"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/smokechair.png)
```python
prompt = "birds eye view of a quilted paper style alien planet landscape, vibrant colours, Cinematic lighting"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/alienplanet.png)
### Text Guided Image-to-Image Generation
The same Kandinsky model weights can be used for text-guided image-to-image translation. In this case, just make sure to load the weights using the [`KandinskyImg2ImgPipeline`] pipeline.
**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components`] function as explained [here](#converting-between-different-pipelines).
Let's download an image.
```python
from PIL import Image
import requests
from io import BytesIO
# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = original_image.resize((768, 512))
```
![img](https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg)
```python
import torch
from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline
# create prior
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")
# create img2img pipeline
pipe = KandinskyImg2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.to("cuda")
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
generator = torch.Generator(device="cuda").manual_seed(30)
image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt, generator=generator).to_tuple()
out = pipe(
prompt,
image=original_image,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
height=768,
width=768,
strength=0.3,
)
out.images[0].save("fantasy_land.png")
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/img2img_fantasyland.png)
### Text Guided Inpainting Generation
You can use [`KandinskyInpaintPipeline`] to edit images. In this example, we will add a hat to the portrait of a cat.
```py
from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline
from diffusers.utils import load_image
import torch
import numpy as np
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")
prompt = "a hat"
prior_output = pipe_prior(prompt)
pipe = KandinskyInpaintPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16)
pipe.to("cuda")
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
mask = np.ones((768, 768), dtype=np.float32)
# Let's mask out an area above the cat's head
mask[:250, 250:-250] = 0
out = pipe(
prompt,
image=init_image,
mask_image=mask,
**prior_output,
height=768,
width=768,
num_inference_steps=150,
)
image = out.images[0]
image.save("cat_with_hat.png")
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/inpaint_cat_hat.png)
### Interpolate
The [`KandinskyPriorPipeline`] also comes with a cool utility function that will allow you to interpolate the latent space of different images and texts super easily. Here is an example of how you can create an Impressionist-style portrait for your pet based on "The Starry Night".
Note that you can interpolate between texts and images - in the below example, we passed a text prompt "a cat" and two images to the `interplate` function, along with a `weights` variable containing the corresponding weights for each condition we interplate.
```python
from diffusers import KandinskyPriorPipeline, KandinskyPipeline
from diffusers.utils import load_image
import PIL
import torch
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")
img1 = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)
img2 = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/starry_night.jpeg"
)
# add all the conditions we want to interpolate, can be either text or image
images_texts = ["a cat", img1, img2]
# specify the weights for each condition in images_texts
weights = [0.3, 0.3, 0.4]
# We can leave the prompt empty
prompt = ""
prior_out = pipe_prior.interpolate(images_texts, weights)
pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.to("cuda")
image = pipe(prompt, **prior_out, height=768, width=768).images[0]
image.save("starry_cat.png")
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/starry_cat.png)
## Optimization
Running Kandinsky in inference requires running both a first prior pipeline: [`KandinskyPriorPipeline`]
and a second image decoding pipeline which is one of [`KandinskyPipeline`], [`KandinskyImg2ImgPipeline`], or [`KandinskyInpaintPipeline`].
The bulk of the computation time will always be the second image decoding pipeline, so when looking
into optimizing the model, one should look into the second image decoding pipeline.
When running with PyTorch < 2.0, we strongly recommend making use of [`xformers`](https://github.com/facebookresearch/xformers)
to speed-up the optimization. This can be done by simply running:
```py
from diffusers import DiffusionPipeline
import torch
t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.enable_xformers_memory_efficient_attention()
```
When running on PyTorch >= 2.0, PyTorch's SDPA attention will automatically be used. For more information on
PyTorch's SDPA, feel free to have a look at [this blog post](https://pytorch.org/blog/accelerated-diffusers-pt-20/).
To have explicit control , you can also manually set the pipeline to use PyTorch's 2.0 efficient attention:
```py
from diffusers.models.attention_processor import AttnAddedKVProcessor2_0
t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor2_0())
```
The slowest and most memory intense attention processor is the default `AttnAddedKVProcessor` processor.
We do **not** recommend using it except for testing purposes or cases where very high determistic behaviour is desired.
You can set it with:
```py
from diffusers.models.attention_processor import AttnAddedKVProcessor
t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor())
```
With PyTorch >= 2.0, you can also use Kandinsky with `torch.compile` which depending
on your hardware can signficantly speed-up your inference time once the model is compiled.
To use Kandinsksy with `torch.compile`, you can do:
```py
t2i_pipe.unet.to(memory_format=torch.channels_last)
t2i_pipe.unet = torch.compile(t2i_pipe.unet, mode="reduce-overhead", fullgraph=True)
```
After compilation you should see a very fast inference time. For more information,
feel free to have a look at [Our PyTorch 2.0 benchmark](https://huggingface.co/docs/diffusers/main/en/optimization/torch2.0).
## KandinskyPriorPipeline
[[autodoc]] KandinskyPriorPipeline
- all
- __call__
- interpolate
## KandinskyPipeline
[[autodoc]] KandinskyPipeline
- all
- __call__
## KandinskyImg2ImgPipeline
[[autodoc]] KandinskyImg2ImgPipeline
- all
- __call__
## KandinskyInpaintPipeline
[[autodoc]] KandinskyInpaintPipeline
- all
- __call__

View File

@@ -46,11 +46,14 @@ available a colab notebook to directly try them out.
|---|---|:---:|:---:|
| [alt_diffusion](./alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation | -
| [audio_diffusion](./audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio_diffusion.git) | Unconditional Audio Generation |
| [controlnet](./api/pipelines/stable_diffusion/controlnet) | [**ControlNet with Stable Diffusion**](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb)
| [controlnet](./api/pipelines/controlnet) | [**ControlNet with Stable Diffusion**](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb)
| [cycle_diffusion](./cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [if](./if) | [**IF**](https://github.com/deep-floyd/IF) | Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)
| [if_img2img](./if) | [**IF**](https://github.com/deep-floyd/IF) | Image-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)
| [if_inpainting](./if) | [**IF**](https://github.com/deep-floyd/IF) | Image-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)
| [latent_diffusion](./latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
@@ -110,105 +113,3 @@ each pipeline, one should look directly into the respective pipeline.
**Note**: All pipelines have PyTorch's autograd disabled by decorating the `__call__` method with a [`torch.no_grad`](https://pytorch.org/docs/stable/generated/torch.no_grad.html) decorator because pipelines should
not be used for training. If you want to store the gradients during the forward pass, we recommend writing your own pipeline, see also our [community-examples](https://github.com/huggingface/diffusers/tree/main/examples/community).
## Contribution
We are more than happy about any contribution to the officially supported pipelines 🤗. We aspire
all of our pipelines to be **self-contained**, **easy-to-tweak**, **beginner-friendly** and for **one-purpose-only**.
- **Self-contained**: A pipeline shall be as self-contained as possible. More specifically, this means that all functionality should be either directly defined in the pipeline file itself, should be inherited from (and only from) the [`DiffusionPipeline` class](.../diffusion_pipeline) or be directly attached to the model and scheduler components of the pipeline.
- **Easy-to-use**: Pipelines should be extremely easy to use - one should be able to load the pipeline and
use it for its designated task, *e.g.* text-to-image generation, in just a couple of lines of code. Most
logic including pre-processing, an unrolled diffusion loop, and post-processing should all happen inside the `__call__` method.
- **Easy-to-tweak**: Certain pipelines will not be able to handle all use cases and tasks that you might like them to. If you want to use a certain pipeline for a specific use case that is not yet supported, you might have to copy the pipeline file and tweak the code to your needs. We try to make the pipeline code as readable as possible so that each part from pre-processing to diffusing to post-processing can easily be adapted. If you would like the community to benefit from your customized pipeline, we would love to see a contribution to our [community-examples](https://github.com/huggingface/diffusers/tree/main/examples/community). If you feel that an important pipeline should be part of the official pipelines but isn't, a contribution to the [official pipelines](./overview) would be even better.
- **One-purpose-only**: Pipelines should be used for one task and one task only. Even if two tasks are very similar from a modeling point of view, *e.g.* image2image translation and in-painting, pipelines shall be used for one task only to keep them *easy-to-tweak* and *readable*.
## Examples
### Text-to-Image generation with Stable Diffusion
```python
# make sure you're logged in with `huggingface-cli login`
from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image.save("astronaut_rides_horse.png")
```
### Image-to-Image text-guided generation with Stable Diffusion
The `StableDiffusionImg2ImgPipeline` lets you pass a text prompt and an initial image to condition the generation of new images.
```python
import requests
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionImg2ImgPipeline
# load the pipeline
device = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to(
device
)
# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))
prompt = "A fantasy landscape, trending on artstation"
images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
images[0].save("fantasy_landscape.png")
```
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
### Tweak prompts reusing seeds and latents
You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked. [This notebook](https://github.com/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) shows how to do it step by step. You can also run it in Google Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb)
### In-painting using Stable Diffusion
The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and text prompt.
```python
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)

View File

@@ -52,6 +52,14 @@ image = pipe(prompt).images[0]
image.save("dolomites.png")
```
<Tip>
While calling this pipeline, it's possible to specify the `view_batch_size` to have a >1 value.
For some GPUs with high performance, higher a `view_batch_size`, can speedup the generation
and increase the VRAM usage.
</Tip>
## StableDiffusionPanoramaPipeline
[[autodoc]] StableDiffusionPanoramaPipeline
- __call__

View File

@@ -68,3 +68,6 @@ images[0].save("snowy_mountains.png")
[[autodoc]] StableDiffusionInstructPix2PixPipeline
- __call__
- all
- load_textual_inversion
- load_lora_weights
- save_lora_weights

View File

@@ -60,7 +60,7 @@ pipe = pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(0)
output = pipe(
original_image=original_image,
image=original_image,
mask_image=mask_image,
num_inference_steps=250,
eta=0.0,

View File

@@ -30,4 +30,7 @@ Available Checkpoints are:
- enable_attention_slicing
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
- load_lora_weights
- save_lora_weights

View File

@@ -30,7 +30,11 @@ proposed by Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
- from_ckpt
- load_lora_weights
- save_lora_weights
[[autodoc]] FlaxStableDiffusionImg2ImgPipeline
- all
- __call__
- __call__

View File

@@ -31,7 +31,10 @@ Available checkpoints are:
- disable_attention_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
- load_lora_weights
- save_lora_weights
[[autodoc]] FlaxStableDiffusionInpaintPipeline
- all
- __call__
- __call__

View File

@@ -36,6 +36,7 @@ For more details about how Stable Diffusion works and how it differs from the ba
| [StableDiffusionAttendAndExcitePipeline](./attend_and_excite) | **Experimental** *Text-to-Image Generation * | | [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://huggingface.co/spaces/AttendAndExcite/Attend-and-Excite)
| [StableDiffusionPix2PixZeroPipeline](./pix2pix_zero) | **Experimental** *Text-Based Image Editing * | | [Zero-shot Image-to-Image Translation](https://arxiv.org/abs/2302.03027)
| [StableDiffusionModelEditingPipeline](./model_editing) | **Experimental** *Text-to-Image Model Editing * | | [Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://arxiv.org/abs/2303.08084)
| [StableDiffusionDiffEditPipeline](./diffedit) | **Experimental** *Text-Based Image Editing * | | [DiffEdit: Diffusion-based semantic image editing with mask guidance](https://arxiv.org/abs/2210.11427)

View File

@@ -71,6 +71,64 @@ image = pipe(prompt, guidance_scale=9, num_inference_steps=25).images[0]
image.save("astronaut.png")
```
#### Experimental: "Common Diffusion Noise Schedules and Sample Steps are Flawed":
The paper **[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/abs/2305.08891)**
claims that a mismatch between the training and inference settings leads to suboptimal inference generation results for Stable Diffusion.
The abstract reads as follows:
*We discover that common diffusion noise schedules do not enforce the last timestep to have zero signal-to-noise ratio (SNR),
and some implementations of diffusion samplers do not start from the last timestep.
Such designs are flawed and do not reflect the fact that the model is given pure Gaussian noise at inference, creating a discrepancy between training and inference.
We show that the flawed design causes real problems in existing implementations.
In Stable Diffusion, it severely limits the model to only generate images with medium brightness and
prevents it from generating very bright and dark samples. We propose a few simple fixes:
- (1) rescale the noise schedule to enforce zero terminal SNR;
- (2) train the model with v prediction;
- (3) change the sampler to always start from the last timestep;
- (4) rescale classifier-free guidance to prevent over-exposure.
These simple changes ensure the diffusion process is congruent between training and inference and
allow the model to generate samples more faithful to the original data distribution.*
You can apply all of these changes in `diffusers` when using [`DDIMScheduler`]:
- (1) rescale the noise schedule to enforce zero terminal SNR;
```py
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
```
- (2) train the model with v prediction;
Continue fine-tuning a checkpoint with [`train_text_to_image.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [`train_text_to_image_lora.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py)
and `--prediction_type="v_prediction"`.
- (3) change the sampler to always start from the last timestep;
```py
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_scaling="trailing")
```
- (4) rescale classifier-free guidance to prevent over-exposure.
```py
pipe(..., guidance_rescale=0.7)
```
An example is to use [this checkpoint](https://huggingface.co/ptx0/pseudo-journey-v2)
which has been fine-tuned using the `"v_prediction"`.
The checkpoint can then be run in inference as follows:
```py
from diffusers import DiffusionPipeline, DDIMScheduler
pipe = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(
pipe.scheduler.config, rescale_betas_zero_snr=True, timestep_scaling="trailing"
)
pipe.to("cuda")
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
image = pipeline(prompt, guidance_rescale=0.7).images[0]
```
## DDIMScheduler
[[autodoc]] DDIMScheduler
### Image Inpainting
- *Image Inpainting (512x512 resolution)*: [stabilityai/stable-diffusion-2-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) with [`StableDiffusionInpaintPipeline`]

View File

@@ -39,6 +39,10 @@ Available Checkpoints are:
- disable_xformers_memory_efficient_attention
- enable_vae_tiling
- disable_vae_tiling
- load_textual_inversion
- from_ckpt
- load_lora_weights
- save_lora_weights
[[autodoc]] FlaxStableDiffusionPipeline
- all

View File

@@ -0,0 +1,204 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# UniDiffuser
The UniDiffuser model was proposed in [One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale](https://arxiv.org/abs/2303.06555) by Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, Jun Zhu.
The abstract of the [paper](https://arxiv.org/abs/2303.06555) is the following:
*This paper proposes a unified diffusion framework (dubbed UniDiffuser) to fit all distributions relevant to a set of multi-modal data in one model. Our key insight is -- learning diffusion models for marginal, conditional, and joint distributions can be unified as predicting the noise in the perturbed data, where the perturbation levels (i.e. timesteps) can be different for different modalities. Inspired by the unified view, UniDiffuser learns all distributions simultaneously with a minimal modification to the original diffusion model -- perturbs data in all modalities instead of a single modality, inputs individual timesteps in different modalities, and predicts the noise of all modalities instead of a single modality. UniDiffuser is parameterized by a transformer for diffusion models to handle input types of different modalities. Implemented on large-scale paired image-text data, UniDiffuser is able to perform image, text, text-to-image, image-to-text, and image-text pair generation by setting proper timesteps without additional overhead. In particular, UniDiffuser is able to produce perceptually realistic samples in all tasks and its quantitative results (e.g., the FID and CLIP score) are not only superior to existing general-purpose models but also comparable to the bespoken models (e.g., Stable Diffusion and DALL-E 2) in representative tasks (e.g., text-to-image generation).*
Resources:
* [Paper](https://arxiv.org/abs/2303.06555).
* [Original Code](https://github.com/thu-ml/unidiffuser).
Available Checkpoints are:
- *UniDiffuser-v0 (512x512 resolution)* [thu-ml/unidiffuser-v0](https://huggingface.co/thu-ml/unidiffuser-v0)
- *UniDiffuser-v1 (512x512 resolution)* [thu-ml/unidiffuser-v1](https://huggingface.co/thu-ml/unidiffuser-v1)
This pipeline was contributed by our community member [dg845](https://github.com/dg845).
## Available Pipelines:
| Pipeline | Tasks | Demo | Colab |
|:---:|:---:|:---:|:---:|
| [UniDiffuserPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_unidiffuser.py) | *Joint Image-Text Gen*, *Text-to-Image*, *Image-to-Text*,<br> *Image Gen*, *Text Gen*, *Image Variation*, *Text Variation* | [🤗 Spaces](https://huggingface.co/spaces/thu-ml/unidiffuser) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/unidiffuser.ipynb) |
## Usage Examples
Because the UniDiffuser model is trained to model the joint distribution of (image, text) pairs, it is capable of performing a diverse range of generation tasks.
### Unconditional Image and Text Generation
Unconditional generation (where we start from only latents sampled from a standard Gaussian prior) from a [`UniDiffuserPipeline`] will produce a (image, text) pair:
```python
import torch
from diffusers import UniDiffuserPipeline
device = "cuda"
model_id_or_path = "thu-ml/unidiffuser-v1"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
pipe.to(device)
# Unconditional image and text generation. The generation task is automatically inferred.
sample = pipe(num_inference_steps=20, guidance_scale=8.0)
image = sample.images[0]
text = sample.text[0]
image.save("unidiffuser_joint_sample_image.png")
print(text)
```
This is also called "joint" generation in the UniDiffusers paper, since we are sampling from the joint image-text distribution.
Note that the generation task is inferred from the inputs used when calling the pipeline.
It is also possible to manually specify the unconditional generation task ("mode") manually with [`UniDiffuserPipeline.set_joint_mode`]:
```python
# Equivalent to the above.
pipe.set_joint_mode()
sample = pipe(num_inference_steps=20, guidance_scale=8.0)
```
When the mode is set manually, subsequent calls to the pipeline will use the set mode without attempting the infer the mode.
You can reset the mode with [`UniDiffuserPipeline.reset_mode`], after which the pipeline will once again infer the mode.
You can also generate only an image or only text (which the UniDiffuser paper calls "marginal" generation since we sample from the marginal distribution of images and text, respectively):
```python
# Unlike other generation tasks, image-only and text-only generation don't use classifier-free guidance
# Image-only generation
pipe.set_image_mode()
sample_image = pipe(num_inference_steps=20).images[0]
# Text-only generation
pipe.set_text_mode()
sample_text = pipe(num_inference_steps=20).text[0]
```
### Text-to-Image Generation
UniDiffuser is also capable of sampling from conditional distributions; that is, the distribution of images conditioned on a text prompt or the distribution of texts conditioned on an image.
Here is an example of sampling from the conditional image distribution (text-to-image generation or text-conditioned image generation):
```python
import torch
from diffusers import UniDiffuserPipeline
device = "cuda"
model_id_or_path = "thu-ml/unidiffuser-v1"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
pipe.to(device)
# Text-to-image generation
prompt = "an elephant under the sea"
sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0)
t2i_image = sample.images[0]
t2i_image.save("unidiffuser_text2img_sample_image.png")
```
The `text2img` mode requires that either an input `prompt` or `prompt_embeds` be supplied. You can set the `text2img` mode manually with [`UniDiffuserPipeline.set_text_to_image_mode`].
### Image-to-Text Generation
Similarly, UniDiffuser can also produce text samples given an image (image-to-text or image-conditioned text generation):
```python
import torch
from diffusers import UniDiffuserPipeline
from diffusers.utils import load_image
device = "cuda"
model_id_or_path = "thu-ml/unidiffuser-v1"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
pipe.to(device)
# Image-to-text generation
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
init_image = load_image(image_url).resize((512, 512))
sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0)
i2t_text = sample.text[0]
print(i2t_text)
```
The `img2text` mode requires that an input `image` be supplied. You can set the `img2text` mode manually with [`UniDiffuserPipeline.set_image_to_text_mode`].
### Image Variation
The UniDiffuser authors suggest performing image variation through a "round-trip" generation method, where given an input image, we first perform an image-to-text generation, and the perform a text-to-image generation on the outputs of the first generation.
This produces a new image which is semantically similar to the input image:
```python
import torch
from diffusers import UniDiffuserPipeline
from diffusers.utils import load_image
device = "cuda"
model_id_or_path = "thu-ml/unidiffuser-v1"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
pipe.to(device)
# Image variation can be performed with a image-to-text generation followed by a text-to-image generation:
# 1. Image-to-text generation
image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
init_image = load_image(image_url).resize((512, 512))
sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0)
i2t_text = sample.text[0]
print(i2t_text)
# 2. Text-to-image generation
sample = pipe(prompt=i2t_text, num_inference_steps=20, guidance_scale=8.0)
final_image = sample.images[0]
final_image.save("unidiffuser_image_variation_sample.png")
```
### Text Variation
Similarly, text variation can be performed on an input prompt with a text-to-image generation followed by a image-to-text generation:
```python
import torch
from diffusers import UniDiffuserPipeline
device = "cuda"
model_id_or_path = "thu-ml/unidiffuser-v1"
pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
pipe.to(device)
# Text variation can be performed with a text-to-image generation followed by a image-to-text generation:
# 1. Text-to-image generation
prompt = "an elephant under the sea"
sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0)
t2i_image = sample.images[0]
t2i_image.save("unidiffuser_text2img_sample_image.png")
# 2. Image-to-text generation
sample = pipe(image=t2i_image, num_inference_steps=20, guidance_scale=8.0)
final_prompt = sample.text[0]
print(final_prompt)
```
## UniDiffuserPipeline
[[autodoc]] UniDiffuserPipeline
- all
- __call__

View File

@@ -18,10 +18,71 @@ specific language governing permissions and limitations under the License.
The abstract of the paper is the following:
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
*Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training,
yet they require simulating a Markov chain for many steps to produce a sample.
To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models
with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process.
We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from.
We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off
computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.*
The original codebase of this paper can be found here: [ermongroup/ddim](https://github.com/ermongroup/ddim).
For questions, feel free to contact the author on [tsong.me](https://tsong.me/).
### Experimental: "Common Diffusion Noise Schedules and Sample Steps are Flawed":
The paper **[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/abs/2305.08891)**
claims that a mismatch between the training and inference settings leads to suboptimal inference generation results for Stable Diffusion.
The abstract reads as follows:
*We discover that common diffusion noise schedules do not enforce the last timestep to have zero signal-to-noise ratio (SNR),
and some implementations of diffusion samplers do not start from the last timestep.
Such designs are flawed and do not reflect the fact that the model is given pure Gaussian noise at inference, creating a discrepancy between training and inference.
We show that the flawed design causes real problems in existing implementations.
In Stable Diffusion, it severely limits the model to only generate images with medium brightness and
prevents it from generating very bright and dark samples. We propose a few simple fixes:
- (1) rescale the noise schedule to enforce zero terminal SNR;
- (2) train the model with v prediction;
- (3) change the sampler to always start from the last timestep;
- (4) rescale classifier-free guidance to prevent over-exposure.
These simple changes ensure the diffusion process is congruent between training and inference and
allow the model to generate samples more faithful to the original data distribution.*
You can apply all of these changes in `diffusers` when using [`DDIMScheduler`]:
- (1) rescale the noise schedule to enforce zero terminal SNR;
```py
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
```
- (2) train the model with v prediction;
Continue fine-tuning a checkpoint with [`train_text_to_image.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [`train_text_to_image_lora.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py)
and `--prediction_type="v_prediction"`.
- (3) change the sampler to always start from the last timestep;
```py
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_scaling="trailing")
```
- (4) rescale classifier-free guidance to prevent over-exposure.
```py
pipe(..., guidance_rescale=0.7)
```
An example is to use [this checkpoint](https://huggingface.co/ptx0/pseudo-journey-v2)
which has been fine-tuned using the `"v_prediction"`.
The checkpoint can then be run in inference as follows:
```py
from diffusers import DiffusionPipeline, DDIMScheduler
pipe = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(
pipe.scheduler.config, rescale_betas_zero_snr=True, timestep_scaling="trailing"
)
pipe.to("cuda")
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
image = pipeline(prompt, guidance_rescale=0.7).images[0]
```
## DDIMScheduler
[[autodoc]] DDIMScheduler

View File

@@ -0,0 +1,23 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DPM Stochastic Scheduler inspired by Karras et. al paper
## Overview
Inspired by Stochastic Sampler from [Karras et. al](https://arxiv.org/abs/2206.00364).
Scheduler ported from @crowsonkb's https://github.com/crowsonkb/k-diffusion library:
All credit for making this scheduler work goes to [Katherine Crowson](https://github.com/crowsonkb/)
## DPMSolverSDEScheduler
[[autodoc]] DPMSolverSDEScheduler

View File

@@ -0,0 +1,22 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Inverse Multistep DPM-Solver (DPMSolverMultistepInverse)
## Overview
This scheduler is the inverted scheduler of [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://arxiv.org/abs/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models
](https://arxiv.org/abs/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
The implementation is mostly based on the DDIM inversion definition of [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/pdf/2211.09794.pdf) and the ad-hoc notebook implementation for DiffEdit latent inversion [here](https://github.com/Xiang-cd/DiffEdit-stable-diffusion/blob/main/diffedit.ipynb).
## DPMSolverMultistepInverseScheduler
[[autodoc]] DPMSolverMultistepInverseScheduler

View File

@@ -0,0 +1,23 @@
# Utilities
Utility and helper functions for working with 🤗 Diffusers.
## randn_tensor
[[autodoc]] diffusers.utils.randn_tensor
## numpy_to_pil
[[autodoc]] utils.pil_utils.numpy_to_pil
## pt_to_pil
[[autodoc]] utils.pil_utils.pt_to_pil
## load_image
[[autodoc]] utils.testing_utils.load_image
## export_to_video
[[autodoc]] utils.testing_utils.export_to_video

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
We ❤️ contributions from the open-source community! Everyone is welcome, and all types of participation not just code are valued and appreciated. Answering questions, helping others, reaching out, and improving the documentation are all immensely valuable to the community, so don't be afraid and get involved if you're up for it!
Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://Discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/Discord/823813159592001537?color=5865F2&logo=Discord&logoColor=white"></a>
Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://Discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>
Whichever way you choose to contribute, we strive to be part of an open, welcoming, and kind community. Please, read our [code of conduct](https://github.com/huggingface/diffusers/blob/main/CODE_OF_CONDUCT.md) and be mindful to respect it during your interactions. We also recommend you become familiar with the [ethical guidelines](https://huggingface.co/docs/diffusers/conceptual/ethical_guidelines) that guide our project and ask you to adhere to the same principles of transparency and responsibility.

View File

@@ -37,7 +37,8 @@ We cover Diffusion models with the following pipelines:
## Qualitative Evaluation
Qualitative evaluation typically involves human assessment of generated images. Quality is measured across aspects such as compositionality, image-text alignment, and spatial relations. Common prompts provide a degree of uniformity for subjective metrics. DrawBench and PartiPrompts are prompt datasets used for qualitative benchmarking. DrawBench and PartiPrompts were introduced by [Imagen](https://imagen.research.google/) and [Parti](https://parti.research.google/) respectively.
Qualitative evaluation typically involves human assessment of generated images. Quality is measured across aspects such as compositionality, image-text alignment, and spatial relations. Common prompts provide a degree of uniformity for subjective metrics.
DrawBench and PartiPrompts are prompt datasets used for qualitative benchmarking. DrawBench and PartiPrompts were introduced by [Imagen](https://imagen.research.google/) and [Parti](https://parti.research.google/) respectively.
From the [official Parti website](https://parti.research.google/):
@@ -51,7 +52,13 @@ PartiPrompts has the following columns:
- Category of the prompt (such as “Abstract”, “World Knowledge”, etc.)
- Challenge reflecting the difficulty (such as “Basic”, “Complex”, “Writing & Symbols”, etc.)
These benchmarks allow for side-by-side human evaluation of different image generation models. Lets see how we can use `diffusers` on a couple of PartiPrompts.
These benchmarks allow for side-by-side human evaluation of different image generation models.
For this, the 🧨 Diffusers team has built **Open Parti Prompts**, which is a community-driven qualitative benchmark based on Parti Prompts to compare state-of-the-art open-source diffusion models:
- [Open Parti Prompts Game](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts): For 10 parti prompts, 4 generated images are shown and the user selects the image that suits the prompt best.
- [Open Parti Prompts Leaderboard](https://huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard): The leaderboard comparing the currently best open-sourced diffusion models to each other.
To manually compare images, lets see how we can use `diffusers` on a couple of PartiPrompts.
Below we show some prompts sampled across different challenges: Basic, Complex, Linguistic Structures, Imagination, and Writing & Symbols. Here we are using PartiPrompts as a [dataset](https://huggingface.co/datasets/nateraw/parti-prompts).

View File

@@ -53,11 +53,14 @@ The library has three main components:
|---|---|:---:|
| [alt_diffusion](./api/pipelines/alt_diffusion) | [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
| [audio_diffusion](./api/pipelines/audio_diffusion) | [Audio Diffusion](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation |
| [controlnet](./api/pipelines/stable_diffusion/controlnet) | [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation |
| [controlnet](./api/pipelines/controlnet) | [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation |
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [Dance Diffusion](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [if](./if) | [**IF**](./api/pipelines/if) | Image Generation |
| [if_img2img](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
| [if_inpainting](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |

View File

@@ -12,9 +12,9 @@ specific language governing permissions and limitations under the License.
# Installation
Install 🤗 Diffusers for whichever deep learning library youre working with.
Install 🤗 Diffusers for whichever deep learning library you're working with.
🤗 Diffusers is tested on Python 3.7+, PyTorch 1.7.0+ and flax. Follow the installation instructions below for the deep learning library you are using:
🤗 Diffusers is tested on Python 3.7+, PyTorch 1.7.0+ and Flax. Follow the installation instructions below for the deep learning library you are using:
- [PyTorch](https://pytorch.org/get-started/locally/) installation instructions.
- [Flax](https://flax.readthedocs.io/en/latest/) installation instructions.
@@ -37,27 +37,28 @@ Activate the virtual environment:
source .env/bin/activate
```
Now you're ready to install 🤗 Diffusers with the following command:
**For PyTorch**
🤗 Diffusers also relies on the 🤗 Transformers library, and you can install both with the following command:
<frameworkcontent>
<pt>
```bash
pip install diffusers["torch"]
pip install diffusers["torch"] transformers
```
**For Flax**
</pt>
<jax>
```bash
pip install diffusers["flax"]
pip install diffusers["flax"] transformers
```
</jax>
</frameworkcontent>
## Install from source
Before intsalling `diffusers` from source, make sure you have `torch` and `accelerate` installed.
Before installing 🤗 Diffusers from source, make sure you have `torch` and 🤗 Accelerate installed.
For `torch` installation refer to the `torch` [docs](https://pytorch.org/get-started/locally/#start-locally).
For `torch` installation, refer to the `torch` [installation](https://pytorch.org/get-started/locally/#start-locally) guide.
To install `accelerate`
To install 🤗 Accelerate:
```bash
pip install accelerate
@@ -74,7 +75,7 @@ The `main` version is useful for staying up-to-date with the latest developments
For instance, if a bug has been fixed since the last official release but a new release hasn't been rolled out yet.
However, this means the `main` version may not always be stable.
We strive to keep the `main` version operational, and most issues are usually resolved within a few hours or a day.
If you run into a problem, please open an [Issue](https://github.com/huggingface/transformers/issues), so we can fix it even sooner!
If you run into a problem, please open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose), so we can fix it even sooner!
## Editable install
@@ -90,21 +91,22 @@ git clone https://github.com/huggingface/diffusers.git
cd diffusers
```
**For PyTorch**
```
<frameworkcontent>
<pt>
```bash
pip install -e ".[torch]"
```
**For Flax**
```
</pt>
<jax>
```bash
pip install -e ".[flax]"
```
</jax>
</frameworkcontent>
These commands will link the folder you cloned the repository to and your Python library paths.
Python will now look inside the folder you cloned to in addition to the normal library paths.
For example, if your Python packages are typically installed in `~/anaconda3/envs/main/lib/python3.7/site-packages/`, Python will also search the folder you cloned to: `~/diffusers/`.
For example, if your Python packages are typically installed in `~/anaconda3/envs/main/lib/python3.7/site-packages/`, Python will also search the `~/diffusers/` folder you cloned to.
<Tip warning={true}>

View File

@@ -50,7 +50,6 @@ from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
@@ -60,8 +59,10 @@ image = pipe(prompt).images[0]
```
<Tip warning={true}>
It is strongly discouraged to make use of [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast) in any of the pipelines as it can lead to black images and is always slower than using pure
float16 precision.
</Tip>
## Sliced attention for additional memory savings
@@ -83,7 +84,6 @@ from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
@@ -110,7 +110,6 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
@@ -164,7 +163,6 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
@@ -189,7 +187,6 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
@@ -202,6 +199,8 @@ image = pipe(prompt).images[0]
**Note**: When using `enable_sequential_cpu_offload()`, it is important to **not** move the pipeline to CUDA beforehand or else the gain in memory consumption will only be minimal. See [this issue](https://github.com/huggingface/diffusers/issues/1934) for more information.
**Note**: `enable_sequential_cpu_offload()` is a stateful operation that installs hooks on the models.
<a name="model_offloading"></a>
## Model offloading for fast inference and memory savings
@@ -251,6 +250,11 @@ image = pipe(prompt).images[0]
This feature requires `accelerate` version 0.17.0 or larger.
</Tip>
**Note**: `enable_model_cpu_offload()` is a stateful operation that installs hooks on the models and state on the pipeline. In order to properly offload
models after they are called, it is required that the entire pipeline is run and models are called in the order the pipeline expects them to be. Exercise caution
if models are re-used outside the context of the pipeline after hooks have been installed. See [accelerate](https://huggingface.co/docs/accelerate/v0.18.0/en/package_reference/big_modeling#accelerate.hooks.remove_hook_from_module)
for further docs on removing hooks.
## Using Channels Last memory format
Channels last memory format is an alternative way of ordering NCHW tensors in memory preserving dimensions ordering. Channels last tensors ordered in such a way that channels become the densest dimension (aka storing images pixel-per-pixel). Since not all operators currently support channels last format it may result in a worst performance, so it's better to try it and see if it works for your model.
@@ -400,7 +404,14 @@ Here are the speedups we obtain on a few Nvidia GPUs when running the inference
| A100-SXM4-40GB | 18.6it/s | 29.it/s |
| A100-SXM-80GB | 18.7it/s | 29.5it/s |
To leverage it just make sure you have:
To leverage it just make sure you have:
<Tip warning={true}>
If you have PyTorch 2.0 installed, you shouldn't use xFormers!
</Tip>
- PyTorch > 1.12
- Cuda available
- [Installed the xformers library](xformers).

View File

@@ -16,8 +16,8 @@ specific language governing permissions and limitations under the License.
## Requirements
- Optimum Habana 1.4 or later, [here](https://huggingface.co/docs/optimum/habana/installation) is how to install it.
- SynapseAI 1.8.
- Optimum Habana 1.5 or later, [here](https://huggingface.co/docs/optimum/habana/installation) is how to install it.
- SynapseAI 1.9.
## Inference Pipeline
@@ -64,7 +64,16 @@ For more information, check out Optimum Habana's [documentation](https://hugging
Here are the latencies for Habana first-generation Gaudi and Gaudi2 with the [Habana/stable-diffusion](https://huggingface.co/Habana/stable-diffusion) Gaudi configuration (mixed precision bf16/fp32):
- [Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) (512x512 resolution):
| | Latency (batch size = 1) | Throughput (batch size = 8) |
| ---------------------- |:------------------------:|:---------------------------:|
| first-generation Gaudi | 4.29s | 0.283 images/s |
| Gaudi2 | 1.54s | 0.904 images/s |
| first-generation Gaudi | 4.22s | 0.29 images/s |
| Gaudi2 | 1.70s | 0.925 images/s |
- [Stable Diffusion v2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1) (768x768 resolution):
| | Latency (batch size = 1) | Throughput |
| ---------------------- |:------------------------:|:-------------------------------:|
| first-generation Gaudi | 23.3s | 0.045 images/s (batch size = 2) |
| Gaudi2 | 7.75s | 0.14 images/s (batch size = 5) |

View File

@@ -0,0 +1,116 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Token Merging
Token Merging (introduced in [Token Merging: Your ViT But Faster](https://arxiv.org/abs/2210.09461)) works by merging the redundant tokens / patches progressively in the forward pass of a Transformer-based network. It can speed up the inference latency of the underlying network.
After Token Merging (ToMe) was released, the authors released [Token Merging for Fast Stable Diffusion](https://arxiv.org/abs/2303.17604), which introduced a version of ToMe which is more compatible with Stable Diffusion. We can use ToMe to gracefully speed up the inference latency of a [`DiffusionPipeline`]. This doc discusses how to apply ToMe to the [`StableDiffusionPipeline`], the expected speedups, and the qualitative aspects of using ToMe on the [`StableDiffusionPipeline`].
## Using ToMe
The authors of ToMe released a convenient Python library called [`tomesd`](https://github.com/dbolya/tomesd) that lets us apply ToMe to a [`DiffusionPipeline`] like so:
```diff
from diffusers import StableDiffusionPipeline
import tomesd
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
).to("cuda")
+ tomesd.apply_patch(pipeline, ratio=0.5)
image = pipeline("a photo of an astronaut riding a horse on mars").images[0]
```
And thats it!
`tomesd.apply_patch()` exposes [a number of arguments](https://github.com/dbolya/tomesd#usage) to let us strike a balance between the pipeline inference speed and the quality of the generated tokens. Amongst those arguments, the most important one is `ratio`. `ratio` controls the number of tokens that will be merged during the forward pass. For more details on `tomesd`, please refer to the original repository https://github.com/dbolya/tomesd and [the paper](https://arxiv.org/abs/2303.17604).
## Benchmarking `tomesd` with `StableDiffusionPipeline`
We benchmarked the impact of using `tomesd` on [`StableDiffusionPipeline`] along with [xformers](https://huggingface.co/docs/diffusers/optimization/xformers) across different image resolutions. We used A100 and V100 as our test GPU devices with the following development environment (with Python 3.8.5):
```bash
- `diffusers` version: 0.15.1
- Python version: 3.8.16
- PyTorch version (GPU?): 1.13.1+cu116 (True)
- Huggingface_hub version: 0.13.2
- Transformers version: 4.27.2
- Accelerate version: 0.18.0
- xFormers version: 0.0.16
- tomesd version: 0.1.2
```
We used this script for benchmarking: [https://gist.github.com/sayakpaul/27aec6bca7eb7b0e0aa4112205850335](https://gist.github.com/sayakpaul/27aec6bca7eb7b0e0aa4112205850335). Following are our findings:
### A100
| Resolution | Batch size | Vanilla | ToMe | ToMe + xFormers | ToMe speedup (%) | ToMe + xFormers speedup (%) |
| --- | --- | --- | --- | --- | --- | --- |
| 512 | 10 | 6.88 | 5.26 | 4.69 | 23.54651163 | 31.83139535 |
| | | | | | | |
| 768 | 10 | OOM | 14.71 | 11 | | |
| | 8 | OOM | 11.56 | 8.84 | | |
| | 4 | OOM | 5.98 | 4.66 | | |
| | 2 | 4.99 | 3.24 | 3.1 | 35.07014028 | 37.8757515 |
| | 1 | 3.29 | 2.24 | 2.03 | 31.91489362 | 38.29787234 |
| | | | | | | |
| 1024 | 10 | OOM | OOM | OOM | | |
| | 8 | OOM | OOM | OOM | | |
| | 4 | OOM | 12.51 | 9.09 | | |
| | 2 | OOM | 6.52 | 4.96 | | |
| | 1 | 6.4 | 3.61 | 2.81 | 43.59375 | 56.09375 |
***The timings reported here are in seconds. Speedups are calculated over the `Vanilla` timings.***
### V100
| Resolution | Batch size | Vanilla | ToMe | ToMe + xFormers | ToMe speedup (%) | ToMe + xFormers speedup (%) |
| --- | --- | --- | --- | --- | --- | --- |
| 512 | 10 | OOM | 10.03 | 9.29 | | |
| | 8 | OOM | 8.05 | 7.47 | | |
| | 4 | 5.7 | 4.3 | 3.98 | 24.56140351 | 30.1754386 |
| | 2 | 3.14 | 2.43 | 2.27 | 22.61146497 | 27.70700637 |
| | 1 | 1.88 | 1.57 | 1.57 | 16.4893617 | 16.4893617 |
| | | | | | | |
| 768 | 10 | OOM | OOM | 23.67 | | |
| | 8 | OOM | OOM | 18.81 | | |
| | 4 | OOM | 11.81 | 9.7 | | |
| | 2 | OOM | 6.27 | 5.2 | | |
| | 1 | 5.43 | 3.38 | 2.82 | 37.75322284 | 48.06629834 |
| | | | | | | |
| 1024 | 10 | OOM | OOM | OOM | | |
| | 8 | OOM | OOM | OOM | | |
| | 4 | OOM | OOM | 19.35 | | |
| | 2 | OOM | 13 | 10.78 | | |
| | 1 | OOM | 6.66 | 5.54 | | |
As seen in the tables above, the speedup with `tomesd` becomes more pronounced for larger image resolutions. It is also interesting to note that with `tomesd`, it becomes possible to run the pipeline on a higher resolution, like 1024x1024.
It might be possible to speed up inference even further with [`torch.compile()`](https://huggingface.co/docs/diffusers/optimization/torch2.0).
## Quality
As reported in [the paper](https://arxiv.org/abs/2303.17604), ToMe can preserve the quality of the generated images to a great extent while speeding up inference. By increasing the `ratio`, it is possible to further speed up inference, but that might come at the cost of a deterioration in the image quality.
To test the quality of the generated samples using our setup, we sampled a few prompts from the “Parti Prompts” (introduced in [Parti](https://parti.research.google/)) and performed inference with the [`StableDiffusionPipeline`] in the following settings:
- Vanilla [`StableDiffusionPipeline`]
- [`StableDiffusionPipeline`] + ToMe
- [`StableDiffusionPipeline`] + ToMe + xformers
We didnt notice any significant decrease in the quality of the generated samples. Here are samples:
![tome-samples](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/tome/tome_samples.png)
You can check out the generated samples [here](https://wandb.ai/sayakpaul/tomesd-results/runs/23j4bj3i?workspace=). We used [this script](https://gist.github.com/sayakpaul/8cac98d7f22399085a060992f411ecbd) for conducting this experiment.

View File

@@ -12,19 +12,21 @@ specific language governing permissions and limitations under the License.
# Accelerated PyTorch 2.0 support in Diffusers
Starting from version `0.13.0`, Diffusers supports the latest optimization from the upcoming [PyTorch 2.0](https://pytorch.org/get-started/pytorch-2.0/) release. These include:
1. Support for accelerated transformers implementation with memory-efficient attention no extra dependencies required.
Starting from version `0.13.0`, Diffusers supports the latest optimization from [PyTorch 2.0](https://pytorch.org/get-started/pytorch-2.0/). These include:
1. Support for accelerated transformers implementation with memory-efficient attention no extra dependencies (such as `xformers`) required.
2. [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) support for extra performance boost when individual models are compiled.
## Installation
To benefit from the accelerated attention implementation and `torch.compile`, you just need to install the latest versions of PyTorch 2.0 from `pip`, and make sure you are on diffusers 0.13.0 or later. As explained below, `diffusers` automatically uses the attention optimizations (but not `torch.compile`) when available.
To benefit from the accelerated attention implementation and `torch.compile()`, you just need to install the latest versions of PyTorch 2.0 from pip, and make sure you are on diffusers 0.13.0 or later. As explained below, diffusers automatically uses the optimized attention processor ([`AttnProcessor2_0`](https://github.com/huggingface/diffusers/blob/1a5797c6d4491a879ea5285c4efc377664e0332d/src/diffusers/models/attention_processor.py#L798)) (but not `torch.compile()`)
when PyTorch 2.0 is available.
```bash
pip install --upgrade torch torchvision diffusers
pip install --upgrade torch diffusers
```
## Using accelerated transformers and torch.compile.
## Using accelerated transformers and `torch.compile`.
1. **Accelerated Transformers implementation**
@@ -46,13 +48,13 @@ pip install --upgrade torch torchvision diffusers
If you want to enable it explicitly (which is not required), you can do so as shown below.
```Python
```diff
import torch
from diffusers import DiffusionPipeline
from diffusers.models.attention_processor import AttnProcessor2_0
+ from diffusers.models.attention_processor import AttnProcessor2_0
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipe.unet.set_attn_processor(AttnProcessor2_0())
+ pipe.unet.set_attn_processor(AttnProcessor2_0())
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
@@ -60,151 +62,383 @@ pip install --upgrade torch torchvision diffusers
This should be as fast and memory efficient as `xFormers`. More details [in our benchmark](#benchmark).
It is possible to revert to the vanilla attention processor ([`AttnProcessor`](https://github.com/huggingface/diffusers/blob/1a5797c6d4491a879ea5285c4efc377664e0332d/src/diffusers/models/attention_processor.py#L402)), which can be helpful to make the pipeline more deterministic, or if you need to convert a fine-tuned model to other formats such as [Core ML](https://huggingface.co/docs/diffusers/v0.16.0/en/optimization/coreml#how-to-run-stable-diffusion-with-core-ml). To use the normal attention processor you can use the [`~diffusers.UNet2DConditionModel.set_default_attn_processor`] function:
```Python
import torch
from diffusers import DiffusionPipeline
from diffusers.models.attention_processor import AttnProcessor
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipe.unet.set_default_attn_processor()
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
2. **torch.compile**
To get an additional speedup, we can use the new `torch.compile` feature. To do so, we simply wrap our `unet` with `torch.compile`. For more information and different options, refer to the
To get an additional speedup, we can use the new `torch.compile` feature. Since the UNet of the pipeline is usually the most computationally expensive, we wrap the `unet` with `torch.compile` leaving rest of the sub-models (text encoder and VAE) as is. For more information and different options, refer to the
[torch compile docs](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html).
```python
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipe.unet = torch.compile(pipe.unet)
batch_size = 10
prompt = "A photo of an astronaut riding a horse on marse."
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images
```
Depending on the type of GPU, `compile()` can yield between 2-9% of _additional speed-up_ over the accelerated transformer optimizations. Note, however, that compilation is able to squeeze more performance improvements in more recent GPU architectures such as Ampere (A100, 3090), Ada (4090) and Hopper (H100).
Depending on the type of GPU, `compile()` can yield between **5% - 300%** of _additional speed-up_ over the accelerated transformer optimizations. Note, however, that compilation is able to squeeze more performance improvements in more recent GPU architectures such as Ampere (A100, 3090), Ada (4090) and Hopper (H100).
Compilation takes some time to complete, so it is best suited for situations where you need to prepare your pipeline once and then perform the same type of inference operations multiple times.
Compilation takes some time to complete, so it is best suited for situations where you need to prepare your pipeline once and then perform the same type of inference operations multiple times. Calling the compiled pipeline on a different image size will re-trigger compilation which can be expensive.
## Benchmark
We conducted a simple benchmark on different GPUs to compare vanilla attention, xFormers, `torch.nn.functional.scaled_dot_product_attention` and `torch.compile+torch.nn.functional.scaled_dot_product_attention`.
For the benchmark we used the [stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) model with 50 steps. The `xFormers` benchmark is done using the `torch==1.13.1` version, while the accelerated transformers optimizations are tested using nightly versions of PyTorch 2.0. The tables below summarize the results we got.
We conducted a comprehensive benchmark with PyTorch 2.0's efficient attention implementation and `torch.compile` across different GPUs and batch sizes for five of our most used pipelines. We used `diffusers 0.17.0.dev0`, which [makes sure `torch.compile()` is leveraged optimally](https://github.com/huggingface/diffusers/pull/3313).
Please refer to [our featured blog post in the PyTorch site](https://pytorch.org/blog/accelerated-diffusers-pt-20/) for more details.
### Benchmarking code
### FP16 benchmark
#### Stable Diffusion text-to-image
The table below shows the benchmark results for inference using `fp16`. As we can see, `torch.nn.functional.scaled_dot_product_attention` is as fast as `xFormers` (sometimes slightly faster/slower) on all the GPUs we tested.
And using `torch.compile` gives further speed-up of up of 10% over `xFormers`, but it's mostly noticeable on the A100 GPU.
```python
from diffusers import DiffusionPipeline
import torch
___The time reported is in seconds.___
path = "runwayml/stable-diffusion-v1-5"
| GPU | Batch Size | Vanilla Attention | xFormers | PyTorch2.0 SDPA | SDPA + torch.compile | Speed over xformers (%) |
| --- | --- | --- | --- | --- | --- | --- |
| A100 | 1 | 2.69 | 2.7 | 1.98 | 2.47 | 8.52 |
| A100 | 2 | 3.21 | 3.04 | 2.38 | 2.78 | 8.55 |
| A100 | 4 | 5.27 | 3.91 | 3.89 | 3.53 | 9.72 |
| A100 | 8 | 9.74 | 7.03 | 7.04 | 6.62 | 5.83 |
| A100 | 10 | 12.02 | 8.7 | 8.67 | 8.45 | 2.87 |
| A100 | 16 | 18.95 | 13.57 | 13.55 | 13.20 | 2.73 |
| A100 | 32 (1) | OOM | 26.56 | 26.68 | 25.85 | 2.67 |
| A100 | 64 | | 52.51 | 53.03 | 50.93 | 3.01 |
| | | | | | | |
| A10 | 4 | 13.94 | 9.81 | 10.01 | 9.35 | 4.69 |
| A10 | 8 | 27.09 | 19 | 19.53 | 18.33 | 3.53 |
| A10 | 10 | 33.69 | 23.53 | 24.19 | 22.52 | 4.29 |
| A10 | 16 | OOM | 37.55 | 38.31 | 36.81 | 1.97 |
| A10 | 32 (1) | | 77.19 | 78.43 | 76.64 | 0.71 |
| A10 | 64 (1) | | 173.59 | 158.99 | 155.14 | 10.63 |
| | | | | | | |
| T4 | 4 | 38.81 | 30.09 | 29.74 | 27.55 | 8.44 |
| T4 | 8 | OOM | 55.71 | 55.99 | 53.85 | 3.34 |
| T4 | 10 | OOM | 68.96 | 69.86 | 65.35 | 5.23 |
| T4 | 16 | OOM | 111.47 | 113.26 | 106.93 | 4.07 |
| | | | | | | |
| V100 | 4 | 9.84 | 8.16 | 8.09 | 7.65 | 6.25 |
| V100 | 8 | OOM | 15.62 | 15.44 | 14.59 | 6.59 |
| V100 | 10 | OOM | 19.52 | 19.28 | 18.18 | 6.86 |
| V100 | 16 | OOM | 30.29 | 29.84 | 28.22 | 6.83 |
| | | | | | | |
| 3090 | 1 | 2.94 | 2.5 | 2.42 | 2.33 | 6.80 |
| 3090 | 4 | 10.04 | 7.82 | 7.72 | 7.38 | 5.63 |
| 3090 | 8 | 19.27 | 14.97 | 14.88 | 14.15 | 5.48 |
| 3090 | 10| 24.08 | 18.7 | 18.62 | 18.12 | 3.10 |
| 3090 | 16 | OOM | 29.06 | 28.88 | 28.2 | 2.96 |
| 3090 | 32 (1) | | 58.05 | 57.42 | 56.28 | 3.05 |
| 3090 | 64 (1) | | 126.54 | 114.27 | 112.21 | 11.32 |
| | | | | | | |
| 3090 Ti | 1 | 2.7 | 2.26 | 2.19 | 2.12 | 6.19 |
| 3090 Ti | 4 | 9.07 | 7.14 | 7.00 | 6.71 | 6.02 |
| 3090 Ti | 8 | 17.51 | 13.65 | 13.53 | 12.94 | 5.20 |
| 3090 Ti | 10 (2) | 21.79 | 16.85 | 16.77 | 16.44 | 2.43 |
| 3090 Ti | 16 | OOM | 26.1 | 26.04 | 25.53 | 2.18 |
| 3090 Ti | 32 (1) | | 51.78 | 51.71 | 50.91 | 1.68 |
| 3090 Ti | 64 (1) | | 112.02 | 102.78 | 100.89 | 9.94 |
| | | | | | | |
| 4090 | 1 | 4.47 | 3.98 | 1.28 | 1.21 | 69.60 |
| 4090 | 4 | 10.48 | 8.37 | 3.76 | 3.56 | 57.47 |
| 4090 | 8 | 14.33 | 10.22 | 7.43 | 6.99 | 31.60 |
| 4090 | 16 | | 17.07 | 14.98 | 14.58 | 14.59 |
| 4090 | 32 (1) | | 39.03 | 30.18 | 29.49 | 24.44 |
| 4090 | 64 (1) | | 77.29 | 61.34 | 59.96 | 22.42 |
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
images = pipe(prompt=prompt).images
```
#### Stable Diffusion image-to-image
```python
from diffusers import StableDiffusionImg2ImgPipeline
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image).images[0]
```
#### Stable Diffusion - inpainting
```python
from diffusers import StableDiffusionInpaintPipeline
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
### FP32 benchmark
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
The table below shows the benchmark results for inference using `fp32`. In this case, `torch.nn.functional.scaled_dot_product_attention` is faster than `xFormers` on all the GPUs we tested.
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
Using `torch.compile` in addition to the accelerated transformers implementation can yield up to 19% performance improvement over `xFormers` in Ampere and Ada cards, and up to 20% (Ampere) or 28% (Ada) over vanilla attention.
path = "runwayml/stable-diffusion-inpainting"
| GPU | Batch Size | Vanilla Attention | xFormers | PyTorch2.0 SDPA | SDPA + torch.compile | Speed over xformers (%) | Speed over vanilla (%) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| A100 | 1 | 4.97 | 3.86 | 2.6 | 2.86 | 25.91 | 42.45 |
| A100 | 2 | 9.03 | 6.76 | 4.41 | 4.21 | 37.72 | 53.38 |
| A100 | 4 | 16.70 | 12.42 | 7.94 | 7.54 | 39.29 | 54.85 |
| A100 | 10 | OOM | 29.93 | 18.70 | 18.46 | 38.32 | |
| A100 | 16 | | 47.08 | 29.41 | 29.04 | 38.32 | |
| A100 | 32 | | 92.89 | 57.55 | 56.67 | 38.99 | |
| A100 | 64 | | 185.3 | 114.8 | 112.98 | 39.03 | |
| | | | | | | |
| A10 | 1 | 10.59 | 8.81 | 7.51 | 7.35 | 16.57 | 30.59 |
| A10 | 4 | 34.77 | 27.63 | 22.77 | 22.07 | 20.12 | 36.53 |
| A10 | 8 | | 56.19 | 43.53 | 43.86 | 21.94 | |
| A10 | 16 | | 116.49 | 88.56 | 86.64 | 25.62 | |
| A10 | 32 | | 221.95 | 175.74 | 168.18 | 24.23 | |
| A10 | 48 | | 333.23 | 264.84 | | 20.52 | |
| | | | | | | |
| T4 | 1 | 28.2 | 24.49 | 23.93 | 23.56 | 3.80 | 16.45 |
| T4 | 2 | 52.77 | 45.7 | 45.88 | 45.06 | 1.40 | 14.61 |
| T4 | 4 | OOM | 85.72 | 85.78 | 84.48 | 1.45 | |
| T4 | 8 | | 149.64 | 150.75 | 148.4 | 0.83 | |
| | | | | | | |
| V100 | 1 | 7.4 | 6.84 | 6.8 | 6.66 | 2.63 | 10.00 |
| V100 | 2 | 13.85 | 12.81 | 12.66 | 12.35 | 3.59 | 10.83 |
| V100 | 4 | OOM | 25.73 | 25.31 | 24.78 | 3.69 | |
| V100 | 8 | | 43.95 | 43.37 | 42.25 | 3.87 | |
| V100 | 16 | | 84.99 | 84.73 | 82.55 | 2.87 | |
| | | | | | | |
| 3090 | 1 | 7.09 | 6.78 | 5.34 | 5.35 | 21.09 | 24.54 |
| 3090 | 4 | 22.69 | 21.45 | 18.56 | 18.18 | 15.24 | 19.88 |
| 3090 | 8 | | 42.59 | 36.68 | 35.61 | 16.39 | |
| 3090 | 16 | | 85.35 | 72.93 | 70.18 | 17.77 | |
| 3090 | 32 (1) | | 162.05 | 143.46 | 138.67 | 14.43 | |
| | | | | | | |
| 3090 Ti | 1 | 6.45 | 6.19 | 4.99 | 4.89 | 21.00 | 24.19 |
| 3090 Ti | 4 | 20.32 | 19.31 | 17.02 | 16.48 | 14.66 | 18.90 |
| 3090 Ti | 8 | | 37.93 | 33.21 | 32.24 | 15.00 | |
| 3090 Ti | 16 | | 75.37 | 66.63 | 64.5 | 14.42 | |
| 3090 Ti | 32 (1) | | 142.55 | 128.89 | 124.92 | 12.37 | |
| | | | | | | |
| 4090 | 1 | 5.54 | 4.99 | 2.66 | 2.58 | 48.30 | 53.43 |
| 4090 | 4 | 13.67 | 11.4 | 8.81 | 8.46 | 25.79 | 38.11 |
| 4090 | 8 | | 19.79 | 17.55 | 16.62 | 16.02 | |
| 4090 | 16 | | 38.62 | 35.65 | 34.07 | 11.78 | |
| 4090 | 32 (1) | | 76.57 | 69.48 | 65.35 | 14.65 | |
| 4090 | 48 | | 114.44 | 106.3 | | 7.11 | |
run_compile = True # Set True / False
pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
#### ControlNet
```python
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import requests
import torch
from PIL import Image
from io import BytesIO
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
path, controlnet=controlnet, torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
pipe.controlnet.to(memory_format=torch.channels_last)
if run_compile:
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
prompt = "ghibli style, a fantasy landscape with castles"
for _ in range(3):
image = pipe(prompt=prompt, image=init_image).images[0]
```
#### IF text-to-image + upscaling
```python
from diffusers import DiffusionPipeline
import torch
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe.to("cuda")
pipe_2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe_2.to("cuda")
pipe_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16)
pipe_3.to("cuda")
(1) Batch Size >= 32 requires enable_vae_slicing() because of https://github.com/pytorch/pytorch/issues/81665.
This is required for PyTorch 1.13.1, and also for PyTorch 2.0 and large batch sizes.
pipe.unet.to(memory_format=torch.channels_last)
pipe_2.unet.to(memory_format=torch.channels_last)
pipe_3.unet.to(memory_format=torch.channels_last)
For more details about how this benchmark was run, please refer to [this PR](https://github.com/huggingface/diffusers/pull/2303) and to [the blog post](https://pytorch.org/blog/accelerated-diffusers-pt-20/).
if run_compile:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe_2.unet = torch.compile(pipe_2.unet, mode="reduce-overhead", fullgraph=True)
pipe_3.unet = torch.compile(pipe_3.unet, mode="reduce-overhead", fullgraph=True)
prompt = "the blue hulk"
prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)
neg_prompt_embeds = torch.randn((1, 2, 4096), dtype=torch.float16)
for _ in range(3):
image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
image_2 = pipe_2(image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, output_type="pt").images
image_3 = pipe_3(prompt=prompt, image=image, noise_level=100).images
```
To give you a pictorial overview of the possible speed-ups that can be obtained with PyTorch 2.0 and `torch.compile()`,
here is a plot that shows relative speed-ups for the [Stable Diffusion text-to-image pipeline](StableDiffusionPipeline) across five
different GPU families (with a batch size of 4):
![t2i_speedup](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/pt2_benchmarks/t2i_speedup.png)
To give you an even better idea of how this speed-up holds for the other pipelines presented above, consider the following
plot that shows the benchmarking numbers from an A100 across three different batch sizes
(with PyTorch 2.0 nightly and `torch.compile()`):
![a100_numbers](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/pt2_benchmarks/a100_numbers.png)
_(Our benchmarking metric for the plots above is **number of iterations/second**)_
But we reveal all the benchmarking numbers in the interest of transparency!
In the following tables, we report our findings in terms of the number of **_iterations processed per second_**.
### A100 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 21.66 | 23.13 | 44.03 | 49.74 |
| SD - img2img | 21.81 | 22.40 | 43.92 | 46.32 |
| SD - inpaint | 22.24 | 23.23 | 43.76 | 49.25 |
| SD - controlnet | 15.02 | 15.82 | 32.13 | 36.08 |
| IF | 20.21 / <br>13.84 / <br>24.00 | 20.12 / <br>13.70 / <br>24.03 | ❌ | 97.34 / <br>27.23 / <br>111.66 |
### A100 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 11.6 | 13.12 | 14.62 | 17.27 |
| SD - img2img | 11.47 | 13.06 | 14.66 | 17.25 |
| SD - inpaint | 11.67 | 13.31 | 14.88 | 17.48 |
| SD - controlnet | 8.28 | 9.38 | 10.51 | 12.41 |
| IF | 25.02 | 18.04 | ❌ | 48.47 |
### A100 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 3.04 | 3.6 | 3.83 | 4.68 |
| SD - img2img | 2.98 | 3.58 | 3.83 | 4.67 |
| SD - inpaint | 3.04 | 3.66 | 3.9 | 4.76 |
| SD - controlnet | 2.15 | 2.58 | 2.74 | 3.35 |
| IF | 8.78 | 9.82 | ❌ | 16.77 |
### V100 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 18.99 | 19.14 | 20.95 | 22.17 |
| SD - img2img | 18.56 | 19.18 | 20.95 | 22.11 |
| SD - inpaint | 19.14 | 19.06 | 21.08 | 22.20 |
| SD - controlnet | 13.48 | 13.93 | 15.18 | 15.88 |
| IF | 20.01 / <br>9.08 / <br>23.34 | 19.79 / <br>8.98 / <br>24.10 | ❌ | 55.75 / <br>11.57 / <br>57.67 |
### V100 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 5.96 | 5.89 | 6.83 | 6.86 |
| SD - img2img | 5.90 | 5.91 | 6.81 | 6.82 |
| SD - inpaint | 5.99 | 6.03 | 6.93 | 6.95 |
| SD - controlnet | 4.26 | 4.29 | 4.92 | 4.93 |
| IF | 15.41 | 14.76 | ❌ | 22.95 |
### V100 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 1.66 | 1.66 | 1.92 | 1.90 |
| SD - img2img | 1.65 | 1.65 | 1.91 | 1.89 |
| SD - inpaint | 1.69 | 1.69 | 1.95 | 1.93 |
| SD - controlnet | 1.19 | 1.19 | OOM after warmup | 1.36 |
| IF | 5.43 | 5.29 | ❌ | 7.06 |
### T4 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 6.9 | 6.95 | 7.3 | 7.56 |
| SD - img2img | 6.84 | 6.99 | 7.04 | 7.55 |
| SD - inpaint | 6.91 | 6.7 | 7.01 | 7.37 |
| SD - controlnet | 4.89 | 4.86 | 5.35 | 5.48 |
| IF | 17.42 / <br>2.47 / <br>18.52 | 16.96 / <br>2.45 / <br>18.69 | ❌ | 24.63 / <br>2.47 / <br>23.39 |
### T4 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 1.79 | 1.79 | 2.03 | 1.99 |
| SD - img2img | 1.77 | 1.77 | 2.05 | 2.04 |
| SD - inpaint | 1.81 | 1.82 | 2.09 | 2.09 |
| SD - controlnet | 1.34 | 1.27 | 1.47 | 1.46 |
| IF | 5.79 | 5.61 | ❌ | 7.39 |
### T4 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 2.34s | 2.30s | OOM after 2nd iteration | 1.99s |
| SD - img2img | 2.35s | 2.31s | OOM after warmup | 2.00s |
| SD - inpaint | 2.30s | 2.26s | OOM after 2nd iteration | 1.95s |
| SD - controlnet | OOM after 2nd iteration | OOM after 2nd iteration | OOM after warmup | OOM after warmup |
| IF * | 1.44 | 1.44 | ❌ | 1.94 |
### RTX 3090 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 22.56 | 22.84 | 23.84 | 25.69 |
| SD - img2img | 22.25 | 22.61 | 24.1 | 25.83 |
| SD - inpaint | 22.22 | 22.54 | 24.26 | 26.02 |
| SD - controlnet | 16.03 | 16.33 | 17.38 | 18.56 |
| IF | 27.08 / <br>9.07 / <br>31.23 | 26.75 / <br>8.92 / <br>31.47 | ❌ | 68.08 / <br>11.16 / <br>65.29 |
### RTX 3090 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 6.46 | 6.35 | 7.29 | 7.3 |
| SD - img2img | 6.33 | 6.27 | 7.31 | 7.26 |
| SD - inpaint | 6.47 | 6.4 | 7.44 | 7.39 |
| SD - controlnet | 4.59 | 4.54 | 5.27 | 5.26 |
| IF | 16.81 | 16.62 | ❌ | 21.57 |
### RTX 3090 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 1.7 | 1.69 | 1.93 | 1.91 |
| SD - img2img | 1.68 | 1.67 | 1.93 | 1.9 |
| SD - inpaint | 1.72 | 1.71 | 1.97 | 1.94 |
| SD - controlnet | 1.23 | 1.22 | 1.4 | 1.38 |
| IF | 5.01 | 5.00 | ❌ | 6.33 |
### RTX 4090 (batch size: 1)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 40.5 | 41.89 | 44.65 | 49.81 |
| SD - img2img | 40.39 | 41.95 | 44.46 | 49.8 |
| SD - inpaint | 40.51 | 41.88 | 44.58 | 49.72 |
| SD - controlnet | 29.27 | 30.29 | 32.26 | 36.03 |
| IF | 69.71 / <br>18.78 / <br>85.49 | 69.13 / <br>18.80 / <br>85.56 | ❌ | 124.60 / <br>26.37 / <br>138.79 |
### RTX 4090 (batch size: 4)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 12.62 | 12.84 | 15.32 | 15.59 |
| SD - img2img | 12.61 | 12,.79 | 15.35 | 15.66 |
| SD - inpaint | 12.65 | 12.81 | 15.3 | 15.58 |
| SD - controlnet | 9.1 | 9.25 | 11.03 | 11.22 |
| IF | 31.88 | 31.14 | ❌ | 43.92 |
### RTX 4090 (batch size: 16)
| **Pipeline** | **torch 2.0 - <br>no compile** | **torch nightly - <br>no compile** | **torch 2.0 - <br>compile** | **torch nightly - <br>compile** |
|:---:|:---:|:---:|:---:|:---:|
| SD - txt2img | 3.17 | 3.2 | 3.84 | 3.85 |
| SD - img2img | 3.16 | 3.2 | 3.84 | 3.85 |
| SD - inpaint | 3.17 | 3.2 | 3.85 | 3.85 |
| SD - controlnet | 2.23 | 2.3 | 2.7 | 2.75 |
| IF | 9.26 | 9.2 | ❌ | 13.31 |
## Notes
* Follow [this PR](https://github.com/huggingface/diffusers/pull/3313) for more details on the environment used for conducting the benchmarks.
* For the IF pipeline and batch sizes > 1, we only used a batch size of >1 in the first IF pipeline for text-to-image generation and NOT for upscaling. So, that means the two upscaling pipelines received a batch size of 1.
*Thanks to [Horace He](https://github.com/Chillee) from the PyTorch team for their support in improving our support of `torch.compile()` in Diffusers.*

View File

@@ -33,7 +33,7 @@ The quicktour is a simplified version of the introductory 🧨 Diffusers [notebo
Before you begin, make sure you have all the necessary libraries installed:
```bash
pip install --upgrade diffusers accelerate transformers
!pip install --upgrade diffusers accelerate transformers
```
- [🤗 Accelerate](https://huggingface.co/docs/accelerate/index) speeds up model loading for inference and training.
@@ -121,9 +121,9 @@ Save the image by calling `save`:
You can also use the pipeline locally. The only difference is you need to download the weights first:
```
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```bash
!git lfs install
!git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```
Then load the saved weights into the pipeline:

View File

@@ -153,7 +153,7 @@ def get_inputs(batch_size=1):
You'll also need a function that'll display each batch of images:
```python
from PIL import image
from PIL import Image
def image_grid(imgs, rows=2, cols=2):
@@ -246,7 +246,7 @@ image_grid(images, rows=2, cols=4)
Pretty impressive! Let's tweak the second image - corresponding to the `Generator` with a seed of `1` - a bit more by adding some text about the age of the subject:
```python
prommpts = [
prompts = [
"portrait photo of the oldest warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
@@ -266,6 +266,6 @@ image_grid(images)
In this tutorial, you learned how to optimize a [`DiffusionPipeline`] for computational and memory efficiency as well as improving the quality of generated outputs. If you're interested in making your pipeline even faster, take a look at the following resources:
- Enable [xFormers](./optimization/xformers) memory efficient attention mechanism for faster speed and reduced memory consumption.
- Learn how in [PyTorch 2.0](./optimization/torch2.0), [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html) can yield 2-9% faster inference speed.
- Many optimization techniques for inference are also included in this memory and speed [guide](./optimization/fp16), such as memory offloading.
- Learn how [PyTorch 2.0](./optimization/torch2.0) and [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html) can yield 5 - 300% faster inference speed. On an A100 GPU, inference can be up to 50% faster!
- If you can't use PyTorch 2, we recommend you install [xFormers](./optimization/xformers). Its memory-efficient attention mechanism works great with PyTorch 1.13.1 for faster speed and reduced memory consumption.
- Other optimization techniques, such as model offloading, are covered in [this guide](./optimization/fp16).

View File

@@ -0,0 +1,42 @@
# Adapt a model to a new task
Many diffusion systems share the same components, allowing you to adapt a pretrained model for one task to an entirely different task.
This guide will show you how to adapt a pretrained text-to-image model for inpainting by initializing and modifying the architecture of a pretrained [`UNet2DConditionModel`].
## Configure UNet2DConditionModel parameters
A [`UNet2DConditionModel`] by default accepts 4 channels in the [input sample](https://huggingface.co/docs/diffusers/v0.16.0/en/api/models#diffusers.UNet2DConditionModel.in_channels). For example, load a pretrained text-to-image model like [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) and take a look at the number of `in_channels`:
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipeline.unet.config["in_channels"]
4
```
Inpainting requires 9 channels in the input sample. You can check this value in a pretrained inpainting model like [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting):
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipeline.unet.config["in_channels"]
9
```
To adapt your text-to-image model for inpainting, you'll need to change the number of `in_channels` from 4 to 9.
Initialize a [`UNet2DConditionModel`] with the pretrained text-to-image model weights, and change `in_channels` to 9. Changing the number of `in_channels` means you need to set `ignore_mismatched_sizes=True` and `low_cpu_mem_usage=False` to avoid a size mismatch error because the shape is different now.
```py
from diffusers import UNet2DConditionModel
model_id = "runwayml/stable-diffusion-v1-5"
unet = UNet2DConditionModel.from_pretrained(
model_id, subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True
)
```
The pretrained weights of the other components from the text-to-image model are initialized from their checkpoints, but the input channel weights (`conv_in.weight`) of the `unet` are randomly initialized. It is important to finetune the model for inpainting because otherwise the model returns noise.

View File

@@ -33,7 +33,12 @@ cd diffusers
pip install -e .
```
Then navigate into the example folder and run:
Then navigate into the [example folder](https://github.com/huggingface/diffusers/tree/main/examples/controlnet)
```bash
cd examples/controlnet
```
Now run:
```bash
pip install -r requirements.txt
```
@@ -64,6 +69,8 @@ The original dataset is hosted in the ControlNet [repo](https://huggingface.co/l
Our training examples use [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) because that is what the original set of ControlNet models was trained on. However, ControlNet can be trained to augment any compatible Stable Diffusion model (such as [`CompVis/stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4)) or [`stabilityai/stable-diffusion-2-1`](https://huggingface.co/stabilityai/stable-diffusion-2-1).
To use your own dataset, take a look at the [Create a dataset for training](create_dataset) guide.
## Training
Download the following images to condition our training with:
@@ -74,6 +81,9 @@ wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/ma
wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png
```
Specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`](https://huggingface.co/docs/diffusers/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path) argument.
The training script creates and saves a `diffusion_pytorch_model.bin` file in your repository.
```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
@@ -87,7 +97,8 @@ accelerate launch train_controlnet.py \
--learning_rate=1e-5 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=4
--train_batch_size=4 \
--push_to_hub
```
This default configuration requires ~38GB VRAM.
@@ -110,7 +121,32 @@ accelerate launch train_controlnet.py \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=1 \
--gradient_accumulation_steps=4
--gradient_accumulation_steps=4 \
--push_to_hub
```
## Training with multiple GPUs
`accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch)
for running distributed training with `accelerate`. Here is an example command:
```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export OUTPUT_DIR="path to save model"
accelerate launch --mixed_precision="fp16" --multi_gpu train_controlnet.py \
--pretrained_model_name_or_path=$MODEL_DIR \
--output_dir=$OUTPUT_DIR \
--dataset_name=fusing/fill50k \
--resolution=512 \
--learning_rate=1e-5 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=4 \
--mixed_precision="fp16" \
--tracker_project_name="controlnet-demo" \
--report_to=wandb \
--push_to_hub
```
## Example results
@@ -158,7 +194,8 @@ accelerate launch train_controlnet.py \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--use_8bit_adam
--use_8bit_adam \
--push_to_hub
```
## Training on a 12 GB GPU
@@ -186,7 +223,8 @@ accelerate launch train_controlnet.py \
--gradient_checkpointing \
--use_8bit_adam \
--enable_xformers_memory_efficient_attention \
--set_grads_to_none
--set_grads_to_none \
--push_to_hub
```
When using `enable_xformers_memory_efficient_attention`, please make sure to install `xformers` by `pip install xformers`.
@@ -250,7 +288,8 @@ accelerate launch train_controlnet.py \
--gradient_checkpointing \
--enable_xformers_memory_efficient_attention \
--set_grads_to_none \
--mixed_precision fp16
--mixed_precision fp16 \
--push_to_hub
```
## Inference

View File

@@ -0,0 +1,90 @@
# Create a dataset for training
There are many datasets on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) to train a model on, but if you can't find one you're interested in or want to use your own, you can create a dataset with the 🤗 [Datasets](hf.co/docs/datasets) library. The dataset structure depends on the task you want to train your model on. The most basic dataset structure is a directory of images for tasks like unconditional image generation. Another dataset structure may be a directory of images and a text file containing their corresponding text captions for tasks like text-to-image generation.
This guide will show you two ways to create a dataset to finetune on:
- provide a folder of images to the `--train_data_dir` argument
- upload a dataset to the Hub and pass the dataset repository id to the `--dataset_name` argument
<Tip>
💡 Learn more about how to create an image dataset for training in the [Create an image dataset](https://huggingface.co/docs/datasets/image_dataset) guide.
</Tip>
## Provide a dataset as a folder
For unconditional generation, you can provide your own dataset as a folder of images. The training script uses the [`ImageFolder`](https://huggingface.co/docs/datasets/en/image_dataset#imagefolder) builder from 🤗 Datasets to automatically build a dataset from the folder. Your directory structure should look like:
```bash
data_dir/xxx.png
data_dir/xxy.png
data_dir/[...]/xxz.png
```
Pass the path to the dataset directory to the `--train_data_dir` argument, and then you can start training:
```bash
accelerate launch train_unconditional.py \
--train_data_dir <path-to-train-directory> \
<other-arguments>
```
## Upload your data to the Hub
<Tip>
💡 For more details and context about creating and uploading a dataset to the Hub, take a look at the [Image search with 🤗 Datasets](https://huggingface.co/blog/image-search-datasets) post.
</Tip>
Start by creating a dataset with the [`ImageFolder`](https://huggingface.co/docs/datasets/image_load#imagefolder) feature, which creates an `image` column containing the PIL-encoded images.
You can use the `data_dir` or `data_files` parameters to specify the location of the dataset. The `data_files` parameter supports mapping specific files to dataset splits like `train` or `test`:
```python
from datasets import load_dataset
# example 1: local folder
dataset = load_dataset("imagefolder", data_dir="path_to_your_folder")
# example 2: local files (supported formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset("imagefolder", data_files="path_to_zip_file")
# example 3: remote files (supported formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset(
"imagefolder",
data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip",
)
# example 4: providing several splits
dataset = load_dataset(
"imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]}
)
```
Then use the [`~datasets.Dataset.push_to_hub`] method to upload the dataset to the Hub:
```python
# assuming you have ran the huggingface-cli login command in a terminal
dataset.push_to_hub("name_of_your_dataset")
# if you want to push to a private repo, simply pass private=True:
dataset.push_to_hub("name_of_your_dataset", private=True)
```
Now the dataset is available for training by passing the dataset name to the `--dataset_name` argument:
```bash
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \
--dataset_name="name_of_your_dataset" \
<other-arguments>
```
## Next steps
Now that you've created a dataset, you can plug it into the `train_data_dir` (if your dataset is local) or `dataset_name` (if your dataset is on the Hub) arguments of a training script.
For your next steps, feel free to try and use your dataset to train a model for [unconditional generation](uncondtional_training) or [text-to-image generation](text2image)!

View File

@@ -0,0 +1,303 @@
<!--Copyright 2023 Custom Diffusion authors The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Custom Diffusion training example
[Custom Diffusion](https://arxiv.org/abs/2212.04488) is a method to customize text-to-image models like Stable Diffusion given just a few (4~5) images of a subject.
The `train_custom_diffusion.py` script shows how to implement the training procedure and adapt it for stable diffusion.
This training example was contributed by [Nupur Kumari](https://nupurkmr9.github.io/) (one of the authors of Custom Diffusion).
## Running locally with PyTorch
### Installing the dependencies
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
Then cd into the [example folder](https://github.com/huggingface/diffusers/tree/main/examples/custom_diffusion)
```
cd examples/custom_diffusion
```
Now run
```bash
pip install -r requirements.txt
pip install clip-retrieval
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
Or for a default accelerate configuration without answering questions about your environment
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell e.g. a notebook
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
### Cat example 😺
Now let's get our dataset. Download dataset from [here](https://www.cs.cmu.edu/~custom-diffusion/assets/data.zip) and unzip it. To use your own dataset, take a look at the [Create a dataset for training](create_dataset) guide.
We also collect 200 real images using `clip-retrieval` which are combined with the target images in the training dataset as a regularization. This prevents overfitting to the the given target image. The following flags enable the regularization `with_prior_preservation`, `real_prior` with `prior_loss_weight=1.`.
The `class_prompt` should be the category name same as target image. The collected real images are with text captions similar to the `class_prompt`. The retrieved image are saved in `class_data_dir`. You can disable `real_prior` to use generated images as regularization. To collect the real images use this command first before training.
```bash
pip install clip-retrieval
python retrieve.py --class_prompt cat --class_data_dir real_reg/samples_cat --num_class_images 200
```
**___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___**
The script creates and saves model checkpoints and a `pytorch_custom_diffusion_weights.bin` file in your repository.
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export OUTPUT_DIR="path-to-save-model"
export INSTANCE_DIR="./data/cat"
accelerate launch train_custom_diffusion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--class_data_dir=./real_reg/samples_cat/ \
--with_prior_preservation --real_prior --prior_loss_weight=1.0 \
--class_prompt="cat" --num_class_images=200 \
--instance_prompt="photo of a <new1> cat" \
--resolution=512 \
--train_batch_size=2 \
--learning_rate=1e-5 \
--lr_warmup_steps=0 \
--max_train_steps=250 \
--scale_lr --hflip \
--modifier_token "<new1>" \
--push_to_hub
```
**Use `--enable_xformers_memory_efficient_attention` for faster training with lower VRAM requirement (16GB per GPU). Follow [this guide](https://github.com/facebookresearch/xformers) for installation instructions.**
To track your experiments using Weights and Biases (`wandb`) and to save intermediate results (whcih we HIGHLY recommend), follow these steps:
* Install `wandb`: `pip install wandb`.
* Authorize: `wandb login`.
* Then specify a `validation_prompt` and set `report_to` to `wandb` while launching training. You can also configure the following related arguments:
* `num_validation_images`
* `validation_steps`
Here is an example command:
```bash
accelerate launch train_custom_diffusion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--class_data_dir=./real_reg/samples_cat/ \
--with_prior_preservation --real_prior --prior_loss_weight=1.0 \
--class_prompt="cat" --num_class_images=200 \
--instance_prompt="photo of a <new1> cat" \
--resolution=512 \
--train_batch_size=2 \
--learning_rate=1e-5 \
--lr_warmup_steps=0 \
--max_train_steps=250 \
--scale_lr --hflip \
--modifier_token "<new1>" \
--validation_prompt="<new1> cat sitting in a bucket" \
--report_to="wandb" \
--push_to_hub
```
Here is an example [Weights and Biases page](https://wandb.ai/sayakpaul/custom-diffusion/runs/26ghrcau) where you can check out the intermediate results along with other training details.
If you specify `--push_to_hub`, the learned parameters will be pushed to a repository on the Hugging Face Hub. Here is an [example repository](https://huggingface.co/sayakpaul/custom-diffusion-cat).
### Training on multiple concepts 🐱🪵
Provide a [json](https://github.com/adobe-research/custom-diffusion/blob/main/assets/concept_list.json) file with the info about each concept, similar to [this](https://github.com/ShivamShrirao/diffusers/blob/main/examples/dreambooth/train_dreambooth.py).
To collect the real images run this command for each concept in the json file.
```bash
pip install clip-retrieval
python retrieve.py --class_prompt {} --class_data_dir {} --num_class_images 200
```
And then we're ready to start training!
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export OUTPUT_DIR="path-to-save-model"
accelerate launch train_custom_diffusion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--output_dir=$OUTPUT_DIR \
--concepts_list=./concept_list.json \
--with_prior_preservation --real_prior --prior_loss_weight=1.0 \
--resolution=512 \
--train_batch_size=2 \
--learning_rate=1e-5 \
--lr_warmup_steps=0 \
--max_train_steps=500 \
--num_class_images=200 \
--scale_lr --hflip \
--modifier_token "<new1>+<new2>" \
--push_to_hub
```
Here is an example [Weights and Biases page](https://wandb.ai/sayakpaul/custom-diffusion/runs/3990tzkg) where you can check out the intermediate results along with other training details.
### Training on human faces
For fine-tuning on human faces we found the following configuration to work better: `learning_rate=5e-6`, `max_train_steps=1000 to 2000`, and `freeze_model=crossattn` with at least 15-20 images.
To collect the real images use this command first before training.
```bash
pip install clip-retrieval
python retrieve.py --class_prompt person --class_data_dir real_reg/samples_person --num_class_images 200
```
Then start training!
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export OUTPUT_DIR="path-to-save-model"
export INSTANCE_DIR="path-to-images"
accelerate launch train_custom_diffusion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--class_data_dir=./real_reg/samples_person/ \
--with_prior_preservation --real_prior --prior_loss_weight=1.0 \
--class_prompt="person" --num_class_images=200 \
--instance_prompt="photo of a <new1> person" \
--resolution=512 \
--train_batch_size=2 \
--learning_rate=5e-6 \
--lr_warmup_steps=0 \
--max_train_steps=1000 \
--scale_lr --hflip --noaug \
--freeze_model crossattn \
--modifier_token "<new1>" \
--enable_xformers_memory_efficient_attention \
--push_to_hub
```
## Inference
Once you have trained a model using the above command, you can run inference using the below command. Make sure to include the `modifier token` (e.g. \<new1\> in above example) in your prompt.
```python
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16).to("cuda")
pipe.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion("path-to-save-model", weight_name="<new1>.bin")
image = pipe(
"<new1> cat sitting in a bucket",
num_inference_steps=100,
guidance_scale=6.0,
eta=1.0,
).images[0]
image.save("cat.png")
```
It's possible to directly load these parameters from a Hub repository:
```python
import torch
from huggingface_hub.repocard import RepoCard
from diffusers import DiffusionPipeline
model_id = "sayakpaul/custom-diffusion-cat"
card = RepoCard.load(model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to("cuda")
pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")
image = pipe(
"<new1> cat sitting in a bucket",
num_inference_steps=100,
guidance_scale=6.0,
eta=1.0,
).images[0]
image.save("cat.png")
```
Here is an example of performing inference with multiple concepts:
```python
import torch
from huggingface_hub.repocard import RepoCard
from diffusers import DiffusionPipeline
model_id = "sayakpaul/custom-diffusion-cat-wooden-pot"
card = RepoCard.load(model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to("cuda")
pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")
pipe.load_textual_inversion(model_id, weight_name="<new2>.bin")
image = pipe(
"the <new1> cat sculpture in the style of a <new2> wooden pot",
num_inference_steps=100,
guidance_scale=6.0,
eta=1.0,
).images[0]
image.save("multi-subject.png")
```
Here, `cat` and `wooden pot` refer to the multiple concepts.
### Inference from a training checkpoint
You can also perform inference from one of the complete checkpoint saved during the training process, if you used the `--checkpointing_steps` argument.
TODO.
## Set grads to none
To save even more memory, pass the `--set_grads_to_none` argument to the script. This will set grads to None instead of zero. However, be aware that it changes certain behaviors, so if you start experiencing any problems, remove this argument.
More info: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html
## Experimental results
You can refer to [our webpage](https://www.cs.cmu.edu/~custom-diffusion/) that discusses our experiments in detail.

View File

@@ -0,0 +1,91 @@
# Distributed inference with multiple GPUs
On distributed setups, you can run inference across multiple GPUs with 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index) or [PyTorch Distributed](https://pytorch.org/tutorials/beginner/dist_overview.html), which is useful for generating with multiple prompts in parallel.
This guide will show you how to use 🤗 Accelerate and PyTorch Distributed for distributed inference.
## 🤗 Accelerate
🤗 [Accelerate](https://huggingface.co/docs/accelerate/index) is a library designed to make it easy to train or run inference across distributed setups. It simplifies the process of setting up the distributed environment, allowing you to focus on your PyTorch code.
To begin, create a Python file and initialize an [`accelerate.PartialState`] to create a distributed environment; your setup is automatically detected so you don't need to explicitly define the `rank` or `world_size`. Move the [`DiffusionPipeline`] to `distributed_state.device` to assign a GPU to each process.
Now use the [`~accelerate.PartialState.split_between_processes`] utility as a context manager to automatically distribute the prompts between the number of processes.
```py
from accelerate import PartialState
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
distributed_state = PartialState()
pipeline.to(distributed_state.device)
with distributed_state.split_between_processes(["a dog", "a cat"]) as prompt:
result = pipeline(prompt).images[0]
result.save(f"result_{distributed_state.process_index}.png")
```
Use the `--num_processes` argument to specify the number of GPUs to use, and call `accelerate launch` to run the script:
```bash
accelerate launch run_distributed.py --num_processes=2
```
<Tip>
To learn more, take a look at the [Distributed Inference with 🤗 Accelerate](https://huggingface.co/docs/accelerate/en/usage_guides/distributed_inference#distributed-inference-with-accelerate) guide.
</Tip>
## PyTorch Distributed
PyTorch supports [`DistributedDataParallel`](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) which enables data parallelism.
To start, create a Python file and import `torch.distributed` and `torch.multiprocessing` to set up the distributed process group and to spawn the processes for inference on each GPU. You should also initialize a [`DiffusionPipeline`]:
```py
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from diffusers import DiffusionPipeline
sd = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
```
You'll want to create a function to run inference; [`init_process_group`](https://pytorch.org/docs/stable/distributed.html?highlight=init_process_group#torch.distributed.init_process_group) handles creating a distributed environment with the type of backend to use, the `rank` of the current process, and the `world_size` or the number of processes participating. If you're running inference in parallel over 2 GPUs, then the `world_size` is 2.
Move the [`DiffusionPipeline`] to `rank` and use `get_rank` to assign a GPU to each process, where each process handles a different prompt:
```py
def run_inference(rank, world_size):
dist.init_process_group("nccl", rank=rank, world_size=world_size)
sd.to(rank)
if torch.distributed.get_rank() == 0:
prompt = "a dog"
elif torch.distributed.get_rank() == 1:
prompt = "a cat"
image = sd(prompt).images[0]
image.save(f"./{'_'.join(prompt)}.png")
```
To run the distributed inference, call [`mp.spawn`](https://pytorch.org/docs/stable/multiprocessing.html#torch.multiprocessing.spawn) to run the `run_inference` function on the number of GPUs defined in `world_size`:
```py
def main():
world_size = 2
mp.spawn(run_inference, args=(world_size,), nprocs=world_size, join=True)
if __name__ == "__main__":
main()
```
Once you've completed the inference script, use the `--nproc_per_node` argument to specify the number of GPUs to use and call `torchrun` to run the script:
```bash
torchrun run_distributed.py --nproc_per_node=2
```

View File

@@ -50,6 +50,22 @@ from accelerate.utils import write_basic_config
write_basic_config()
```
Finally, download a [few images of a dog](https://huggingface.co/datasets/diffusers/dog-example) to DreamBooth with:
```py
from huggingface_hub import snapshot_download
local_dir = "./dog"
snapshot_download(
"diffusers/dog-example",
local_dir=local_dir,
repo_type="dataset",
ignore_patterns=".gitattributes",
)
```
To use your own dataset, take a look at the [Create a dataset for training](create_dataset) guide.
## Finetuning
<Tip warning={true}>
@@ -60,11 +76,13 @@ DreamBooth finetuning is very sensitive to hyperparameters and easy to overfit.
<frameworkcontent>
<pt>
Let's try DreamBooth with a [few images of a dog](https://drive.google.com/drive/folders/1BO_dyz-p65qhBRRMRA4TbZ8qW4rB99JZ); download and save them to a directory and then set the `INSTANCE_DIR` environment variable to that path:
Set the `INSTANCE_DIR` environment variable to the path of the directory containing the dog images.
Specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`] argument. The `instance_prompt` argument is a text prompt that contains a unique identifier, such as `sks`, and the class the image belongs to, which in this example is `a photo of a sks dog`.
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export INSTANCE_DIR="./dog"
export OUTPUT_DIR="path_to_saved_model"
```
@@ -82,7 +100,8 @@ accelerate launch train_dreambooth.py \
--learning_rate=5e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=400
--max_train_steps=400 \
--push_to_hub
```
</pt>
<jax>
@@ -94,11 +113,13 @@ Before running the script, make sure you have the requirements installed:
pip install -U -r requirements.txt
```
Specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`] argument. The `instance_prompt` argument is a text prompt that contains a unique identifier, such as `sks`, and the class the image belongs to, which in this example is `a photo of a sks dog`.
Now you can launch the training script with the following command:
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="path-to-instance-images"
export INSTANCE_DIR="./dog"
export OUTPUT_DIR="path-to-save-model"
python train_dreambooth_flax.py \
@@ -109,7 +130,8 @@ python train_dreambooth_flax.py \
--resolution=512 \
--train_batch_size=1 \
--learning_rate=5e-6 \
--max_train_steps=400
--max_train_steps=400 \
--push_to_hub
```
</jax>
</frameworkcontent>
@@ -124,7 +146,7 @@ The authors recommend generating `num_epochs * num_samples` images for prior pre
<pt>
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"
@@ -143,13 +165,14 @@ accelerate launch train_dreambooth.py \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800
--max_train_steps=800 \
--push_to_hub
```
</pt>
<jax>
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="path-to-instance-images"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"
@@ -165,7 +188,8 @@ python train_dreambooth_flax.py \
--train_batch_size=1 \
--learning_rate=5e-6 \
--num_class_images=200 \
--max_train_steps=800
--max_train_steps=800 \
--push_to_hub
```
</jax>
</frameworkcontent>
@@ -186,7 +210,7 @@ Pass the `--train_text_encoder` argument to the training script to enable finetu
<pt>
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"
@@ -201,19 +225,20 @@ accelerate launch train_dreambooth.py \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--use_8bit_adam
--use_8bit_adam \
--gradient_checkpointing \
--learning_rate=2e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800
--max_train_steps=800 \
--push_to_hub
```
</pt>
<jax>
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="path-to-instance-images"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"
@@ -230,7 +255,8 @@ python train_dreambooth_flax.py \
--train_batch_size=1 \
--learning_rate=2e-6 \
--num_class_images=200 \
--max_train_steps=800
--max_train_steps=800 \
--push_to_hub
```
</jax>
</frameworkcontent>
@@ -349,7 +375,7 @@ Then pass the `--use_8bit_adam` option to the training script:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"
@@ -369,7 +395,8 @@ accelerate launch train_dreambooth.py \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800
--max_train_steps=800 \
--push_to_hub
```
### 12GB GPU
@@ -378,7 +405,7 @@ To run DreamBooth on a 12GB GPU, you'll need to enable gradient checkpointing, t
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path-to-instance-images"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"
@@ -400,7 +427,8 @@ accelerate launch train_dreambooth.py \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800
--max_train_steps=800 \
--push_to_hub
```
### 8 GB GPU
@@ -425,7 +453,7 @@ Launch training with the following command:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export INSTANCE_DIR="./dog"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"
@@ -446,7 +474,8 @@ accelerate launch train_dreambooth.py \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800 \
--mixed_precision=fp16
--mixed_precision=fp16 \
--push_to_hub
```
## Inference
@@ -470,3 +499,207 @@ image.save("dog-bucket.png")
```
You may also run inference from any of the [saved training checkpoints](#inference-from-a-saved-checkpoint).
## IF
You can use the lora and full dreambooth scripts to train the text to image [IF model](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0) and the stage II upscaler
[IF model](https://huggingface.co/DeepFloyd/IF-II-L-v1.0).
Note that IF has a predicted variance, and our finetuning scripts only train the models predicted error, so for finetuned IF models we switch to a fixed
variance schedule. The full finetuning scripts will update the scheduler config for the full saved model. However, when loading saved LoRA weights, you
must also update the pipeline's scheduler config.
```py
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0")
pipe.load_lora_weights("<lora weights path>")
# Update scheduler config to fixed variance schedule
pipe.scheduler = pipe.scheduler.__class__.from_config(pipe.scheduler.config, variance_type="fixed_small")
```
Additionally, a few alternative cli flags are needed for IF.
`--resolution=64`: IF is a pixel space diffusion model. In order to operate on un-compressed pixels, the input images are of a much smaller resolution.
`--pre_compute_text_embeddings`: IF uses [T5](https://huggingface.co/docs/transformers/model_doc/t5) for its text encoder. In order to save GPU memory, we pre compute all text embeddings and then de-allocate
T5.
`--tokenizer_max_length=77`: T5 has a longer default text length, but the default IF encoding procedure uses a smaller number.
`--text_encoder_use_attention_mask`: T5 passes the attention mask to the text encoder.
### Tips and Tricks
We find LoRA to be sufficient for finetuning the stage I model as the low resolution of the model makes representing finegrained detail hard regardless.
For common and/or not-visually complex object concepts, you can get away with not-finetuning the upscaler. Just be sure to adjust the prompt passed to the
upscaler to remove the new token from the instance prompt. I.e. if your stage I prompt is "a sks dog", use "a dog" for your stage II prompt.
For finegrained detail like faces that aren't present in the original training set, we find that full finetuning of the stage II upscaler is better than
LoRA finetuning stage II.
For finegrained detail like faces, we find that lower learning rates along with larger batch sizes work best.
For stage II, we find that lower learning rates are also needed.
We found experimentally that the DDPM scheduler with the default larger number of denoising steps to sometimes work better than the DPM Solver scheduler
used in the training scripts.
### Stage II additional validation images
The stage II validation requires images to upscale, we can download a downsized version of the training set:
```py
from huggingface_hub import snapshot_download
local_dir = "./dog_downsized"
snapshot_download(
"diffusers/dog-example-downsized",
local_dir=local_dir,
repo_type="dataset",
ignore_patterns=".gitattributes",
)
```
### IF stage I LoRA Dreambooth
This training configuration requires ~28 GB VRAM.
```sh
export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_dog_lora"
accelerate launch train_dreambooth_lora.py \
--report_to wandb \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a sks dog" \
--resolution=64 \
--train_batch_size=4 \
--gradient_accumulation_steps=1 \
--learning_rate=5e-6 \
--scale_lr \
--max_train_steps=1200 \
--validation_prompt="a sks dog" \
--validation_epochs=25 \
--checkpointing_steps=100 \
--pre_compute_text_embeddings \
--tokenizer_max_length=77 \
--text_encoder_use_attention_mask
```
### IF stage II LoRA Dreambooth
`--validation_images`: These images are upscaled during validation steps.
`--class_labels_conditioning=timesteps`: Pass additional conditioning to the UNet needed for stage II.
`--learning_rate=1e-6`: Lower learning rate than stage I.
`--resolution=256`: The upscaler expects higher resolution inputs
```sh
export MODEL_NAME="DeepFloyd/IF-II-L-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_dog_upscale"
export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png"
python train_dreambooth_lora.py \
--report_to wandb \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a sks dog" \
--resolution=256 \
--train_batch_size=4 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-6 \
--max_train_steps=2000 \
--validation_prompt="a sks dog" \
--validation_epochs=100 \
--checkpointing_steps=500 \
--pre_compute_text_embeddings \
--tokenizer_max_length=77 \
--text_encoder_use_attention_mask \
--validation_images $VALIDATION_IMAGES \
--class_labels_conditioning=timesteps
```
### IF Stage I Full Dreambooth
`--skip_save_text_encoder`: When training the full model, this will skip saving the entire T5 with the finetuned model. You can still load the pipeline
with a T5 loaded from the original model.
`use_8bit_adam`: Due to the size of the optimizer states, we recommend training the full XL IF model with 8bit adam.
`--learning_rate=1e-7`: For full dreambooth, IF requires very low learning rates. With higher learning rates model quality will degrade. Note that it is
likely the learning rate can be increased with larger batch sizes.
Using 8bit adam and a batch size of 4, the model can be trained in ~48 GB VRAM.
```sh
export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_if"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \
--resolution=64 \
--train_batch_size=4 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-7 \
--max_train_steps=150 \
--validation_prompt "a photo of sks dog" \
--validation_steps 25 \
--text_encoder_use_attention_mask \
--tokenizer_max_length 77 \
--pre_compute_text_embeddings \
--use_8bit_adam \
--set_grads_to_none \
--skip_save_text_encoder \
--push_to_hub
```
### IF Stage II Full Dreambooth
`--learning_rate=5e-6`: With a smaller effective batch size of 4, we found that we required learning rates as low as
1e-8.
`--resolution=256`: The upscaler expects higher resolution inputs
`--train_batch_size=2` and `--gradient_accumulation_steps=6`: We found that full training of stage II particularly with
faces required large effective batch sizes.
```sh
export MODEL_NAME="DeepFloyd/IF-II-L-v1.0"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="dreambooth_dog_upscale"
export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png"
accelerate launch train_dreambooth.py \
--report_to wandb \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a sks dog" \
--resolution=256 \
--train_batch_size=2 \
--gradient_accumulation_steps=6 \
--learning_rate=5e-6 \
--max_train_steps=2000 \
--validation_prompt="a sks dog" \
--validation_steps=150 \
--checkpointing_steps=500 \
--pre_compute_text_embeddings \
--tokenizer_max_length=77 \
--text_encoder_use_attention_mask \
--validation_images $VALIDATION_IMAGES \
--class_labels_conditioning timesteps \
--push_to_hub
```

View File

@@ -24,7 +24,7 @@ The output is an "edited" image that reflects the edit instruction applied on th
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/output-gs%407-igs%401-steps%4050.png" alt="instructpix2pix-output" width=600/>
</p>
The `train_instruct_pix2pix.py` script shows how to implement the training procedure and adapt it for Stable Diffusion.
The `train_instruct_pix2pix.py` script (you can find the it [here](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py)) shows how to implement the training procedure and adapt it for Stable Diffusion.
***Disclaimer: Even though `train_instruct_pix2pix.py` implements the InstructPix2Pix
training procedure while being faithful to the [original implementation](https://github.com/timothybrooks/instruct-pix2pix) we have only tested it on a [small-scale dataset](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples). This can impact the end results. For better results, we recommend longer training runs with a larger dataset. [Here](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered) you can find a large dataset for InstructPix2Pix training.***
@@ -44,7 +44,12 @@ cd diffusers
pip install -e .
```
Then cd in the example folder and run
Then cd in the example folder
```bash
cd examples/instruct_pix2pix
```
Now run
```bash
pip install -r requirements.txt
```
@@ -72,17 +77,16 @@ write_basic_config()
### Toy example
As mentioned before, we'll use a [small toy dataset](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples) for training. The dataset
is a smaller version of the [original dataset](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered) used in the InstructPix2Pix paper.
is a smaller version of the [original dataset](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered) used in the InstructPix2Pix paper. To use your own dataset, take a look at the [Create a dataset for training](create_dataset) guide.
Configure environment variables such as the dataset identifier and the Stable Diffusion
checkpoint:
Specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`](https://huggingface.co/docs/diffusers/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path) argument. You'll also need to specify the dataset name in `DATASET_ID`:
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export DATASET_ID="fusing/instructpix2pix-1000-samples"
```
Now, we can launch training:
Now, we can launch training. The script saves all the components (`feature_extractor`, `scheduler`, `text_encoder`, `unet`, etc) in a subfolder in your repository.
```bash
accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \
@@ -96,7 +100,8 @@ accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \
--learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=0 \
--conditioning_dropout_prob=0.05 \
--mixed_precision=fp16 \
--seed=42
--seed=42 \
--push_to_hub
```
Additionally, we support performing validation inference to monitor training progress
@@ -117,7 +122,8 @@ accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \
--val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \
--validation_prompt="make the mountains snowy" \
--seed=42 \
--report_to=wandb
--report_to=wandb \
--push_to_hub
```
We recommend this type of validation as it can be useful for model debugging. Note that you need `wandb` installed to use this. You can install `wandb` by running `pip install wandb`.
@@ -126,6 +132,28 @@ accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \
***Note: In the original paper, the authors observed that even when the model is trained with an image resolution of 256x256, it generalizes well to bigger resolutions such as 512x512. This is likely because of the larger dataset they used during training.***
## Training with multiple GPUs
`accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch)
for running distributed training with `accelerate`. Here is an example command:
```bash
accelerate launch --mixed_precision="fp16" --multi_gpu train_instruct_pix2pix.py \
--pretrained_model_name_or_path=runwayml/stable-diffusion-v1-5 \
--dataset_name=sayakpaul/instructpix2pix-1000-samples \
--use_ema \
--enable_xformers_memory_efficient_attention \
--resolution=512 --random_flip \
--train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \
--max_train_steps=15000 \
--checkpointing_steps=5000 --checkpoints_total_limit=1 \
--learning_rate=5e-05 --lr_warmup_steps=0 \
--conditioning_dropout_prob=0.05 \
--mixed_precision=fp16 \
--seed=42 \
--push_to_hub
```
## Inference
Once training is complete, we can perform inference:
@@ -179,3 +207,5 @@ speed and quality during performance:
Particularly, `image_guidance_scale` and `guidance_scale` can have a profound impact
on the generated ("edited") image (see [here](https://twitter.com/RisingSayak/status/1628392199196151808?s=20) for an example).
If you're looking for some interesting ways to use the InstructPix2Pix training methodology, we welcome you to check out this blog post: [Instruction-tuning Stable Diffusion with InstructPix2Pix](https://huggingface.co/blog/instruction-tuning-sd).

View File

@@ -16,7 +16,8 @@ specific language governing permissions and limitations under the License.
<Tip warning={true}>
Currently, LoRA is only supported for the attention layers of the [`UNet2DConditionalModel`].
Currently, LoRA is only supported for the attention layers of the [`UNet2DConditionalModel`]. We also
support fine-tuning the text encoder for DreamBooth with LoRA in a limited capacity. Fine-tuning the text encoder for DreamBooth generally yields better results, but it can increase compute usage.
</Tip>
@@ -50,7 +51,9 @@ Finetuning a model like Stable Diffusion, which has billions of parameters, can
Let's finetune [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) on the [Pokémon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate your own Pokémon.
To start, make sure you have the `MODEL_NAME` and `DATASET_NAME` environment variables set. The `OUTPUT_DIR` and `HUB_MODEL_ID` variables are optional and specify where to save the model to on the Hub:
Specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`](https://huggingface.co/docs/diffusers/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path) argument. You'll also need to set the `DATASET_NAME` environment variable to the name of the dataset you want to train on. To use your own dataset, take a look at the [Create a dataset for training](create_dataset) guide.
The `OUTPUT_DIR` and `HUB_MODEL_ID` variables are optional and specify where to save the model to on the Hub:
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
@@ -65,7 +68,7 @@ There are some flags to be aware of before you start training:
* `--report_to=wandb` reports and logs the training results to your Weights & Biases dashboard (as an example, take a look at this [report](https://wandb.ai/pcuenq/text2image-fine-tune/runs/b4k1w0tn?workspace=user-pcuenq)).
* `--learning_rate=1e-04`, you can afford to use a higher learning rate than you normally would with LoRA.
Now you're ready to launch the training (you can find the full training script [here](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py)):
Now you're ready to launch the training (you can find the full training script [here](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py)). Training takes about 5 hours on a 2080 Ti GPU with 11GB of RAM, and it'll create and save model checkpoints and the `pytorch_lora_weights` in your repository.
```bash
accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \
@@ -111,7 +114,7 @@ Load the LoRA weights from your finetuned model *on top of the base model weight
</Tip>
```py
>>> pipe.unet.load_attn_procs(model_path)
>>> pipe.unet.load_attn_procs(lora_model_path)
>>> pipe.to("cuda")
# use half the weights from the LoRA finetuned model and half the weights from the base model
@@ -124,6 +127,26 @@ Load the LoRA weights from your finetuned model *on top of the base model weight
>>> image.save("blue_pokemon.png")
```
<Tip>
If you are loading the LoRA parameters from the Hub and if the Hub repository has
a `base_model` tag (such as [this](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4/blob/main/README.md?code=true#L4)), then
you can do:
```py
from huggingface_hub.repocard import RepoCard
lora_model_id = "sayakpaul/sd-model-finetuned-lora-t4"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16)
...
```
</Tip>
## DreamBooth
[DreamBooth](https://arxiv.org/abs/2208.12242) is a finetuning technique for personalizing a text-to-image model like Stable Diffusion to generate photorealistic images of a subject in different contexts, given a few images of the subject. However, DreamBooth is very sensitive to hyperparameters and it is easy to overfit. Some important hyperparameters to consider include those that affect the training time (learning rate, number of training steps), and inference time (number of steps, scheduler type).
@@ -136,9 +159,11 @@ Load the LoRA weights from your finetuned model *on top of the base model weight
### Training[[dreambooth-training]]
Let's finetune [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) with DreamBooth and LoRA with some 🐶 [dog images](https://drive.google.com/drive/folders/1BO_dyz-p65qhBRRMRA4TbZ8qW4rB99JZ). Download and save these images to a directory.
Let's finetune [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) with DreamBooth and LoRA with some 🐶 [dog images](https://drive.google.com/drive/folders/1BO_dyz-p65qhBRRMRA4TbZ8qW4rB99JZ). Download and save these images to a directory. To use your own dataset, take a look at the [Create a dataset for training](create_dataset) guide.
To start, make sure you have the `MODEL_NAME` and `INSTANCE_DIR` (path to directory containing images) environment variables set. The `OUTPUT_DIR` variables is optional and specifies where to save the model to on the Hub:
To start, specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`](https://huggingface.co/docs/diffusers/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path) argument. You'll also need to set `INSTANCE_DIR` to the path of the directory containing the images.
The `OUTPUT_DIR` variables is optional and specifies where to save the model to on the Hub:
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
@@ -152,7 +177,11 @@ There are some flags to be aware of before you start training:
* `--report_to=wandb` reports and logs the training results to your Weights & Biases dashboard (as an example, take a look at this [report](https://wandb.ai/pcuenq/text2image-fine-tune/runs/b4k1w0tn?workspace=user-pcuenq)).
* `--learning_rate=1e-04`, you can afford to use a higher learning rate than you normally would with LoRA.
Now you're ready to launch the training (you can find the full training script [here](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py)):
Now you're ready to launch the training (you can find the full training script [here](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py)). The script creates and saves model checkpoints and the `pytorch_lora_weights.bin` file in your repository.
It's also possible to additionally fine-tune the text encoder with LoRA. This, in most cases, leads
to better results with a slight increase in the compute. To allow fine-tuning the text encoder with LoRA,
specify the `--train_text_encoder` while launching the `train_dreambooth_lora.py` script.
```bash
accelerate launch train_dreambooth_lora.py \
@@ -173,7 +202,7 @@ accelerate launch train_dreambooth_lora.py \
--validation_epochs=50 \
--seed="0" \
--push_to_hub
```
```
### Inference[[dreambooth-inference]]
@@ -197,7 +226,7 @@ Load the LoRA weights from your finetuned DreamBooth model *on top of the base m
</Tip>
```py
>>> pipe.unet.load_attn_procs(model_path)
>>> pipe.unet.load_attn_procs(lora_model_path)
>>> pipe.to("cuda")
# use half the weights from the LoRA finetuned model and half the weights from the base model
@@ -211,4 +240,115 @@ Load the LoRA weights from your finetuned DreamBooth model *on top of the base m
>>> image = pipe("A picture of a sks dog in a bucket.", num_inference_steps=25, guidance_scale=7.5).images[0]
>>> image.save("bucket-dog.png")
```
If you used `--train_text_encoder` during training, then use `pipe.load_lora_weights()` to load the LoRA
weights. For example:
```python
from huggingface_hub.repocard import RepoCard
from diffusers import StableDiffusionPipeline
import torch
lora_model_id = "sayakpaul/dreambooth-text-encoder-test"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.load_lora_weights(lora_model_id)
image = pipe("A picture of a sks dog in a bucket", num_inference_steps=25).images[0]
```
<Tip>
If your LoRA parameters involve the UNet as well as the Text Encoder, then passing
`cross_attention_kwargs={"scale": 0.5}` will apply the `scale` value to both the UNet
and the Text Encoder.
</Tip>
Note that the use of [`~diffusers.loaders.LoraLoaderMixin.load_lora_weights`] is preferred to [`~diffusers.loaders.UNet2DConditionLoadersMixin.load_attn_procs`] for loading LoRA parameters. This is because
[`~diffusers.loaders.LoraLoaderMixin.load_lora_weights`] can handle the following situations:
* LoRA parameters that don't have separate identifiers for the UNet and the text encoder (such as [`"patrickvonplaten/lora_dreambooth_dog_example"`](https://huggingface.co/patrickvonplaten/lora_dreambooth_dog_example)). So, you can just do:
```py
pipe.load_lora_weights(lora_model_path)
```
* LoRA parameters that have separate identifiers for the UNet and the text encoder such as: [`"sayakpaul/dreambooth"`](https://huggingface.co/sayakpaul/dreambooth).
**Note** that it is possible to provide a local directory path to [`~diffusers.loaders.LoraLoaderMixin.load_lora_weights`] as well as [`~diffusers.loaders.UNet2DConditionLoadersMixin.load_attn_procs`]. To know about the supported inputs,
refer to the respective docstrings.
## Supporting A1111 themed LoRA checkpoints from Diffusers
To provide seamless interoperability with A1111 to our users, we support loading A1111 formatted
LoRA checkpoints using [`~diffusers.loaders.LoraLoaderMixin.load_lora_weights`] in a limited capacity.
In this section, we explain how to load an A1111 formatted LoRA checkpoint from [CivitAI](https://civitai.com/)
in Diffusers and perform inference with it.
First, download a checkpoint. We'll use
[this one](https://civitai.com/models/13239/light-and-shadow) for demonstration purposes.
```bash
wget https://civitai.com/api/download/models/15603 -O light_and_shadow.safetensors
```
Next, we initialize a [`~DiffusionPipeline`]:
```python
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
pipeline = StableDiffusionPipeline.from_pretrained(
"gsdf/Counterfeit-V2.5", torch_dtype=torch.float16, safety_checker=None
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config, use_karras_sigmas=True
)
```
We then load the checkpoint downloaded from CivitAI:
```python
pipeline.load_lora_weights(".", weight_name="light_and_shadow.safetensors")
```
<Tip warning={true}>
If you're loading a checkpoint in the `safetensors` format, please ensure you have `safetensors` installed.
</Tip>
And then it's time for running inference:
```python
prompt = "masterpiece, best quality, 1girl, at dusk"
negative_prompt = ("(low quality, worst quality:1.4), (bad anatomy), (inaccurate limb:1.2), "
"bad composition, inaccurate eyes, extra digit, fewer digits, (extra arms:1.2), large breasts")
images = pipeline(prompt=prompt,
negative_prompt=negative_prompt,
width=512,
height=768,
num_inference_steps=15,
num_images_per_prompt=4,
generator=torch.manual_seed(0)
).images
```
Below is a comparison between the LoRA and the non-LoRA results:
![lora_non_lora](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lora_non_lora_comparison.png)
You have a similar checkpoint stored on the Hugging Face Hub, you can load it
directly with [`~diffusers.loaders.LoraLoaderMixin.load_lora_weights`] like so:
```python
lora_model_id = "sayakpaul/civitai-light-shadow-lora"
lora_filename = "light_and_shadow.safetensors"
pipeline.load_lora_weights(lora_model_id, weight_name=lora_filename)
```

View File

@@ -39,6 +39,8 @@ Training examples show how to pretrain or fine-tune diffusion models for a varie
- [Dreambooth](./dreambooth)
- [LoRA Support](./lora)
- [ControlNet](./controlnet)
- [InstructPix2Pix](./instructpix2pix)
- [Custom Diffusion](./custom_diffusion)
If possible, please [install xFormers](../optimization/xformers) for memory efficient attention. This could help make your training faster and less memory intensive.
@@ -50,6 +52,8 @@ If possible, please [install xFormers](../optimization/xformers) for memory effi
| [**Dreambooth**](./dreambooth) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb)
| [**Training with LoRA**](./lora) | ✅ | - | - |
| [**ControlNet**](./controlnet) | ✅ | ✅ | - |
| [**InstructPix2Pix**](./instructpix2pix) | ✅ | ✅ | - |
| [**Custom Diffusion**](./custom_diffusion) | ✅ | ✅ | - |
## Community

View File

@@ -72,15 +72,29 @@ To load a checkpoint to resume training, pass the argument `--resume_from_checkp
<frameworkcontent>
<pt>
Launch the [PyTorch training script](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) for a fine-tuning run on the [Pokémon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset like this:
Launch the [PyTorch training script](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) for a fine-tuning run on the [Pokémon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset like this.
<literalinclude>
{"path": "../../../../examples/text_to_image/README.md",
"language": "bash",
"start-after": "accelerate_snippet_start",
"end-before": "accelerate_snippet_end",
"dedent": 0}
</literalinclude>
Specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`](https://huggingface.co/docs/diffusers/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path) argument.
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export dataset_name="lambdalabs/pokemon-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name \
--use_ema \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
--output_dir="sd-pokemon-model" \
--push_to_hub
```
To finetune on your own dataset, prepare the dataset according to the format required by 🤗 [Datasets](https://huggingface.co/docs/datasets/index). You can [upload your dataset to the Hub](https://huggingface.co/docs/datasets/image_dataset#upload-dataset-to-the-hub), or you can [prepare a local folder with your files](https://huggingface.co/docs/datasets/image_dataset#imagefolder).
@@ -103,9 +117,38 @@ accelerate launch train_text_to_image.py \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
--output_dir=${OUTPUT_DIR}
--lr_scheduler="constant"
--lr_warmup_steps=0 \
--output_dir=${OUTPUT_DIR} \
--push_to_hub
```
#### Training with multiple GPUs
`accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch)
for running distributed training with `accelerate`. Here is an example command:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export dataset_name="lambdalabs/pokemon-blip-captions"
accelerate launch --mixed_precision="fp16" --multi_gpu train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name \
--use_ema \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--output_dir="sd-pokemon-model" \
--push_to_hub
```
</pt>
<jax>
With Flax, it's possible to train a Stable Diffusion model faster on TPUs and GPUs thanks to [@duongna211](https://github.com/duongna21). This is very efficient on TPU hardware but works great on GPUs too. The Flax training script doesn't support features like gradient checkpointing or gradient accumulation yet, so you'll need a GPU with at least 30GB of memory or a TPU v3.
@@ -116,6 +159,8 @@ Before running the script, make sure you have the requirements installed:
pip install -U -r requirements_flax.txt
```
Specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`](https://huggingface.co/docs/diffusers/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path) argument.
Now you can launch the [Flax training script](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_flax.py) like this:
```bash
@@ -130,7 +175,8 @@ python train_text_to_image_flax.py \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--output_dir="sd-pokemon-model"
--output_dir="sd-pokemon-model" \
--push_to_hub
```
To finetune on your own dataset, prepare the dataset according to the format required by 🤗 [Datasets](https://huggingface.co/docs/datasets/index). You can [upload your dataset to the Hub](https://huggingface.co/docs/datasets/image_dataset#upload-dataset-to-the-hub), or you can [prepare a local folder with your files](https://huggingface.co/docs/datasets/image_dataset#imagefolder).
@@ -150,7 +196,8 @@ python train_text_to_image_flax.py \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--output_dir="sd-pokemon-model"
--output_dir="sd-pokemon-model" \
--push_to_hub
```
</jax>
</frameworkcontent>

View File

@@ -1,4 +1,4 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -81,9 +81,20 @@ To resume training from a saved checkpoint, pass the following argument to the t
## Finetuning
For your training dataset, download these [images of a cat statue](https://drive.google.com/drive/folders/1fmJMs25nxS_rSNqS5hTcRdLem_YQXbq5) and store them in a directory.
For your training dataset, download these [images of a cat toy](https://huggingface.co/datasets/diffusers/cat_toy_example) and store them in a directory. To use your own dataset, take a look at the [Create a dataset for training](create_dataset) guide.
Set the `MODEL_NAME` environment variable to the model repository id, and the `DATA_DIR` environment variable to the path of the directory containing the images. Now you can launch the [training script](https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py):
```py
from huggingface_hub import snapshot_download
local_dir = "./cat"
snapshot_download(
"diffusers/cat_toy_example", local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes"
)
```
Specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`](https://huggingface.co/docs/diffusers/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path) argument, and the `DATA_DIR` environment variable to the path of the directory containing the images.
Now you can launch the [training script](https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py). The script creates and saves the following files to your repository: `learned_embeds.bin`, `token_identifier.txt`, and `type_of_concept.txt`.
<Tip>
@@ -95,7 +106,7 @@ Set the `MODEL_NAME` environment variable to the model repository id, and the `D
<pt>
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export DATA_DIR="path-to-dir-containing-images"
export DATA_DIR="./cat"
accelerate launch textual_inversion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -109,8 +120,21 @@ accelerate launch textual_inversion.py \
--learning_rate=5.0e-04 --scale_lr \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--output_dir="textual_inversion_cat"
--output_dir="textual_inversion_cat" \
--push_to_hub
```
<Tip>
💡 If you want to increase the trainable capacity, you can associate your placeholder token, *e.g.* `<cat-toy>` to
multiple embedding vectors. This can help the model to better capture the style of more (complex) images.
To enable training multiple embedding vectors, simply pass:
```bash
--num_vectors=5
```
</Tip>
</pt>
<jax>
If you have access to TPUs, try out the [Flax training script](https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion_flax.py) to train even faster (this'll also work for GPUs). With the same configuration settings, the Flax training script should be at least 70% faster than the PyTorch training script! ⚡️
@@ -121,11 +145,13 @@ Before you begin, make sure you install the Flax specific dependencies:
pip install -U -r requirements_flax.txt
```
Specify the `MODEL_NAME` environment variable (either a Hub model repository id or a path to the directory containing the model weights) and pass it to the [`pretrained_model_name_or_path`](https://huggingface.co/docs/diffusers/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path) argument.
Then you can launch the [training script](https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion_flax.py):
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export DATA_DIR="path-to-dir-containing-images"
export DATA_DIR="./cat"
python textual_inversion_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
@@ -136,7 +162,8 @@ python textual_inversion_flax.py \
--train_batch_size=1 \
--max_train_steps=3000 \
--learning_rate=5.0e-04 --scale_lr \
--output_dir="textual_inversion_cat"
--output_dir="textual_inversion_cat" \
--push_to_hub
```
</jax>
</frameworkcontent>
@@ -220,7 +247,7 @@ from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
model_path = "path-to-your-trained-model"
pipe, params = FlaxStableDiffusionPipeline.from_pretrained(model_path, dtype=jax.numpy.bfloat16)
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(model_path, dtype=jax.numpy.bfloat16)
prompt = "A <cat-toy> backpack"
prng_seed = jax.random.PRNGKey(0)

View File

@@ -74,7 +74,9 @@ The full training state is saved in a subfolder in the `output_dir` every 500 st
## Finetuning
You're ready to launch the [training script](https://github.com/huggingface/diffusers/blob/main/examples/unconditional_image_generation/train_unconditional.py) now! Specify the dataset name to finetune on with the `--dataset_name` argument and then save it to the path in `--output_dir`.
You're ready to launch the [training script](https://github.com/huggingface/diffusers/blob/main/examples/unconditional_image_generation/train_unconditional.py) now! Specify the dataset name to finetune on with the `--dataset_name` argument and then save it to the path in `--output_dir`. To use your own dataset, take a look at the [Create a dataset for training](create_dataset) guide.
The training script creates and saves a `diffusion_pytorch_model.bin` file in your repository.
<Tip>
@@ -122,80 +124,23 @@ accelerate launch train_unconditional.py \
<img src="https://user-images.githubusercontent.com/26864830/180248200-928953b4-db38-48db-b0c6-8b740fe6786f.png"/>
</div>
## Finetuning with your own data
### Training with multiple GPUs
There are two ways to finetune a model on your own dataset:
- provide your own folder of images to the `--train_data_dir` argument
- upload your dataset to the Hub and pass the dataset repository id to the `--dataset_name` argument.
<Tip>
💡 Learn more about how to create an image dataset for training in the [Create an image dataset](https://huggingface.co/docs/datasets/image_dataset) guide.
</Tip>
Below, we explain both in more detail.
### Provide the dataset as a folder
If you provide your own dataset as a folder, the script expects the following directory structure:
`accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch)
for running distributed training with `accelerate`. Here is an example command:
```bash
data_dir/xxx.png
data_dir/xxy.png
data_dir/[...]/xxz.png
```
Pass the path to the folder containing the images to the `--train_data_dir` argument and launch the training:
```bash
accelerate launch train_unconditional.py \
--train_data_dir <path-to-train-directory> \
<other-arguments>
```
Internally, the script uses the [`ImageFolder`](https://huggingface.co/docs/datasets/image_load#imagefolder) to automatically build a dataset from the folder.
### Upload your data to the Hub
<Tip>
💡 For more details and context about creating and uploading a dataset to the Hub, take a look at the [Image search with 🤗 Datasets](https://huggingface.co/blog/image-search-datasets) post.
</Tip>
To upload your dataset to the Hub, you can start by creating one with the [`ImageFolder`](https://huggingface.co/docs/datasets/image_load#imagefolder) feature, which creates an `image` column containing the PIL-encoded images, from 🤗 Datasets:
```python
from datasets import load_dataset
# example 1: local folder
dataset = load_dataset("imagefolder", data_dir="path_to_your_folder")
# example 2: local files (supported formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset("imagefolder", data_files="path_to_zip_file")
# example 3: remote files (supported formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset(
"imagefolder",
data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip",
)
# example 4: providing several splits
dataset = load_dataset(
"imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]}
)
```
Then you can use the [`~datasets.Dataset.push_to_hub`] method to upload it to the Hub:
```python
# assuming you have ran the huggingface-cli login command in a terminal
dataset.push_to_hub("name_of_your_dataset")
# if you want to push to a private repo, simply pass private=True:
dataset.push_to_hub("name_of_your_dataset", private=True)
```
Now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the Hub.
accelerate launch --mixed_precision="fp16" --multi_gpu train_unconditional.py \
--dataset_name="huggan/pokemon" \
--resolution=64 --center_crop --random_flip \
--output_dir="ddpm-ema-pokemon-64" \
--train_batch_size=16 \
--num_epochs=100 \
--gradient_accumulation_steps=1 \
--use_ema \
--learning_rate=1e-4 \
--lr_warmup_steps=500 \
--mixed_precision="fp16" \
--logger="wandb" \
--push_to_hub
```

View File

@@ -407,9 +407,9 @@ Once training is complete, take a look at the final 🦋 images 🦋 generated b
## Next steps
Unconditional image generation is one example of a task that can be trained. You can explore other tasks and training techniques by visiting the [🧨 Diffusers Training Examples](./training/overview) page. Here are some examples of what you can learn:
Unconditional image generation is one example of a task that can be trained. You can explore other tasks and training techniques by visiting the [🧨 Diffusers Training Examples](../training/overview) page. Here are some examples of what you can learn:
* [Textual Inversion](./training/text_inversion), an algorithm that teaches a model a specific visual concept and integrates it into the generated image.
* [DreamBooth](./training/dreambooth), a technique for generating personalized images of a subject given several input images of the subject.
* [Guide](./training/text2image) to finetuning a Stable Diffusion model on your own dataset.
* [Guide](./training/lora) to using LoRA, a memory-efficient technique for finetuning really large models faster.
* [Textual Inversion](../training/text_inversion), an algorithm that teaches a model a specific visual concept and integrates it into the generated image.
* [DreamBooth](../training/dreambooth), a technique for generating personalized images of a subject given several input images of the subject.
* [Guide](../training/text2image) to finetuning a Stable Diffusion model on your own dataset.
* [Guide](../training/lora) to using LoRA, a memory-efficient technique for finetuning really large models faster.

View File

@@ -20,12 +20,12 @@ The [`DiffusionPipeline`] is the easiest way to use a pre-trained diffusion syst
Start by creating an instance of [`DiffusionPipeline`] and specify which pipeline [checkpoint](https://huggingface.co/models?library=diffusers&sort=downloads) you would like to download.
In this guide, you'll use [`DiffusionPipeline`] for text-to-image generation with [Latent Diffusion](https://huggingface.co/CompVis/ldm-text2im-large-256):
In this guide, you'll use [`DiffusionPipeline`] for text-to-image generation with [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5):
```python
>>> from diffusers import DiffusionPipeline
>>> generator = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")
>>> generator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
```
The [`DiffusionPipeline`] downloads and caches all modeling, tokenization, and scheduling components.

View File

@@ -10,17 +10,21 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# How to build a community pipeline
# How to contribute a community pipeline
*Note*: this page was built from the GitHub Issue on Community Pipelines [#841](https://github.com/huggingface/diffusers/issues/841).
<Tip>
Let's make an example!
Say you want to define a pipeline that just does a single forward pass to a U-Net and then calls a scheduler only once (Note, this doesn't make any sense from a scientific point of view, but only represents an example of how things work under the hood).
💡 Take a look at GitHub Issue [#841](https://github.com/huggingface/diffusers/issues/841) for more context about why we're adding community pipelines to help everyone easily share their work without being slowed down.
Cool! So you open your favorite IDE and start creating your pipeline 💻.
First, what model weights and configurations do we need?
We have a U-Net and a scheduler, so our pipeline should take a U-Net and a scheduler as an argument.
Also, as stated above, you'd like to be able to load weights and the scheduler config for Hub and share your code with others, so we'll inherit from `DiffusionPipeline`:
</Tip>
Community pipelines allow you to add any additional features you'd like on top of the [`DiffusionPipeline`]. The main benefit of building on top of the `DiffusionPipeline` is anyone can load and use your pipeline by only adding one more argument, making it super easy for the community to access.
This guide will show you how to create a community pipeline and explain how they work. To keep things simple, you'll create a "one-step" pipeline where the `UNet` does a single forward pass and calls the scheduler once.
## Initialize the pipeline
You should start by creating a `one_step_unet.py` file for your community pipeline. In this file, create a pipeline class that inherits from the [`DiffusionPipeline`] to be able to load model weights and the scheduler configuration from the Hub. The one-step pipeline needs a `UNet` and a scheduler, so you'll need to add these as arguments to the `__init__` function:
```python
from diffusers import DiffusionPipeline
@@ -32,50 +36,52 @@ class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
super().__init__()
```
Now, we must save the `unet` and `scheduler` in a config file so that you can save your pipeline with `save_pretrained`.
Therefore, make sure you add every component that is save-able to the `register_modules` function:
To ensure your pipeline and its components (`unet` and `scheduler`) can be saved with [`~DiffusionPipeline.save_pretrained`], add them to the `register_modules` function:
```python
from diffusers import DiffusionPipeline
import torch
```diff
from diffusers import DiffusionPipeline
import torch
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
+ self.register_modules(unet=unet, scheduler=scheduler)
```
Cool, the init is done! 🔥 Now, let's go into the forward pass, which we recommend defining as `__call__` . Here you're given all the creative freedom there is. For our amazing "one-step" pipeline, we simply create a random image and call the unet once and the scheduler once:
Cool, the `__init__` step is done and you can move to the forward pass now! 🔥
```python
from diffusers import DiffusionPipeline
import torch
## Define the forward pass
In the forward pass, which we recommend defining as `__call__`, you have complete creative freedom to add whatever feature you'd like. For our amazing one-step pipeline, create a random image and only call the `unet` and `scheduler` once by setting `timestep=1`:
```diff
from diffusers import DiffusionPipeline
import torch
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
self.register_modules(unet=unet, scheduler=scheduler)
def __call__(self):
image = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
)
timestep = 1
+ def __call__(self):
+ image = torch.randn(
+ (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
+ )
+ timestep = 1
model_output = self.unet(image, timestep).sample
scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
+ model_output = self.unet(image, timestep).sample
+ scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
return scheduler_output
+ return scheduler_output
```
Cool, that's it! 🚀 You can now run this pipeline by passing a `unet` and a `scheduler` to the init:
That's it! 🚀 You can now run this pipeline by passing a `unet` and `scheduler` to it:
```python
from diffusers import DDPMScheduler, Unet2DModel
from diffusers import DDPMScheduler, UNet2DModel
scheduler = DDPMScheduler()
unet = UNet2DModel()
@@ -85,7 +91,7 @@ pipeline = UnetSchedulerOneForwardPipeline(unet=unet, scheduler=scheduler)
output = pipeline()
```
But what's even better is that you can load pre-existing weights into the pipeline if they match exactly your pipeline structure. This is e.g. the case for [https://huggingface.co/google/ddpm-cifar10-32](https://huggingface.co/google/ddpm-cifar10-32) so that we can do the following:
But what's even better is you can load pre-existing weights into the pipeline if the pipeline structure is identical. For example, you can load the [`google/ddpm-cifar10-32`](https://huggingface.co/google/ddpm-cifar10-32) weights into the one-step pipeline:
```python
pipeline = UnetSchedulerOneForwardPipeline.from_pretrained("google/ddpm-cifar10-32")
@@ -93,33 +99,11 @@ pipeline = UnetSchedulerOneForwardPipeline.from_pretrained("google/ddpm-cifar10-
output = pipeline()
```
We want to share this amazing pipeline with the community, so we would open a PR request to add the following code under `one_step_unet.py` to [https://github.com/huggingface/diffusers/tree/main/examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) .
## Share your pipeline
```python
from diffusers import DiffusionPipeline
import torch
Open a Pull Request on the 🧨 Diffusers [repository](https://github.com/huggingface/diffusers) to add your awesome pipeline in `one_step_unet.py` to the [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) subfolder.
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
def __call__(self):
image = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
)
timestep = 1
model_output = self.unet(image, timestep).sample
scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
return scheduler_output
```
Our amazing pipeline got merged here: [#840](https://github.com/huggingface/diffusers/pull/840).
Now everybody that has `diffusers >= 0.4.0` installed can use our pipeline magically 🪄 as follows:
Once it is merged, anyone with `diffusers >= 0.4.0` installed can use this pipeline magically 🪄 by specifying it in the `custom_pipeline` argument:
```python
from diffusers import DiffusionPipeline
@@ -128,28 +112,59 @@ pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeli
pipe()
```
Another way to upload your custom_pipeline, besides sending a PR, is uploading the code that contains it to the Hugging Face Hub, [as exemplified here](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview#loading-custom-pipelines-from-the-hub).
Another way to share your community pipeline is to upload the `one_step_unet.py` file directly to your preferred [model repository](https://huggingface.co/docs/hub/models-uploading) on the Hub. Instead of specifying the `one_step_unet.py` file, pass the model repository id to the `custom_pipeline` argument:
**Try it out now - it works!**
```python
from diffusers import DiffusionPipeline
In general, you will want to create much more sophisticated pipelines, so we recommend looking at existing pipelines here: [https://github.com/huggingface/diffusers/tree/main/examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community).
pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="stevhliu/one_step_unet")
```
IMPORTANT:
You can use whatever package you want in your community pipeline file - as long as the user has it installed, everything will work fine. Make sure you have one and only one pipeline class that inherits from `DiffusionPipeline` as this will be automatically detected.
Take a look at the following table to compare the two sharing workflows to help you decide the best option for you:
| | GitHub community pipeline | HF Hub community pipeline |
|----------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| usage | same | same |
| review process | open a Pull Request on GitHub and undergo a review process from the Diffusers team before merging; may be slower | upload directly to a Hub repository without any review; this is the fastest workflow |
| visibility | included in the official Diffusers repository and documentation | included on your HF Hub profile and relies on your own usage/promotion to gain visibility |
<Tip>
💡 You can use whatever package you want in your community pipeline file - as long as the user has it installed, everything will work fine. Make sure you have one and only one pipeline class that inherits from `DiffusionPipeline` because this is automatically detected.
</Tip>
## How do community pipelines work?
A community pipeline is a class that has to inherit from ['DiffusionPipeline']:
and that has been added to `examples/community` [files](https://github.com/huggingface/diffusers/tree/main/examples/community).
The community can load the pipeline code via the custom_pipeline argument from DiffusionPipeline. See docs [here](https://huggingface.co/docs/diffusers/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.custom_pipeline):
This means:
The model weights and configs of the pipeline should be loaded from the `pretrained_model_name_or_path` [argument](https://huggingface.co/docs/diffusers/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path):
whereas the code that powers the community pipeline is defined in a file added in [`examples/community`](https://github.com/huggingface/diffusers/tree/main/examples/community).
A community pipeline is a class that inherits from [`DiffusionPipeline`] which means:
Now, it might very well be that only some of your pipeline components weights can be downloaded from an official repo.
The other components should then be passed directly to init as is the case for the ClIP guidance notebook [here](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb#scrollTo=z9Kglma6hjki).
- It can be loaded with the [`custom_pipeline`] argument.
- The model weights and scheduler configuration are loaded from [`pretrained_model_name_or_path`].
- The code that implements a feature in the community pipeline is defined in a `pipeline.py` file.
The magic behind all of this is that we load the code directly from GitHub. You can check it out in more detail if you follow the functionality defined here:
Sometimes you can't load all the pipeline components weights from an official repository. In this case, the other components should be passed directly to the pipeline:
```python
from diffusers import DiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPModel
model_id = "CompVis/stable-diffusion-v1-4"
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
scheduler=scheduler,
torch_dtype=torch.float16,
)
```
The magic behind community pipelines is contained in the following code. It allows the community pipeline to be loaded from GitHub or the Hub, and it'll be available to all 🧨 Diffusers packages.
```python
# 2. Load the pipeline class, if using custom module then load it from the hub
@@ -164,6 +179,3 @@ else:
diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
pipeline_class = getattr(diffusers_module, config_dict["_class_name"])
```
This is why a community pipeline merged to GitHub will be directly available to all `diffusers` packages.

View File

@@ -37,6 +37,28 @@ Unless otherwise mentioned, these are techniques that work with existing models
9. [Textual Inversion](#textual-inversion)
10. [ControlNet](#controlnet)
11. [Prompt Weighting](#prompt-weighting)
12. [Custom Diffusion](#custom-diffusion)
13. [Model Editing](#model-editing)
14. [DiffEdit](#diffedit)
For convenience, we provide a table to denote which methods are inference-only and which require fine-tuning/training.
| **Method** | **Inference only** | **Requires training /<br> fine-tuning** | **Comments** |
|:---:|:---:|:---:|:---:|
| [Instruct Pix2Pix](#instruct-pix2pix) | ✅ | ❌ | Can additionally be<br>fine-tuned for better <br>performance on specific <br>edit instructions. |
| [Pix2Pix Zero](#pix2pixzero) | ✅ | ❌ | |
| [Attend and Excite](#attend-and-excite) | ✅ | ❌ | |
| [Semantic Guidance](#semantic-guidance) | ✅ | ❌ | |
| [Self-attention Guidance](#self-attention-guidance) | ✅ | ❌ | |
| [Depth2Image](#depth2image) | ✅ | ❌ | |
| [MultiDiffusion Panorama](#multidiffusion-panorama) | ✅ | ❌ | |
| [DreamBooth](#dreambooth) | ❌ | ✅ | |
| [Textual Inversion](#textual-inversion) | ❌ | ✅ | |
| [ControlNet](#controlnet) | ✅ | ❌ | A ControlNet can be <br>trained/fine-tuned on<br>a custom conditioning. |
| [Prompt Weighting](#prompt-weighting) | ✅ | ❌ | |
| [Custom Diffusion](#custom-diffusion) | ❌ | ✅ | |
| [Model Editing](#model-editing) | ✅ | ❌ | |
| [DiffEdit](#diffedit) | ✅ | ❌ | |
## Instruct Pix2Pix
@@ -137,13 +159,13 @@ See [here](../api/pipelines/stable_diffusion/panorama) for more information on h
In addition to pre-trained models, Diffusers has training scripts for fine-tuning models on user-provided data.
### DreamBooth
## DreamBooth
[DreamBooth](../training/dreambooth) fine-tunes a model to teach it about a new subject. I.e. a few pictures of a person can be used to generate images of that person in different styles.
See [here](../training/dreambooth) for more information on how to use it.
### Textual Inversion
## Textual Inversion
[Textual Inversion](../training/text_inversion) fine-tunes a model to teach it about a new concept. I.e. a few pictures of a style of artwork can be used to generate images in that style.
@@ -165,3 +187,32 @@ Prompt weighting is a simple technique that puts more attention weight on certai
input.
For a more in-detail explanation and examples, see [here](../using-diffusers/weighted_prompts).
## Custom Diffusion
[Custom Diffusion](../training/custom_diffusion) only fine-tunes the cross-attention maps of a pre-trained
text-to-image diffusion model. It also allows for additionally performing textual inversion. It supports
multi-concept training by design. Like DreamBooth and Textual Inversion, Custom Diffusion is also used to
teach a pre-trained text-to-image diffusion model about new concepts to generate outputs involving the
concept(s) of interest.
For more details, check out our [official doc](../training/custom_diffusion).
## Model Editing
[Paper](https://arxiv.org/abs/2303.08084)
The [text-to-image model editing pipeline](../api/pipelines/stable_diffusion/model_editing) helps you mitigate some of the incorrect implicit assumptions a pre-trained text-to-image
diffusion model might make about the subjects present in the input prompt. For example, if you prompt Stable Diffusion to generate images for "A pack of roses", the roses in the generated images
are more likely to be red. This pipeline helps you change that assumption.
To know more details, check out the [official doc](../api/pipelines/stable_diffusion/model_editing).
## DiffEdit
[Paper](https://arxiv.org/abs/2210.11427)
[DiffEdit](../api/pipelines/stable_diffusion/diffedit) allows for semantic editing of input images along with
input prompts while preserving the original input images as much as possible.
To know more details, check out the [official doc](../api/pipelines/stable_diffusion/model_editing).

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Custom Pipelines
# Community pipelines
> **For more information about community pipelines, please have a look at [this issue](https://github.com/huggingface/diffusers/issues/841).**

View File

@@ -10,19 +10,21 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Loading and Adding Custom Pipelines
# Load community pipelines
Diffusers allows you to conveniently load any custom pipeline from the Hugging Face Hub as well as any [official community pipeline](https://github.com/huggingface/diffusers/tree/main/examples/community)
via the [`DiffusionPipeline`] class.
Community pipelines are any [`DiffusionPipeline`] class that are different from the original implementation as specified in their paper (for example, the [`StableDiffusionControlNetPipeline`] corresponds to the [Text-to-Image Generation with ControlNet Conditioning](https://arxiv.org/abs/2302.05543) paper). They provide additional functionality or extend the original implementation of a pipeline.
## Loading custom pipelines from the Hub
There are many cool community pipelines like [Speech to Image](https://github.com/huggingface/diffusers/tree/main/examples/community#speech-to-image) or [Composable Stable Diffusion](https://github.com/huggingface/diffusers/tree/main/examples/community#composable-stable-diffusion), and you can find all the official community pipelines [here](https://github.com/huggingface/diffusers/tree/main/examples/community).
Custom pipelines can be easily loaded from any model repository on the Hub that defines a diffusion pipeline in a `pipeline.py` file.
Let's load a dummy pipeline from [hf-internal-testing/diffusers-dummy-pipeline](https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline).
To load any community pipeline on the Hub, pass the repository id of the community pipeline to the `custom_pipeline` argument and the model repository where you'd like to load the pipeline weights and components from. For example, the example below loads a dummy pipeline from [`hf-internal-testing/diffusers-dummy-pipeline`](https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py) and the pipeline weights and components from [`google/ddpm-cifar10-32`](https://huggingface.co/google/ddpm-cifar10-32):
All you need to do is pass the custom pipeline repo id with the `custom_pipeline` argument alongside the repo from where you wish to load the pipeline modules.
<Tip warning={true}>
```python
🔒 By loading a community pipeline from the Hugging Face Hub, you are trusting that the code you are loading is safe. Make sure to inspect the code online before loading and running it automatically!
</Tip>
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
@@ -30,25 +32,9 @@ pipeline = DiffusionPipeline.from_pretrained(
)
```
This will load the custom pipeline as defined in the [model repository](https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py).
Loading an official community pipeline is similar, but you can mix loading weights from an official repository id and pass pipeline components directly. The example below loads the community [CLIP Guided Stable Diffusion](https://github.com/huggingface/diffusers/tree/main/examples/community#clip-guided-stable-diffusion) pipeline, and you can pass the CLIP model components directly to it:
<Tip warning={true} >
By loading a custom pipeline from the Hugging Face Hub, you are trusting that the code you are loading
is safe 🔒. Make sure to check out the code online before loading & running it automatically.
</Tip>
## Loading official community pipelines
Community pipelines are summarized in the [community examples folder](https://github.com/huggingface/diffusers/tree/main/examples/community).
Similarly, you need to pass both the *repo id* from where you wish to load the weights as well as the `custom_pipeline` argument. Here the `custom_pipeline` argument should consist simply of the filename of the community pipeline excluding the `.py` suffix, *e.g.* `clip_guided_stable_diffusion`.
Since community pipelines are often more complex, one can mix loading weights from an official *repo id*
and passing pipeline modules directly.
```python
```py
from diffusers import DiffusionPipeline
from transformers import CLIPImageProcessor, CLIPModel
@@ -65,59 +51,4 @@ pipeline = DiffusionPipeline.from_pretrained(
)
```
## Adding custom pipelines to the Hub
To add a custom pipeline to the Hub, all you need to do is to define a pipeline class that inherits
from [`DiffusionPipeline`] in a `pipeline.py` file.
Make sure that the whole pipeline is encapsulated within a single class and that the `pipeline.py` file
has only one such class.
Let's quickly define an example pipeline.
```python
import torch
from diffusers import DiffusionPipeline
class MyPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(self, batch_size: int = 1, num_inference_steps: int = 50):
# Sample gaussian noise to begin loop
image = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size)
)
image = image.to(self.device)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
model_output = self.unet(image, t).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
image = self.scheduler.step(model_output, t, image, eta).prev_sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
return image
```
Now you can upload this short file under the name `pipeline.py` in your preferred [model repository](https://huggingface.co/docs/hub/models-uploading). For Stable Diffusion pipelines, you may also [join the community organisation for shared pipelines](https://huggingface.co/organizations/sd-diffusers-pipelines-library/share/BUPyDUuHcciGTOKaExlqtfFcyCZsVFdrjr) to upload yours.
Finally, we can load the custom pipeline by passing the model repository name, *e.g.* `sd-diffusers-pipelines-library/my_custom_pipeline` alongside the model repository from where we want to load the `unet` and `scheduler` components.
```python
my_pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="patrickvonplaten/my_custom_pipeline"
)
```
For more information about community pipelines, take a look at the [Community pipelines](custom_pipeline_examples) guide for how to use them and if you're interested in adding a community pipeline check out the [How to contribute a community pipeline](contribute_pipeline) guide!

View File

@@ -52,7 +52,7 @@ Now you can create a prompt to replace the mask with something else:
```python
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
`image` | `mask_image` | `prompt` | output |

View File

@@ -1,179 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Using KerasCV Stable Diffusion Checkpoints in Diffusers
<Tip warning={true}>
This is an experimental feature.
</Tip>
[KerasCV](https://github.com/keras-team/keras-cv/) provides APIs for implementing various computer vision workflows. It
also provides the Stable Diffusion [v1 and v2](https://github.com/keras-team/keras-cv/blob/master/keras_cv/models/stable_diffusion)
models. Many practitioners find it easy to fine-tune the Stable Diffusion models shipped by KerasCV. However, as of this writing, KerasCV offers limited support to experiment with Stable Diffusion models for inference and deployment. On the other hand,
Diffusers provides tooling dedicated to this purpose (and more), such as different [noise schedulers](https://huggingface.co/docs/diffusers/using-diffusers/schedulers), [flash attention](https://huggingface.co/docs/diffusers/optimization/xformers), and [other
optimization techniques](https://huggingface.co/docs/diffusers/optimization/fp16).
How about fine-tuning Stable Diffusion models in KerasCV and exporting them such that they become compatible with Diffusers to combine the
best of both worlds? We have created a [tool](https://huggingface.co/spaces/sayakpaul/convert-kerascv-sd-diffusers) that
lets you do just that! It takes KerasCV Stable Diffusion checkpoints and exports them to Diffusers-compatible checkpoints.
More specifically, it first converts the checkpoints to PyTorch and then wraps them into a
[`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview) which is ready
for inference. Finally, it pushes the converted checkpoints to a repository on the Hugging Face Hub.
We welcome you to try out the tool [here](https://huggingface.co/spaces/sayakpaul/convert-kerascv-sd-diffusers)
and share feedback via [discussions](https://huggingface.co/spaces/sayakpaul/convert-kerascv-sd-diffusers/discussions/new).
## Getting Started
First, you need to obtain the fine-tuned KerasCV Stable Diffusion checkpoints. We provide an
overview of the different ways Stable Diffusion models can be fine-tuned [using `diffusers`](https://huggingface.co/docs/diffusers/training/overview). For the Keras implementation of some of these methods, you can check out these resources:
* [Teach StableDiffusion new concepts via Textual Inversion](https://keras.io/examples/generative/fine_tune_via_textual_inversion/)
* [Fine-tuning Stable Diffusion](https://keras.io/examples/generative/finetune_stable_diffusion/)
* [DreamBooth](https://keras.io/examples/generative/dreambooth/)
* [Prompt-to-Prompt editing](https://github.com/miguelCalado/prompt-to-prompt-tensorflow)
Stable Diffusion is comprised of the following models:
* Text encoder
* UNet
* VAE
Depending on the fine-tuning task, we may fine-tune one or more of these components (the VAE is almost always left untouched). Here are some common combinations:
* DreamBooth: UNet and text encoder
* Classical text to image fine-tuning: UNet
* Textual Inversion: Just the newly initialized embeddings in the text encoder
### Performing the Conversion
Let's use [this checkpoint](https://huggingface.co/sayakpaul/textual-inversion-kerasio/resolve/main/textual_inversion_kerasio.h5) which was generated
by conducting Textual Inversion with the following "placeholder token": `<my-funny-cat-token>`.
On the tool, we supply the following things:
* Path(s) to download the fine-tuned checkpoint(s) (KerasCV)
* An HF token
* Placeholder token (only applicable for Textual Inversion)
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/space_snap.png"/>
</div>
As soon as you hit "Submit", the conversion process will begin. Once it's complete, you should see the following:
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/model_push_success.png"/>
</div>
If you click the [link](https://huggingface.co/sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline/tree/main), you
should see something like so:
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/model_repo_contents.png"/>
</div>
If you head over to the [model card of the repository](https://huggingface.co/sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline), the
following should appear:
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/model_card.png"/>
</div>
<Tip>
Note that we're not specifying the UNet weights here since the UNet is not fine-tuned during Textual Inversion.
</Tip>
And that's it! You now have your fine-tuned KerasCV Stable Diffusion model in Diffusers 🧨.
## Using the Converted Model in Diffusers
Just beside the model card of the [repository](https://huggingface.co/sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline),
you'd notice an inference widget to try out the model directly from the UI 🤗
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inference_widget_output.png"/>
</div>
On the top right hand side, we provide a "Use in Diffusers" button. If you click the button, you should see the following code-snippet:
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline")
```
The model is in standard `diffusers` format. Let's perform inference!
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline")
pipeline.to("cuda")
placeholder_token = "<my-funny-cat-token>"
prompt = f"two {placeholder_token} getting married, photorealistic, high quality"
image = pipeline(prompt, num_inference_steps=50).images[0]
```
And we get:
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/diffusers_output_one.png"/>
</div>
_**Note that if you specified a `placeholder_token` while performing the conversion, the tool will log it accordingly. Refer
to the model card of [this repository](https://huggingface.co/sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline)
as an example.**_
We welcome you to use the tool for various Stable Diffusion fine-tuning scenarios and let us know your feedback! Here are some examples
of Diffusers checkpoints that were obtained using the tool:
* [sayakpaul/text-unet-dogs-kerascv_sd_diffusers_pipeline](https://huggingface.co/sayakpaul/text-unet-dogs-kerascv_sd_diffusers_pipeline) (DreamBooth with both the text encoder and UNet fine-tuned)
* [sayakpaul/unet-dogs-kerascv_sd_diffusers_pipeline](https://huggingface.co/sayakpaul/unet-dogs-kerascv_sd_diffusers_pipeline) (DreamBooth with only the UNet fine-tuned)
## Incorporating Diffusers Goodies 🎁
Diffusers provides various options that one can leverage to experiment with different inference setups. One particularly
useful option is the use of a different noise scheduler during inference other than what was used during fine-tuning.
Let's try out the [`DPMSolverMultistepScheduler`](https://huggingface.co/docs/diffusers/main/en/api/schedulers/multistep_dpm_solver)
which is different from the one ([`DDPMScheduler`](https://huggingface.co/docs/diffusers/main/en/api/schedulers/ddpm)) used during
fine-tuning.
You can read more details about this process in [this section](https://huggingface.co/docs/diffusers/using-diffusers/schedulers).
```py
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
pipeline = DiffusionPipeline.from_pretrained("sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline.to("cuda")
placeholder_token = "<my-funny-cat-token>"
prompt = f"two {placeholder_token} getting married, photorealistic, high quality"
image = pipeline(prompt, num_inference_steps=50).images[0]
```
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/diffusers_output_two.png"/>
</div>
One can also continue fine-tuning from these Diffusers checkpoints by leveraging some relevant tools from Diffusers. Refer [here](https://huggingface.co/docs/diffusers/training/overview) for
more details. For inference-specific optimizations, refer [here](https://huggingface.co/docs/diffusers/main/en/optimization/fp16).
## Known Limitations
* Only Stable Diffusion v1 checkpoints are supported for conversion in this tool.

View File

@@ -0,0 +1,191 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Load different Stable Diffusion formats
Stable Diffusion models are available in different formats depending on the framework they're trained and saved with, and where you download them from. Converting these formats for use in 🤗 Diffusers allows you to use all the features supported by the library, such as [using different schedulers](schedulers) for inference, [building your custom pipeline](write_own_pipeline), and a variety of techniques and methods for [optimizing inference speed](./optimization/opt_overview).
<Tip>
We highly recommend using the `.safetensors` format because it is more secure than traditional pickled files which are vulnerable and can be exploited to execute any code on your machine (learn more in the [Load safetensors](using_safetensors) guide).
</Tip>
This guide will show you how to convert other Stable Diffusion formats to be compatible with 🤗 Diffusers.
## PyTorch .ckpt
The checkpoint - or `.ckpt` - format is commonly used to store and save models. The `.ckpt` file contains the entire model and is typically several GBs in size. While you can load and use a `.ckpt` file directly with the [`~StableDiffusionPipeline.from_ckpt`] method, it is generally better to convert the `.ckpt` file to 🤗 Diffusers so both formats are available.
There are two options for converting a `.ckpt` file; use a Space to convert the checkpoint or convert the `.ckpt` file with a script.
### Convert with a Space
The easiest and most convenient way to convert a `.ckpt` file is to use the [SD to Diffusers](https://huggingface.co/spaces/diffusers/sd-to-diffusers) Space. You can follow the instructions on the Space to convert the `.ckpt` file.
This approach works well for basic models, but it may struggle with more customized models. You'll know the Space failed if it returns an empty pull request or error. In this case, you can try converting the `.ckpt` file with a script.
### Convert with a script
🤗 Diffusers provides a [conversion script](https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py) for converting `.ckpt` files. This approach is more reliable than the Space above.
Before you start, make sure you have a local clone of 🤗 Diffusers to run the script and log in to your Hugging Face account so you can open pull requests and push your converted model to the Hub.
```bash
huggingface-cli login
```
To use the script:
1. Git clone the repository containing the `.ckpt` file you want to convert. For this example, let's convert this [TemporalNet](https://huggingface.co/CiaraRowles/TemporalNet) `.ckpt` file:
```bash
git lfs install
git clone https://huggingface.co/CiaraRowles/TemporalNet
```
2. Open a pull request on the repository where you're converting the checkpoint from:
```bash
cd TemporalNet && git fetch origin refs/pr/13:pr/13
git checkout pr/13
```
3. There are several input arguments to configure in the conversion script, but the most important ones are:
- `checkpoint_path`: the path to the `.ckpt` file to convert.
- `original_config_file`: a YAML file defining the configuration of the original architecture. If you can't find this file, try searching for the YAML file in the GitHub repository where you found the `.ckpt` file.
- `dump_path`: the path to the converted model.
For example, you can take the `cldm_v15.yaml` file from the [ControlNet](https://github.com/lllyasviel/ControlNet/tree/main/models) repository because the TemporalNet model is a Stable Diffusion v1.5 and ControlNet model.
4. Now you can run the script to convert the `.ckpt` file:
```bash
python ../diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path temporalnetv3.ckpt --original_config_file cldm_v15.yaml --dump_path ./ --controlnet
```
5. Once the conversion is done, upload your converted model and test out the resulting [pull request](https://huggingface.co/CiaraRowles/TemporalNet/discussions/13)!
```bash
git push origin pr/13:refs/pr/13
```
## Keras .pb or .h5
<Tip warning={true}>
🧪 This is an experimental feature. Only Stable Diffusion v1 checkpoints are supported by the Convert KerasCV Space at the moment.
</Tip>
[KerasCV](https://keras.io/keras_cv/) supports training for [Stable Diffusion](https://github.com/keras-team/keras-cv/blob/master/keras_cv/models/stable_diffusion) v1 and v2. However, it offers limited support for experimenting with Stable Diffusion models for inference and deployment whereas 🤗 Diffusers has a more complete set of features for this purpose, such as different [noise schedulers](https://huggingface.co/docs/diffusers/using-diffusers/schedulers), [flash attention](https://huggingface.co/docs/diffusers/optimization/xformers), and [other
optimization techniques](https://huggingface.co/docs/diffusers/optimization/fp16).
The [Convert KerasCV](https://huggingface.co/spaces/sayakpaul/convert-kerascv-sd-diffusers) Space converts `.pb` or `.h5` files to PyTorch, and then wraps them in a [`StableDiffusionPipeline`] so it is ready for inference. The converted checkpoint is stored in a repository on the Hugging Face Hub.
For this example, let's convert the [`sayakpaul/textual-inversion-kerasio`](https://huggingface.co/sayakpaul/textual-inversion-kerasio/tree/main) checkpoint which was trained with Textual Inversion. It uses the special token `<my-funny-cat>` to personalize images with cats.
The Convert KerasCV Space allows you to input the following:
* Your Hugging Face token.
* Paths to download the UNet and text encoder weights from. Depending on how the model was trained, you don't necessarily need to provide the paths to both the UNet and text encoder. For example, Textual Inversion only requires the embeddings from the text encoder and a text-to-image model only requires the UNet weights.
* Placeholder token is only applicable for textual inversion models.
* The `output_repo_prefix` is the name of the repository where the converted model is stored.
Click the **Submit** button to automatically convert the KerasCV checkpoint! Once the checkpoint is successfully converted, you'll see a link to the new repository containing the converted checkpoint. Follow the link to the new repository, and you'll see the Convert KerasCV Space generated a model card with an inference widget to try out the converted model.
If you prefer to run inference with code, click on the **Use in Diffusers** button in the upper right corner of the model card to copy and paste the code snippet:
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline")
```
Then you can generate an image like:
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline")
pipeline.to("cuda")
placeholder_token = "<my-funny-cat-token>"
prompt = f"two {placeholder_token} getting married, photorealistic, high quality"
image = pipeline(prompt, num_inference_steps=50).images[0]
```
## A1111 LoRA files
[Automatic1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) (A1111) is a popular web UI for Stable Diffusion that supports model sharing platforms like [Civitai](https://civitai.com/). Models trained with the Low-Rank Adaptation (LoRA) technique are especially popular because they're fast to train and have a much smaller file size than a fully finetuned model. 🤗 Diffusers supports loading A1111 LoRA checkpoints with [`~loaders.LoraLoaderMixin.load_lora_weights`]:
```py
from diffusers import DiffusionPipeline, UniPCMultistepScheduler
import torch
pipeline = DiffusionPipeline.from_pretrained(
"andite/anything-v4.0", torch_dtype=torch.float16, safety_checker=None
).to("cuda")
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
```
Download a LoRA checkpoint from Civitai; this example uses the [Howls Moving Castle,Interior/Scenery LoRA (Ghibli Stlye)](https://civitai.com/models/14605?modelVersionId=19998) checkpoint, but feel free to try out any LoRA checkpoint!
```bash
!wget https://civitai.com/api/download/models/19998 -O howls_moving_castle.safetensors
```
Load the LoRA checkpoint into the pipeline with the [`~loaders.LoraLoaderMixin.load_lora_weights`] method:
```py
pipeline.load_lora_weights(".", weight_name="howls_moving_castle.safetensors")
```
Now you can use the pipeline to generate images:
```py
prompt = "masterpiece, illustration, ultra-detailed, cityscape, san francisco, golden gate bridge, california, bay area, in the snow, beautiful detailed starry sky"
negative_prompt = "lowres, cropped, worst quality, low quality, normal quality, artifacts, signature, watermark, username, blurry, more than one bridge, bad architecture"
images = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=512,
height=512,
num_inference_steps=25,
num_images_per_prompt=4,
generator=torch.manual_seed(0),
).images
```
Finally, create a helper function to display the images:
```py
from PIL import Image
def image_grid(imgs, rows=2, cols=2):
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
image_grid(images)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/a1111-lora-sf.png"/>
</div>

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
Reproducibility is important for testing, replicating results, and can even be used to [improve image quality](reusing_seeds). However, the randomness in diffusion models is a desired property because it allows the pipeline to generate different images every time it is run. While you can't expect to get the exact same results across platforms, you can expect results to be reproducible across releases and platforms within a certain tolerance range. Even then, tolerance varies depending on the diffusion pipeline and checkpoint.
This is why it's important to understand how to control sources of randomness in diffusion models.
This is why it's important to understand how to control sources of randomness in diffusion models or use deterministic algorithms.
<Tip>
@@ -24,7 +24,7 @@ This is why it's important to understand how to control sources of randomness in
</Tip>
## Inference
## Control randomness
During inference, pipelines rely heavily on random sampling operations which include creating the
Gaussian noise tensors to denoise and adding noise to the scheduling step.
@@ -111,7 +111,7 @@ print(np.abs(image).sum())
The result is not the same even though you're using an identical seed because the GPU uses a different random number generator than the CPU.
To circumvent this problem, 🧨 Diffusers has a [`randn_tensor`](#diffusers.utils.randn_tensor) function for creating random noise on the CPU, and then moving the tensor to a GPU if necessary. The `randn_tensor` function is used everywhere inside the pipeline, allowing the user to **always** pass a CPU `Generator` even if the pipeline is run on a GPU.
To circumvent this problem, 🧨 Diffusers has a [`~diffusers.utils.randn_tensor`] function for creating random noise on the CPU, and then moving the tensor to a GPU if necessary. The `randn_tensor` function is used everywhere inside the pipeline, allowing the user to **always** pass a CPU `Generator` even if the pipeline is run on a GPU.
You'll see the results are much closer now!
@@ -147,5 +147,43 @@ susceptible to precision error propagation. Don't expect similar results across
different GPU hardware or PyTorch versions. In this case, you'll need to run
exactly the same hardware and PyTorch version for full reproducibility.
## randn_tensor
[[autodoc]] diffusers.utils.randn_tensor
## Deterministic algorithms
You can also configure PyTorch to use deterministic algorithms to create a reproducible pipeline. However, you should be aware that deterministic algorithms may be slower than nondeterministic ones and you may observe a decrease in performance. But if reproducibility is important to you, then this is the way to go!
Nondeterministic behavior occurs when operations are launched in more than one CUDA stream. To avoid this, set the environment varibale [`CUBLAS_WORKSPACE_CONFIG`](https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility) to `:16:8` to only use one buffer size during runtime.
PyTorch typically benchmarks multiple algorithms to select the fastest one, but if you want reproducibility, you should disable this feature because the benchmark may select different algorithms each time. Lastly, pass `True` to [`torch.use_deterministic_algorithms`](https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html) to enable deterministic algorithms.
```py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
```
Now when you run the same pipeline twice, you'll get identical results.
```py
import torch
from diffusers import DDIMScheduler, StableDiffusionPipeline
import numpy as np
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
g = torch.Generator(device="cuda")
prompt = "A bear is playing a guitar on Times Square"
g.manual_seed(0)
result1 = pipe(prompt=prompt, num_inference_steps=50, generator=g, output_type="latent").images
g.manual_seed(0)
result2 = pipe(prompt=prompt, num_inference_steps=50, generator=g, output_type="latent").images
print("L_inf dist = ", abs(result1 - result2).max())
"L_inf dist = tensor(0., device='cuda:0')"
```

View File

@@ -28,18 +28,15 @@ The following paragraphs show how to do so with the 🧨 Diffusers library.
## Load pipeline
Let's start by loading the stable diffusion pipeline.
Remember that you have to be a registered user on the 🤗 Hugging Face Hub, and have "click-accepted" the [license](https://huggingface.co/runwayml/stable-diffusion-v1-5) in order to use stable diffusion.
Let's start by loading the [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) model in the [`DiffusionPipeline`]:
```python
from huggingface_hub import login
from diffusers import DiffusionPipeline
import torch
# first we need to login with our access token
login()
# Now we can download the pipeline
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
```

View File

@@ -0,0 +1,80 @@
# Textual inversion
[[open-in-colab]]
The [`StableDiffusionPipeline`] supports textual inversion, a technique that enables a model like Stable Diffusion to learn a new concept from just a few sample images. This gives you more control over the generated images and allows you to tailor the model towards specific concepts. You can get started quickly with a collection of community created concepts in the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer).
This guide will show you how to run inference with textual inversion using a pre-learned concept from the Stable Diffusion Conceptualizer. If you're interested in teaching a model new concepts with textual inversion, take a look at the [Textual Inversion](./training/text_inversion) training guide.
Login to your Hugging Face account:
```py
from huggingface_hub import notebook_login
notebook_login()
```
Import the necessary libraries, and create a helper function to visualize the generated images:
```py
import os
import torch
import PIL
from PIL import Image
from diffusers import StableDiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
```
Pick a Stable Diffusion checkpoint and a pre-learned concept from the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer):
```py
pretrained_model_name_or_path = "runwayml/stable-diffusion-v1-5"
repo_id_embeds = "sd-concepts-library/cat-toy"
```
Now you can load a pipeline, and pass the pre-learned concept to it:
```py
pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16).to("cuda")
pipeline.load_textual_inversion(repo_id_embeds)
```
Create a prompt with the pre-learned concept by using the special placeholder token `<cat-toy>`, and choose the number of samples and rows of images you'd like to generate:
```py
prompt = "a grafitti in a favela wall with a <cat-toy> on it"
num_samples = 2
num_rows = 2
```
Then run the pipeline (feel free to adjust the parameters like `num_inference_steps` and `guidance_scale` to see how they affect image quality), save the generated images and visualize them with the helper function you created at the beginning:
```py
all_images = []
for _ in range(num_rows):
images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images
all_images.extend(images)
grid = image_grid(all_images, num_samples, num_rows)
grid
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/textual_inversion_inference.png">
</div>

View File

@@ -1,87 +1,67 @@
# What is safetensors ?
# Load safetensors
[safetensors](https://github.com/huggingface/safetensors) is a different format
from the classic `.bin` which uses Pytorch which uses pickle. It contains the
exact same data, which is just the model weights (or tensors).
[safetensors](https://github.com/huggingface/safetensors) is a safe and fast file format for storing and loading tensors. Typically, PyTorch model weights are saved or *pickled* into a `.bin` file with Python's [`pickle`](https://docs.python.org/3/library/pickle.html) utility. However, `pickle` is not secure and pickled files may contain malicious code that can be executed. safetensors is a secure alternative to `pickle`, making it ideal for sharing model weights.
Pickle is notoriously unsafe which allow any malicious file to execute arbitrary code.
The hub itself tries to prevent issues from it, but it's not a silver bullet.
This guide will show you how you load `.safetensor` files, and how to convert Stable Diffusion model weights stored in other formats to `.safetensor`. Before you start, make sure you have safetensors installed:
`safetensors` first and foremost goal is to make loading machine learning models *safe*
in the sense that no takeover of your computer can be done.
Hence the name.
# Why use safetensors ?
**Safety** can be one reason, if you're attempting to use a not well known model and
you're not sure about the source of the file.
And a secondary reason, is **the speed of loading**. Safetensors can load models much faster
than regular pickle files. If you spend a lot of times switching models, this can be
a huge timesave.
Numbers taken AMD EPYC 7742 64-Core Processor
```
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
# Loaded in safetensors 0:00:02.033658
# Loaded in Pytorch 0:00:02.663379
```bash
!pip install safetensors
```
This is for the entire loading time, the actual weights loading time to load 500MB:
If you look at the [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main) repository, you'll see weights inside the `text_encoder`, `unet` and `vae` subfolders are stored in the `.safetensors` format. By default, 🤗 Diffusers automatically loads these `.safetensors` files from their subfolders if they're available in the model repository.
```
Safetensors: 3.4873ms
PyTorch: 172.7537ms
```
For more explicit control, you can optionally set `use_safetensors=True` (if `safetensors` is not installed, you'll get an error message asking you to install it):
Performance in general is a tricky business, and there are a few things to understand:
- If you're using the model for the first time from the hub, you will have to download the weights.
That's extremely likely to be much slower than any loading method, therefore you will not see any difference
- If you're loading the model for the first time (let's say after a reboot) then your machine will have to
actually read the disk. It's likely to be as slow in both cases. Again the speed difference may not be as visible (this depends on hardware and the actual model).
- The best performance benefit is when the model was already loaded previously on your computer and you're switching from one model to another. Your OS, is trying really hard not to read from disk, since this is slow, so it will keep the files around in RAM, making it loading again much faster. Since safetensors is doing zero-copy of the tensors, reloading will be faster than pytorch since it has at least once extra copy to do.
# How to use safetensors ?
If you have `safetensors` installed, and all the weights are available in `safetensors` format, \
then by default it will use that instead of the pytorch weights.
If you are really paranoid about this, the ultimate weapon would be disabling `torch.load`:
```python
import torch
def _raise():
raise RuntimeError("I don't want to use pickle")
torch.load = lambda *args, **kwargs: _raise()
```
# I want to use model X but it doesn't have safetensors weights.
Just go to this [space](https://huggingface.co/spaces/diffusers/convert).
This will create a new PR with the weights, let's say `refs/pr/22`.
This space will download the pickled version, convert it, and upload it on the hub as a PR.
If anything bad is contained in the file, it's Huggingface hub that will get issues, not your own computer.
And we're equipped with dealing with it.
Then in order to use the model, even before the branch gets accepted by the original author you can do:
```python
```py
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", revision="refs/pr/22")
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
```
or you can test it directly online with this [space](https://huggingface.co/spaces/diffusers/check_pr).
However, model weights are not necessarily stored in separate subfolders like in the example above. Sometimes, all the weights are stored in a single `.safetensors` file. In this case, if the weights are Stable Diffusion weights, you can load the file directly with the [`~diffusers.loaders.FromCkptMixin.from_ckpt`] method:
And that's it !
```py
from diffusers import StableDiffusionPipeline
Anything unclear, concerns, or found a bugs ? [Open an issue](https://github.com/huggingface/diffusers/issues/new/choose)
pipeline = StableDiffusionPipeline.from_ckpt(
"https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
)
```
## Convert to safetensors
Not all weights on the Hub are available in the `.safetensors` format, and you may encounter weights stored as `.bin`. In this case, use the [Convert Space](https://huggingface.co/spaces/diffusers/convert) to convert the weights to `.safetensors`. The Convert Space downloads the pickled weights, converts them, and opens a Pull Request to upload the newly converted `.safetensors` file on the Hub. This way, if there is any malicious code contained in the pickled files, they're uploaded to the Hub - which has a [security scanner](https://huggingface.co/docs/hub/security-pickle#hubs-security-scanner) to detect unsafe files and suspicious pickle imports - instead of your computer.
You can use the model with the new `.safetensors` weights by specifying the reference to the Pull Request in the `revision` parameter (you can also test it in this [Check PR](https://huggingface.co/spaces/diffusers/check_pr) Space on the Hub), for example `refs/pr/22`:
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", revision="refs/pr/22")
```
## Why use safetensors?
There are several reasons for using safetensors:
- Safety is the number one reason for using safetensors. As open-source and model distribution grows, it is important to be able to trust the model weights you downloaded don't contain any malicious code. The current size of the header in safetensors prevents parsing extremely large JSON files.
- Loading speed between switching models is another reason to use safetensors, which performs zero-copy of the tensors. It is especially fast compared to `pickle` if you're loading the weights to CPU (the default case), and just as fast if not faster when directly loading the weights to GPU. You'll only notice the performance difference if the model is already loaded, and not if you're downloading the weights or loading the model for the first time.
The time it takes to load the entire pipeline:
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
"Loaded in safetensors 0:00:02.033658"
"Loaded in PyTorch 0:00:02.663379"
```
But the actual time it takes to load 500MB of the model weights is only:
```bash
safetensors: 3.4873ms
PyTorch: 172.7537ms
```
- Lazy loading is also supported in safetensors, which is useful in distributed settings to only load some of the tensors. This format allowed the [BLOOM](https://huggingface.co/bigscience/bloom) model to be loaded in 45 seconds on 8 GPUs instead of 10 minutes with regular PyTorch weights.

View File

@@ -94,5 +94,15 @@ a try!
If your favorite pipeline does not have a `prompt_embeds` input, please make sure to open an issue, the
diffusers team tries to be as responsive as possible.
Compel 1.1.6 adds a utility class to simplify using textual inversions. Instantiate a `DiffusersTextualInversionManager` and pass it to Compel init:
```
textual_inversion_manager = DiffusersTextualInversionManager(pipe)
compel = Compel(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
textual_inversion_manager=textual_inversion_manager)
```
Also, please check out the documentation of the [compel](https://github.com/damian0815/compel) library for
more information.

View File

@@ -36,7 +36,7 @@ A pipeline is a quick and easy way to run a model for inference, requiring no mo
That was super easy, but how did the pipeline do that? Let's breakdown the pipeline and take a look at what's happening under the hood.
In the example above, the pipeline contains a UNet model and a DDPM scheduler. The pipeline denoises an image by taking random noise the size of the desired output and passing it through the model several times. At each timestep, the model predicts the *noise residual* and the scheduler uses it to predict a less noisy image. The pipeline repeats this process until it reaches the end of the specified number of inference steps.
In the example above, the pipeline contains a [`UNet2DModel`] model and a [`DDPMScheduler`]. The pipeline denoises an image by taking random noise the size of the desired output and passing it through the model several times. At each timestep, the model predicts the *noise residual* and the scheduler uses it to predict a less noisy image. The pipeline repeats this process until it reaches the end of the specified number of inference steps.
To recreate the pipeline with the model and scheduler separately, let's write our own denoising process.
@@ -82,8 +82,8 @@ To recreate the pipeline with the model and scheduler separately, let's write ou
>>> for t in scheduler.timesteps:
... with torch.no_grad():
... noisy_residual = model(input, t).sample
>>> previous_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
>>> input = previous_noisy_sample
... previous_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
... input = previous_noisy_sample
```
This is the entire denoising process, and you can use this same pattern to write any diffusion system.
@@ -96,7 +96,7 @@ To recreate the pipeline with the model and scheduler separately, let's write ou
>>> image = (input / 2 + 0.5).clamp(0, 1)
>>> image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
>>> image = Image.fromarray((image * 255)).round().astype("uint8")
>>> image = Image.fromarray((image * 255).round().astype("uint8"))
>>> image
```
@@ -287,4 +287,4 @@ This is really what 🧨 Diffusers is designed for: to make it intuitive and eas
For your next steps, feel free to:
* Learn how to [build and contribute a pipeline](using-diffusers/#contribute_pipeline) to 🧨 Diffusers. We can't wait and see what you'll come up with!
* Explore [existing pipelines](./api/pipelines/overview) in the library, and see if you can deconstruct and build a pipeline from scratch using the models and schedulers separately.
* Explore [existing pipelines](./api/pipelines/overview) in the library, and see if you can deconstruct and build a pipeline from scratch using the models and schedulers separately.

View File

@@ -3,191 +3,46 @@
title: "🧨 Diffusers"
- local: quicktour
title: "훑어보기"
- local: in_translation
title: Stable Diffusion
- local: installation
title: "설치"
title: "시작하기"
- sections:
- sections:
- local: in_translation
title: "Loading Pipelines, Models, and Schedulers"
title: 개요
- local: in_translation
title: "Using different Schedulers"
title: Unconditional 이미지 생성
- local: in_translation
title: "Configuring Pipelines, Models, and Schedulers"
title: Textual Inversion
- local: training/dreambooth
title: DreamBooth
- local: training/text2image
title: Text-to-image
- local: training/lora
title: Low-Rank Adaptation of Large Language Models (LoRA)
- local: in_translation
title: "Loading and Adding Custom Pipelines"
title: "불러오기 & 허브 (번역 예정)"
- sections:
title: ControlNet
- local: in_translation
title: "Unconditional Image Generation"
- local: in_translation
title: "Text-to-Image Generation"
- local: in_translation
title: "Text-Guided Image-to-Image"
- local: in_translation
title: "Text-Guided Image-Inpainting"
- local: in_translation
title: "Text-Guided Depth-to-Image"
- local: in_translation
title: "Reusing seeds for deterministic generation"
- local: in_translation
title: "Community Pipelines"
- local: in_translation
title: "How to contribute a Pipeline"
title: "추론을 위한 파이프라인 (번역 예정)"
- sections:
- local: in_translation
title: "Reinforcement Learning"
- local: in_translation
title: "Audio"
- local: in_translation
title: "Other Modalities"
title: "Taking Diffusers Beyond Images"
title: "Diffusers 사용법 (번역 예정)"
title: InstructPix2Pix 학습
title: 학습
- sections:
- local: in_translation
title: "Memory and Speed"
title: 개요
- local: optimization/fp16
title: 메모리와 속도
- local: in_translation
title: "xFormers"
- local: in_translation
title: "ONNX"
- local: in_translation
title: "OpenVINO"
- local: in_translation
title: "MPS"
- local: in_translation
title: "Habana Gaudi"
title: "최적화/특수 하드웨어 (번역 예정)"
- sections:
- local: in_translation
title: "Overview"
- local: in_translation
title: "Unconditional Image Generation"
- local: in_translation
title: "Textual Inversion"
- local: in_translation
title: "Dreambooth"
- local: in_translation
title: "Text-to-image fine-tuning"
title: "학습 (번역 예정)"
- sections:
- local: in_translation
title: "Stable Diffusion"
- local: in_translation
title: "Philosophy"
- local: in_translation
title: "How to contribute?"
title: "개념 설명 (번역 예정)"
- sections:
- sections:
- local: in_translation
title: "Models"
- local: in_translation
title: "Diffusion Pipeline"
- local: in_translation
title: "Logging"
- local: in_translation
title: "Configuration"
- local: in_translation
title: "Outputs"
title: "Main Classes"
- sections:
- local: in_translation
title: "Overview"
- local: in_translation
title: "AltDiffusion"
- local: in_translation
title: "Cycle Diffusion"
- local: in_translation
title: "DDIM"
- local: in_translation
title: "DDPM"
- local: in_translation
title: "Latent Diffusion"
- local: in_translation
title: "Unconditional Latent Diffusion"
- local: in_translation
title: "PaintByExample"
- local: in_translation
title: "PNDM"
- local: in_translation
title: "Score SDE VE"
- sections:
- local: in_translation
title: "Overview"
- local: in_translation
title: "Text-to-Image"
- local: in_translation
title: "Image-to-Image"
- local: in_translation
title: "Inpaint"
- local: in_translation
title: "Depth-to-Image"
- local: in_translation
title: "Image-Variation"
- local: in_translation
title: "Super-Resolution"
title: "Stable Diffusion"
- local: in_translation
title: "Stable Diffusion 2"
- local: in_translation
title: "Safe Stable Diffusion"
- local: in_translation
title: "Stochastic Karras VE"
- local: in_translation
title: "Dance Diffusion"
- local: in_translation
title: "UnCLIP"
- local: in_translation
title: "Versatile Diffusion"
- local: in_translation
title: "VQ Diffusion"
- local: in_translation
title: "RePaint"
- local: in_translation
title: "Audio Diffusion"
title: "파이프라인 (번역 예정)"
- sections:
- local: in_translation
title: "Overview"
- local: in_translation
title: "DDIM"
- local: in_translation
title: "DDPM"
- local: in_translation
title: "Singlestep DPM-Solver"
- local: in_translation
title: "Multistep DPM-Solver"
- local: in_translation
title: "Heun Scheduler"
- local: in_translation
title: "DPM Discrete Scheduler"
- local: in_translation
title: "DPM Discrete Scheduler with ancestral sampling"
- local: in_translation
title: "Stochastic Kerras VE"
- local: in_translation
title: "Linear Multistep"
- local: in_translation
title: "PNDM"
- local: in_translation
title: "VE-SDE"
- local: in_translation
title: "IPNDM"
- local: in_translation
title: "VP-SDE"
- local: in_translation
title: "Euler scheduler"
- local: in_translation
title: "Euler Ancestral Scheduler"
- local: in_translation
title: "VQDiffusionScheduler"
- local: in_translation
title: "RePaint Scheduler"
title: "스케줄러 (번역 예정)"
- sections:
- local: in_translation
title: "RL Planning"
title: "Experimental Features"
title: "API (번역 예정)"
title: Torch2.0 지원
- local: optimization/xformers
title: xFormers
- local: optimization/onnx
title: ONNX
- local: optimization/open_vino
title: OpenVINO
- local: optimization/mps
title: MPS
- local: optimization/habana
title: Habana Gaudi
title: 최적화/특수 하드웨어

View File

@@ -0,0 +1,410 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 메모리와 속도
메모리 또는 속도에 대해 🤗 Diffusers *추론*을 최적화하기 위한 몇 가지 기술과 아이디어를 제시합니다.
일반적으로, memory-efficient attention을 위해 [xFormers](https://github.com/facebookresearch/xformers) 사용을 추천하기 때문에, 추천하는 [설치 방법](xformers)을 보고 설치해 보세요.
다음 설정이 성능과 메모리에 미치는 영향에 대해 설명합니다.
| | 지연시간 | 속도 향상 |
| ---------------- | ------- | ------- |
| 별도 설정 없음 | 9.50s | x1 |
| cuDNN auto-tuner | 9.37s | x1.01 |
| fp16 | 3.61s | x2.63 |
| Channels Last 메모리 형식 | 3.30s | x2.88 |
| traced UNet | 3.21s | x2.96 |
| memory-efficient attention | 2.63s | x3.61 |
<em>
NVIDIA TITAN RTX에서 50 DDIM 스텝의 "a photo of an astronaut riding a horse on mars" 프롬프트로 512x512 크기의 단일 이미지를 생성하였습니다.
</em>
## cuDNN auto-tuner 활성화하기
[NVIDIA cuDNN](https://developer.nvidia.com/cudnn)은 컨볼루션을 계산하는 많은 알고리즘을 지원합니다. Autotuner는 짧은 벤치마크를 실행하고 주어진 입력 크기에 대해 주어진 하드웨어에서 최고의 성능을 가진 커널을 선택합니다.
**컨볼루션 네트워크**를 활용하고 있기 때문에 (다른 유형들은 현재 지원되지 않음), 다음 설정을 통해 추론 전에 cuDNN autotuner를 활성화할 수 있습니다:
```python
import torch
torch.backends.cudnn.benchmark = True
```
### fp32 대신 tf32 사용하기 (Ampere 및 이후 CUDA 장치들에서)
Ampere 및 이후 CUDA 장치에서 행렬곱 및 컨볼루션은 TensorFloat32(TF32) 모드를 사용하여 더 빠르지만 약간 덜 정확할 수 있습니다.
기본적으로 PyTorch는 컨볼루션에 대해 TF32 모드를 활성화하지만 행렬 곱셈은 활성화하지 않습니다.
네트워크에 완전한 float32 정밀도가 필요한 경우가 아니면 행렬 곱셈에 대해서도 이 설정을 활성화하는 것이 좋습니다.
이는 일반적으로 무시할 수 있는 수치의 정확도 손실이 있지만, 계산 속도를 크게 높일 수 있습니다.
그것에 대해 [여기](https://huggingface.co/docs/transformers/v4.18.0/en/performance#tf32)서 더 읽을 수 있습니다.
추론하기 전에 다음을 추가하기만 하면 됩니다:
```python
import torch
torch.backends.cuda.matmul.allow_tf32 = True
```
## 반정밀도 가중치
더 많은 GPU 메모리를 절약하고 더 빠른 속도를 얻기 위해 모델 가중치를 반정밀도(half precision)로 직접 로드하고 실행할 수 있습니다.
여기에는 `fp16`이라는 브랜치에 저장된 float16 버전의 가중치를 불러오고, 그 때 `float16` 유형을 사용하도록 PyTorch에 지시하는 작업이 포함됩니다.
```Python
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```
<Tip warning={true}>
어떤 파이프라인에서도 [`torch.autocast`](https://pytorch.org/docs/stable/amp.html#torch.autocast) 를 사용하는 것은 검은색 이미지를 생성할 수 있고, 순수한 float16 정밀도를 사용하는 것보다 항상 느리기 때문에 사용하지 않는 것이 좋습니다.
</Tip>
## 추가 메모리 절약을 위한 슬라이스 어텐션
추가 메모리 절약을 위해, 한 번에 모두 계산하는 대신 단계적으로 계산을 수행하는 슬라이스 버전의 어텐션(attention)을 사용할 수 있습니다.
<Tip>
Attention slicing은 모델이 하나 이상의 어텐션 헤드를 사용하는 한, 배치 크기가 1인 경우에도 유용합니다.
하나 이상의 어텐션 헤드가 있는 경우 *QK^T* 어텐션 매트릭스는 상당한 양의 메모리를 절약할 수 있는 각 헤드에 대해 순차적으로 계산될 수 있습니다.
</Tip>
각 헤드에 대해 순차적으로 어텐션 계산을 수행하려면, 다음과 같이 추론 전에 파이프라인에서 [`~StableDiffusionPipeline.enable_attention_slicing`]를 호출하면 됩니다:
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_attention_slicing()
image = pipe(prompt).images[0]
```
추론 시간이 약 10% 느려지는 약간의 성능 저하가 있지만 이 방법을 사용하면 3.2GB 정도의 작은 VRAM으로도 Stable Diffusion을 사용할 수 있습니다!
## 더 큰 배치를 위한 sliced VAE 디코드
제한된 VRAM에서 대규모 이미지 배치를 디코딩하거나 32개 이상의 이미지가 포함된 배치를 활성화하기 위해, 배치의 latent 이미지를 한 번에 하나씩 디코딩하는 슬라이스 VAE 디코드를 사용할 수 있습니다.
이를 [`~StableDiffusionPipeline.enable_attention_slicing`] 또는 [`~StableDiffusionPipeline.enable_xformers_memory_efficient_attention`]과 결합하여 메모리 사용을 추가로 최소화할 수 있습니다.
VAE 디코드를 한 번에 하나씩 수행하려면 추론 전에 파이프라인에서 [`~StableDiffusionPipeline.enable_vae_slicing`]을 호출합니다. 예를 들어:
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_vae_slicing()
images = pipe([prompt] * 32).images
```
다중 이미지 배치에서 VAE 디코드가 약간의 성능 향상이 이루어집니다. 단일 이미지 배치에서는 성능 영향은 없습니다.
<a name="sequential_offloading"></a>
## 메모리 절약을 위해 가속 기능을 사용하여 CPU로 오프로딩
추가 메모리 절약을 위해 가중치를 CPU로 오프로드하고 순방향 전달을 수행할 때만 GPU로 로드할 수 있습니다.
CPU 오프로딩을 수행하려면 [`~StableDiffusionPipeline.enable_sequential_cpu_offload`]를 호출하기만 하면 됩니다:
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_sequential_cpu_offload()
image = pipe(prompt).images[0]
```
그러면 메모리 소비를 3GB 미만으로 줄일 수 있습니다.
참고로 이 방법은 전체 모델이 아닌 서브모듈 수준에서 작동합니다. 이는 메모리 소비를 최소화하는 가장 좋은 방법이지만 프로세스의 반복적 특성으로 인해 추론 속도가 훨씬 느립니다. 파이프라인의 UNet 구성 요소는 여러 번 실행됩니다('num_inference_steps' 만큼). 매번 UNet의 서로 다른 서브모듈이 순차적으로 온로드된 다음 필요에 따라 오프로드되므로 메모리 이동 횟수가 많습니다.
<Tip>
또 다른 최적화 방법인 <a href="#model_offloading">모델 오프로딩</a>을 사용하는 것을 고려하십시오. 이는 훨씬 빠르지만 메모리 절약이 크지는 않습니다.
</Tip>
또한 ttention slicing과 연결해서 최소 메모리(< 2GB)로도 동작할 수 있습니다.
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_sequential_cpu_offload()
pipe.enable_attention_slicing(1)
image = pipe(prompt).images[0]
```
**참고**: 'enable_sequential_cpu_offload()'를 사용할 때, 미리 파이프라인을 CUDA로 이동하지 **않는** 것이 중요합니다.그렇지 않으면 메모리 소비의 이득이 최소화됩니다. 더 많은 정보를 위해 [이 이슈](https://github.com/huggingface/diffusers/issues/1934)를 보세요.
<a name="model_offloading"></a>
## 빠른 추론과 메모리 메모리 절약을 위한 모델 오프로딩
[순차적 CPU 오프로딩](#sequential_offloading)은 이전 섹션에서 설명한 것처럼 많은 메모리를 보존하지만 필요에 따라 서브모듈을 GPU로 이동하고 새 모듈이 실행될 때 즉시 CPU로 반환되기 때문에 추론 속도가 느려집니다.
전체 모델 오프로딩은 각 모델의 구성 요소인 _modules_을 처리하는 대신, 전체 모델을 GPU로 이동하는 대안입니다. 이로 인해 추론 시간에 미치는 영향은 미미하지만(파이프라인을 'cuda'로 이동하는 것과 비교하여) 여전히 약간의 메모리를 절약할 수 있습니다.
이 시나리오에서는 파이프라인의 주요 구성 요소 중 하나만(일반적으로 텍스트 인코더, unet 및 vae) GPU에 있고, 나머지는 CPU에서 대기할 것입니다.
여러 반복을 위해 실행되는 UNet과 같은 구성 요소는 더 이상 필요하지 않을 때까지 GPU에 남아 있습니다.
이 기능은 아래와 같이 파이프라인에서 `enable_model_cpu_offload()`를 호출하여 활성화할 수 있습니다.
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_model_cpu_offload()
image = pipe(prompt).images[0]
```
이는 추가적인 메모리 절약을 위한 attention slicing과도 호환됩니다.
```Python
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing(1)
image = pipe(prompt).images[0]
```
<Tip>
이 기능을 사용하려면 'accelerate' 버전 0.17.0 이상이 필요합니다.
</Tip>
## Channels Last 메모리 형식 사용하기
Channels Last 메모리 형식은 차원 순서를 보존하는 메모리에서 NCHW 텐서 배열을 대체하는 방법입니다.
Channels Last 텐서는 채널이 가장 조밀한 차원이 되는 방식으로 정렬됩니다(일명 픽셀당 이미지를 저장).
현재 모든 연산자 Channels Last 형식을 지원하는 것은 아니라 성능이 저하될 수 있으므로, 사용해보고 모델에 잘 작동하는지 확인하는 것이 좋습니다.
예를 들어 파이프라인의 UNet 모델이 channels Last 형식을 사용하도록 설정하려면 다음을 사용할 수 있습니다:
```python
print(pipe.unet.conv_out.state_dict()["weight"].stride()) # (2880, 9, 3, 1)
pipe.unet.to(memory_format=torch.channels_last) # in-place 연산
# 2번째 차원에서 스트라이드 1을 가지는 (2880, 1, 960, 320)로, 연산이 작동함을 증명합니다.
print(pipe.unet.conv_out.state_dict()["weight"].stride())
```
## 추적(tracing)
추적은 모델을 통해 예제 입력 텐서를 통해 실행되는데, 해당 입력이 모델의 레이어를 통과할 때 호출되는 작업을 캡처하여 실행 파일 또는 'ScriptFunction'이 반환되도록 하고, 이는 just-in-time 컴파일로 최적화됩니다.
UNet 모델을 추적하기 위해 다음을 사용할 수 있습니다:
```python
import time
import torch
from diffusers import StableDiffusionPipeline
import functools
# torch 기울기 비활성화
torch.set_grad_enabled(False)
# 변수 설정
n_experiments = 2
unet_runs_per_experiment = 50
# 입력 불러오기
def generate_inputs():
sample = torch.randn(2, 4, 64, 64).half().cuda()
timestep = torch.rand(1).half().cuda() * 999
encoder_hidden_states = torch.randn(2, 77, 768).half().cuda()
return sample, timestep, encoder_hidden_states
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
unet = pipe.unet
unet.eval()
unet.to(memory_format=torch.channels_last) # Channels Last 메모리 형식 사용
unet.forward = functools.partial(unet.forward, return_dict=False) # return_dict=False을 기본값으로 설정
# 워밍업
for _ in range(3):
with torch.inference_mode():
inputs = generate_inputs()
orig_output = unet(*inputs)
# 추적
print("tracing..")
unet_traced = torch.jit.trace(unet, inputs)
unet_traced.eval()
print("done tracing")
# 워밍업 및 그래프 최적화
for _ in range(5):
with torch.inference_mode():
inputs = generate_inputs()
orig_output = unet_traced(*inputs)
# 벤치마킹
with torch.inference_mode():
for _ in range(n_experiments):
torch.cuda.synchronize()
start_time = time.time()
for _ in range(unet_runs_per_experiment):
orig_output = unet_traced(*inputs)
torch.cuda.synchronize()
print(f"unet traced inference took {time.time() - start_time:.2f} seconds")
for _ in range(n_experiments):
torch.cuda.synchronize()
start_time = time.time()
for _ in range(unet_runs_per_experiment):
orig_output = unet(*inputs)
torch.cuda.synchronize()
print(f"unet inference took {time.time() - start_time:.2f} seconds")
# 모델 저장
unet_traced.save("unet_traced.pt")
```
그 다음, 파이프라인의 `unet` 특성을 다음과 같이 추적된 모델로 바꿀 수 있습니다.
```python
from diffusers import StableDiffusionPipeline
import torch
from dataclasses import dataclass
@dataclass
class UNet2DConditionOutput:
sample: torch.FloatTensor
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
# jitted unet 사용
unet_traced = torch.jit.load("unet_traced.pt")
# pipe.unet 삭제
class TracedUNet(torch.nn.Module):
def __init__(self):
super().__init__()
self.in_channels = pipe.unet.in_channels
self.device = pipe.unet.device
def forward(self, latent_model_input, t, encoder_hidden_states):
sample = unet_traced(latent_model_input, t, encoder_hidden_states)[0]
return UNet2DConditionOutput(sample=sample)
pipe.unet = TracedUNet()
with torch.inference_mode():
image = pipe([prompt] * 1, num_inference_steps=50).images[0]
```
## Memory-efficient attention
어텐션 블록의 대역폭을 최적화하는 최근 작업으로 GPU 메모리 사용량이 크게 향상되고 향상되었습니다.
@tridao의 가장 최근의 플래시 어텐션: [code](https://github.com/HazyResearch/flash-attention), [paper](https://arxiv.org/pdf/2205.14135.pdf).
배치 크기 1(프롬프트 1개)의 512x512 크기로 추론을 실행할 때 몇 가지 Nvidia GPU에서 얻은 속도 향상은 다음과 같습니다:
| GPU | 기준 어텐션 FP16 | 메모리 효율적인 어텐션 FP16 |
|------------------ |--------------------- |--------------------------------- |
| NVIDIA Tesla T4 | 3.5it/s | 5.5it/s |
| NVIDIA 3060 RTX | 4.6it/s | 7.8it/s |
| NVIDIA A10G | 8.88it/s | 15.6it/s |
| NVIDIA RTX A6000 | 11.7it/s | 21.09it/s |
| NVIDIA TITAN RTX | 12.51it/s | 18.22it/s |
| A100-SXM4-40GB | 18.6it/s | 29.it/s |
| A100-SXM-80GB | 18.7it/s | 29.5it/s |
이를 활용하려면 다음을 만족해야 합니다:
- PyTorch > 1.12
- Cuda 사용 가능
- [xformers 라이브러리를 설치함](xformers)
```python
from diffusers import StableDiffusionPipeline
import torch
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
with torch.inference_mode():
sample = pipe("a small cat")
# 선택: 이를 비활성화 하기 위해 다음을 사용할 수 있습니다.
# pipe.disable_xformers_memory_efficient_attention()
```

View File

@@ -0,0 +1,71 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Habana Gaudi에서 Stable Diffusion을 사용하는 방법
🤗 Diffusers는 🤗 [Optimum Habana](https://huggingface.co/docs/optimum/habana/usage_guides/stable_diffusion)를 통해서 Habana Gaudi와 호환됩니다.
## 요구 사항
- Optimum Habana 1.4 또는 이후, [여기](https://huggingface.co/docs/optimum/habana/installation)에 설치하는 방법이 있습니다.
- SynapseAI 1.8.
## 추론 파이프라인
Gaudi에서 Stable Diffusion 1 및 2로 이미지를 생성하려면 두 인스턴스를 인스턴스화해야 합니다:
- [`GaudiStableDiffusionPipeline`](https://huggingface.co/docs/optimum/habana/package_reference/stable_diffusion_pipeline)이 포함된 파이프라인. 이 파이프라인은 *텍스트-이미지 생성*을 지원합니다.
- [`GaudiDDIMScheduler`](https://huggingface.co/docs/optimum/habana/package_reference/stable_diffusion_pipeline#optimum.habana.diffusers.GaudiDDIMScheduler)이 포함된 스케줄러. 이 스케줄러는 Habana Gaudi에 최적화되어 있습니다.
파이프라인을 초기화할 때, HPU에 배포하기 위해 `use_habana=True`를 지정해야 합니다.
또한 가능한 가장 빠른 생성을 위해 `use_hpu_graphs=True`로 **HPU 그래프**를 활성화해야 합니다.
마지막으로, [Hugging Face Hub](https://huggingface.co/Habana)에서 다운로드할 수 있는 [Gaudi configuration](https://huggingface.co/docs/optimum/habana/package_reference/gaudi_config)을 지정해야 합니다.
```python
from optimum.habana import GaudiConfig
from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiStableDiffusionPipeline
model_name = "stabilityai/stable-diffusion-2-base"
scheduler = GaudiDDIMScheduler.from_pretrained(model_name, subfolder="scheduler")
pipeline = GaudiStableDiffusionPipeline.from_pretrained(
model_name,
scheduler=scheduler,
use_habana=True,
use_hpu_graphs=True,
gaudi_config="Habana/stable-diffusion",
)
```
파이프라인을 호출하여 하나 이상의 프롬프트에서 배치별로 이미지를 생성할 수 있습니다.
```python
outputs = pipeline(
prompt=[
"High quality photo of an astronaut riding a horse in space",
"Face of a yellow cat, high resolution, sitting on a park bench",
],
num_images_per_prompt=10,
batch_size=4,
)
```
더 많은 정보를 얻기 위해, Optimum Habana의 [문서](https://huggingface.co/docs/optimum/habana/usage_guides/stable_diffusion)와 공식 Github 저장소에 제공된 [예시](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion)를 확인하세요.
## 벤치마크
다음은 [Habana/stable-diffusion](https://huggingface.co/Habana/stable-diffusion) Gaudi 구성(혼합 정밀도 bf16/fp32)을 사용하는 Habana first-generation Gaudi 및 Gaudi2의 지연 시간입니다:
| | Latency (배치 크기 = 1) | Throughput (배치 크기 = 8) |
| ---------------------- |:------------------------:|:---------------------------:|
| first-generation Gaudi | 4.29s | 0.283 images/s |
| Gaudi2 | 1.54s | 0.904 images/s |

View File

@@ -0,0 +1,71 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Apple Silicon (M1/M2)에서 Stable Diffusion을 사용하는 방법
Diffusers는 Stable Diffusion 추론을 위해 PyTorch `mps`를 사용해 Apple 실리콘과 호환됩니다. 다음은 Stable Diffusion이 있는 M1 또는 M2 컴퓨터를 사용하기 위해 따라야 하는 단계입니다.
## 요구 사항
- Apple silicon (M1/M2) 하드웨어의 Mac 컴퓨터.
- macOS 12.6 또는 이후 (13.0 또는 이후 추천).
- Python arm64 버전
- PyTorch 2.0(추천) 또는 1.13(`mps`를 지원하는 최소 버전). Yhttps://pytorch.org/get-started/locally/의 지침에 따라 `pip` 또는 `conda`로 설치할 수 있습니다.
## 추론 파이프라인
아래 코도는 익숙한 `to()` 인터페이스를 사용하여 `mps` 백엔드로 Stable Diffusion 파이프라인을 M1 또는 M2 장치로 이동하는 방법을 보여줍니다.
<Tip warning={true}>
**PyTorch 1.13을 사용 중일 때 ** 추가 일회성 전달을 사용하여 파이프라인을 "프라이밍"하는 것을 추천합니다. 이것은 발견한 이상한 문제에 대한 임시 해결 방법입니다. 첫 번째 추론 전달은 후속 전달와 약간 다른 결과를 생성합니다. 이 전달은 한 번만 수행하면 되며 추론 단계를 한 번만 사용하고 결과를 폐기해도 됩니다.
</Tip>
이전 팁에서 설명한 것들을 포함한 여러 문제를 해결하므로 PyTorch 2 이상을 사용하는 것이 좋습니다.
```python
# `huggingface-cli login`에 로그인되어 있음을 확인
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to("mps")
# 컴퓨터가 64GB 이하의 RAM 램일 때 추천
pipe.enable_attention_slicing()
prompt = "a photo of an astronaut riding a horse on mars"
# 처음 "워밍업" 전달 (위 설명을 보세요)
_ = pipe(prompt, num_inference_steps=1)
# 결과는 워밍업 전달 후의 CPU 장치의 결과와 일치합니다.
image = pipe(prompt).images[0]
```
## 성능 추천
M1/M2 성능은 메모리 압력에 매우 민감합니다. 시스템은 필요한 경우 자동으로 스왑되지만 스왑할 때 성능이 크게 저하됩니다.
특히 컴퓨터의 시스템 RAM이 64GB 미만이거나 512 × 512픽셀보다 큰 비표준 해상도에서 이미지를 생성하는 경우, 추론 중에 메모리 압력을 줄이고 스와핑을 방지하기 위해 *어텐션 슬라이싱*을 사용하는 것이 좋습니다. 어텐션 슬라이싱은 비용이 많이 드는 어텐션 작업을 한 번에 모두 수행하는 대신 여러 단계로 수행합니다. 일반적으로 범용 메모리가 없는 컴퓨터에서 ~20%의 성능 영향을 미치지만 64GB 이상이 아닌 경우 대부분의 Apple Silicon 컴퓨터에서 *더 나은 성능*이 관찰되었습니다.
```python
pipeline.enable_attention_slicing()
```
## Known Issues
- 여러 프롬프트를 배치로 생성하는 것은 [충돌이 발생하거나 안정적으로 작동하지 않습니다](https://github.com/huggingface/diffusers/issues/363). 우리는 이것이 [PyTorch의 `mps` 백엔드](https://github.com/pytorch/pytorch/issues/84039)와 관련이 있다고 생각합니다. 이 문제는 해결되고 있지만 지금은 배치 대신 반복 방법을 사용하는 것이 좋습니다.

View File

@@ -0,0 +1,65 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 추론을 위해 ONNX 런타임을 사용하는 방법
🤗 Diffusers는 ONNX Runtime과 호환되는 Stable Diffusion 파이프라인을 제공합니다. 이를 통해 ONNX(CPU 포함)를 지원하고 PyTorch의 가속 버전을 사용할 수 없는 모든 하드웨어에서 Stable Diffusion을 실행할 수 있습니다.
## 설치
다음 명령어로 ONNX Runtime를 지원하는 🤗 Optimum를 설치합니다:
```
pip install optimum["onnxruntime"]
```
## Stable Diffusion 추론
아래 코드는 ONNX 런타임을 사용하는 방법을 보여줍니다. `StableDiffusionPipeline` 대신 `OnnxStableDiffusionPipeline`을 사용해야 합니다.
PyTorch 모델을 불러오고 즉시 ONNX 형식으로 변환하려는 경우 `export=True`로 설정합니다.
```python
from optimum.onnxruntime import ORTStableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
pipe = ORTStableDiffusionPipeline.from_pretrained(model_id, export=True)
prompt = "a photo of an astronaut riding a horse on mars"
images = pipe(prompt).images[0]
pipe.save_pretrained("./onnx-stable-diffusion-v1-5")
```
파이프라인을 ONNX 형식으로 오프라인으로 내보내고 나중에 추론에 사용하려는 경우,
[`optimum-cli export`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli) 명령어를 사용할 수 있습니다:
```bash
optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 sd_v15_onnx/
```
그 다음 추론을 수행합니다:
```python
from optimum.onnxruntime import ORTStableDiffusionPipeline
model_id = "sd_v15_onnx"
pipe = ORTStableDiffusionPipeline.from_pretrained(model_id)
prompt = "a photo of an astronaut riding a horse on mars"
images = pipe(prompt).images[0]
```
Notice that we didn't have to specify `export=True` above.
[Optimum 문서](https://huggingface.co/docs/optimum/)에서 더 많은 예시를 찾을 수 있습니다.
## 알려진 이슈들
- 여러 프롬프트를 배치로 생성하면 너무 많은 메모리가 사용되는 것 같습니다. 이를 조사하는 동안, 배치 대신 반복 방법이 필요할 수도 있습니다.

View File

@@ -0,0 +1,39 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 추론을 위한 OpenVINO 사용 방법
🤗 [Optimum](https://github.com/huggingface/optimum-intel)은 OpenVINO와 호환되는 Stable Diffusion 파이프라인을 제공합니다.
이제 다양한 Intel 프로세서에서 OpenVINO Runtime으로 쉽게 추론을 수행할 수 있습니다. ([여기](https://docs.openvino.ai/latest/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html)서 지원되는 전 기기 목록을 확인하세요).
## 설치
다음 명령어로 🤗 Optimum을 설치합니다:
```
pip install optimum["openvino"]
```
## Stable Diffusion 추론
OpenVINO 모델을 불러오고 OpenVINO 런타임으로 추론을 실행하려면 `StableDiffusionPipeline`을 `OVStableDiffusionPipeline`으로 교체해야 합니다. PyTorch 모델을 불러오고 즉시 OpenVINO 형식으로 변환하려는 경우 `export=True`로 설정합니다.
```python
from optimum.intel.openvino import OVStableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
pipe = OVStableDiffusionPipeline.from_pretrained(model_id, export=True)
prompt = "a photo of an astronaut riding a horse on mars"
images = pipe(prompt).images[0]
```
[Optimum 문서](https://huggingface.co/docs/optimum/intel/inference#export-and-inference-of-stable-diffusion-models)에서 (정적 reshaping과 모델 컴파일 등의) 더 많은 예시들을 찾을 수 있습니다.

View File

@@ -0,0 +1,36 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# xFormers 설치하기
추론과 학습 모두에 [xFormers](https://github.com/facebookresearch/xformers)를 사용하는 것이 좋습니다.
자체 테스트로 어텐션 블록에서 수행된 최적화가 더 빠른 속도와 적은 메모리 소비를 확인했습니다.
2023년 1월에 출시된 xFormers 버전 '0.0.16'부터 사전 빌드된 pip wheel을 사용하여 쉽게 설치할 수 있습니다:
```bash
pip install xformers
```
<Tip>
xFormers PIP 패키지에는 최신 버전의 PyTorch(xFormers 0.0.16에 1.13.1)가 필요합니다. 이전 버전의 PyTorch를 사용해야 하는 경우 [프로젝트 지침](https://github.com/facebookresearch/xformers#installing-xformers)의 소스를 사용해 xFormers를 설치하는 것이 좋습니다.
</Tip>
xFormers를 설치하면, [여기](fp16#memory-efficient-attention)서 설명한 것처럼 'enable_xformers_memory_efficient_attention()'을 사용하여 추론 속도를 높이고 메모리 소비를 줄일 수 있습니다.
<Tip warning={true}>
[이 이슈](https://github.com/huggingface/diffusers/issues/2234#issuecomment-1416931212)에 따르면 xFormers `v0.0.16`에서 GPU를 사용한 학습(파인 튜닝 또는 Dreambooth)을 할 수 없습니다. 해당 문제가 발견되면. 해당 코멘트를 참고해 development 버전을 설치하세요.
</Tip>

View File

@@ -0,0 +1,475 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DreamBooth
[DreamBooth](https://arxiv.org/abs/2208.12242)는 한 주제에 대한 적은 이미지(3~5개)만으로도 stable diffusion과 같이 text-to-image 모델을 개인화할 수 있는 방법입니다. 이를 통해 모델은 다양한 장면, 포즈 및 장면(뷰)에서 피사체에 대해 맥락화(contextualized)된 이미지를 생성할 수 있습니다.
![프로젝트 블로그에서의 DreamBooth 예시](https://dreambooth.github.io/DreamBooth_files/teaser_static.jpg)
<a href="https://dreambooth.github.io">project's blog.</a></small>
<small><a href="https://dreambooth.github.io">프로젝트 블로그</a>에서의 Dreambooth 예시</small>
이 가이드는 다양한 GPU, Flax 사양에 대해 [`CompVis/stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) 모델로 DreamBooth를 파인튜닝하는 방법을 보여줍니다. 더 깊이 파고들어 작동 방식을 확인하는 데 관심이 있는 경우, 이 가이드에 사용된 DreamBooth의 모든 학습 스크립트를 [여기](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth)에서 찾을 수 있습니다.
스크립트를 실행하기 전에 라이브러리의 학습에 필요한 dependencies를 설치해야 합니다. 또한 `main` GitHub 브랜치에서 🧨 Diffusers를 설치하는 것이 좋습니다.
```bash
pip install git+https://github.com/huggingface/diffusers
pip install -U -r diffusers/examples/dreambooth/requirements.txt
```
xFormers는 학습에 필요한 요구 사항은 아니지만, 가능하면 [설치](../optimization/xformers)하는 것이 좋습니다. 학습 속도를 높이고 메모리 사용량을 줄일 수 있기 때문입니다.
모든 dependencies을 설정한 후 다음을 사용하여 [🤗 Accelerate](https://github.com/huggingface/accelerate/) 환경을 다음과 같이 초기화합니다:
```bash
accelerate config
```
별도 설정 없이 기본 🤗 Accelerate 환경을 설치하려면 다음을 실행합니다:
```bash
accelerate config default
```
또는 현재 환경이 노트북과 같은 대화형 셸을 지원하지 않는 경우 다음을 사용할 수 있습니다:
```py
from accelerate.utils import write_basic_config
write_basic_config()
```
## 파인튜닝
<Tip warning={true}>
DreamBooth 파인튜닝은 하이퍼파라미터에 매우 민감하고 과적합되기 쉽습니다. 적절한 하이퍼파라미터를 선택하는 데 도움이 되도록 다양한 권장 설정이 포함된 [심층 분석](https://huggingface.co/blog/dreambooth)을 살펴보는 것이 좋습니다.
</Tip>
<frameworkcontent>
<pt>
[몇 장의 강아지 이미지들](https://drive.google.com/drive/folders/1BO_dyz-p65qhBRRMRA4TbZ8qW4rB99JZ)로 DreamBooth를 시도해봅시다.
이를 다운로드해 디렉터리에 저장한 다음 `INSTANCE_DIR` 환경 변수를 해당 경로로 설정합니다:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export OUTPUT_DIR="path_to_saved_model"
```
그런 다음, 다음 명령을 사용하여 학습 스크립트를 실행할 수 있습니다 (전체 학습 스크립트는 [여기](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py)에서 찾을 수 있습니다):
```bash
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 \
--learning_rate=5e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=400
```
</pt>
<jax>
TPU에 액세스할 수 있거나 더 빠르게 훈련하고 싶다면 [Flax 학습 스크립트](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_flax.py)를 사용해 볼 수 있습니다. Flax 학습 스크립트는 gradient checkpointing 또는 gradient accumulation을 지원하지 않으므로, 메모리가 30GB 이상인 GPU가 필요합니다.
스크립트를 실행하기 전에 요구 사항이 설치되어 있는지 확인하십시오.
```bash
pip install -U -r requirements.txt
```
그러면 다음 명령어로 학습 스크립트를 실행시킬 수 있습니다:
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="path-to-instance-images"
export OUTPUT_DIR="path-to-save-model"
python train_dreambooth_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \
--resolution=512 \
--train_batch_size=1 \
--learning_rate=5e-6 \
--max_train_steps=400
```
</jax>
</frameworkcontent>
### Prior-preserving(사전 보존) loss를 사용한 파인튜닝
과적합과 language drift를 방지하기 위해 사전 보존이 사용됩니다(관심이 있는 경우 [논문](https://arxiv.org/abs/2208.12242)을 참조하세요). 사전 보존을 위해 동일한 클래스의 다른 이미지를 학습 프로세스의 일부로 사용합니다. 좋은 점은 Stable Diffusion 모델 자체를 사용하여 이러한 이미지를 생성할 수 있다는 것입니다! 학습 스크립트는 생성된 이미지를 우리가 지정한 로컬 경로에 저장합니다.
저자들에 따르면 사전 보존을 위해 `num_epochs * num_samples`개의 이미지를 생성하는 것이 좋습니다. 200-300개에서 대부분 잘 작동합니다.
<frameworkcontent>
<pt>
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \
--with_prior_preservation --prior_loss_weight=1.0 \
--instance_prompt="a photo of sks dog" \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 \
--learning_rate=5e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800
```
</pt>
<jax>
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="path-to-instance-images"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"
python train_dreambooth_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \
--with_prior_preservation --prior_loss_weight=1.0 \
--instance_prompt="a photo of sks dog" \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--learning_rate=5e-6 \
--num_class_images=200 \
--max_train_steps=800
```
</jax>
</frameworkcontent>
## 텍스트 인코더와 and UNet로 파인튜닝하기
해당 스크립트를 사용하면 `unet`과 함께 `text_encoder`를 파인튜닝할 수 있습니다. 실험에서(자세한 내용은 [🧨 Diffusers를 사용해 DreamBooth로 Stable Diffusion 학습하기](https://huggingface.co/blog/dreambooth) 게시물을 확인하세요), 특히 얼굴 이미지를 생성할 때 훨씬 더 나은 결과를 얻을 수 있습니다.
<Tip warning={true}>
텍스트 인코더를 학습시키려면 추가 메모리가 필요해 16GB GPU로는 동작하지 않습니다. 이 옵션을 사용하려면 최소 24GB VRAM이 필요합니다.
</Tip>
`--train_text_encoder` 인수를 학습 스크립트에 전달하여 `text_encoder` 및 `unet`을 파인튜닝할 수 있습니다:
<frameworkcontent>
<pt>
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_text_encoder \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \
--with_prior_preservation --prior_loss_weight=1.0 \
--instance_prompt="a photo of sks dog" \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--use_8bit_adam
--gradient_checkpointing \
--learning_rate=2e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800
```
</pt>
<jax>
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="path-to-instance-images"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"
python train_dreambooth_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_text_encoder \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \
--with_prior_preservation --prior_loss_weight=1.0 \
--instance_prompt="a photo of sks dog" \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--learning_rate=2e-6 \
--num_class_images=200 \
--max_train_steps=800
```
</jax>
</frameworkcontent>
## LoRA로 파인튜닝하기
DreamBooth에서 대규모 모델의 학습을 가속화하기 위한 파인튜닝 기술인 LoRA(Low-Rank Adaptation of Large Language Models)를 사용할 수 있습니다. 자세한 내용은 [LoRA 학습](training/lora#dreambooth) 가이드를 참조하세요.
### 학습 중 체크포인트 저장하기
Dreambooth로 훈련하는 동안 과적합하기 쉬우므로, 때때로 학습 중에 정기적인 체크포인트를 저장하는 것이 유용합니다. 중간 체크포인트 중 하나가 최종 모델보다 더 잘 작동할 수 있습니다! 체크포인트 저장 기능을 활성화하려면 학습 스크립트에 다음 인수를 전달해야 합니다:
```bash
--checkpointing_steps=500
```
이렇게 하면 `output_dir`의 하위 폴더에 전체 학습 상태가 저장됩니다. 하위 폴더 이름은 접두사 `checkpoint-`로 시작하고 지금까지 수행된 step 수입니다. 예시로 `checkpoint-1500`은 1500 학습 step 후에 저장된 체크포인트입니다.
#### 저장된 체크포인트에서 훈련 재개하기
저장된 체크포인트에서 훈련을 재개하려면, `--resume_from_checkpoint` 인수를 전달한 다음 사용할 체크포인트의 이름을 지정하면 됩니다. 특수 문자열 `"latest"`를 사용하여 저장된 마지막 체크포인트(즉, step 수가 가장 많은 체크포인트)에서 재개할 수도 있습니다. 예를 들어 다음은 1500 step 후에 저장된 체크포인트에서부터 학습을 재개합니다:
```bash
--resume_from_checkpoint="checkpoint-1500"
```
원하는 경우 일부 하이퍼파라미터를 조정할 수 있습니다.
#### 저장된 체크포인트를 사용하여 추론 수행하기
저장된 체크포인트는 훈련 재개에 적합한 형식으로 저장됩니다. 여기에는 모델 가중치뿐만 아니라 옵티마이저, 데이터 로더 및 학습률의 상태도 포함됩니다.
**`"accelerate>=0.16.0"`**이 설치된 경우 다음 코드를 사용하여 중간 체크포인트에서 추론을 실행합니다.
```python
from diffusers import DiffusionPipeline, UNet2DConditionModel
from transformers import CLIPTextModel
import torch
# 학습에 사용된 것과 동일한 인수(model, revision)로 파이프라인을 로드합니다.
model_id = "CompVis/stable-diffusion-v1-4"
unet = UNet2DConditionModel.from_pretrained("/sddata/dreambooth/daruma-v2-1/checkpoint-100/unet")
# `args.train_text_encoder`로 학습한 경우면 텍스트 인코더를 꼭 불러오세요
text_encoder = CLIPTextModel.from_pretrained("/sddata/dreambooth/daruma-v2-1/checkpoint-100/text_encoder")
pipeline = DiffusionPipeline.from_pretrained(model_id, unet=unet, text_encoder=text_encoder, dtype=torch.float16)
pipeline.to("cuda")
# 추론을 수행하거나 저장하거나, 허브에 푸시합니다.
pipeline.save_pretrained("dreambooth-pipeline")
```
If you have **`"accelerate<0.16.0"`** installed, you need to convert it to an inference pipeline first:
```python
from accelerate import Accelerator
from diffusers import DiffusionPipeline
# 학습에 사용된 것과 동일한 인수(model, revision)로 파이프라인을 로드합니다.
model_id = "CompVis/stable-diffusion-v1-4"
pipeline = DiffusionPipeline.from_pretrained(model_id)
accelerator = Accelerator()
# 초기 학습에 `--train_text_encoder`가 사용된 경우 text_encoder를 사용합니다.
unet, text_encoder = accelerator.prepare(pipeline.unet, pipeline.text_encoder)
# 체크포인트 경로로부터 상태를 복원합니다. 여기서는 절대 경로를 사용해야 합니다.
accelerator.load_state("/sddata/dreambooth/daruma-v2-1/checkpoint-100")
# unwrapped 모델로 파이프라인을 다시 빌드합니다.(.unet and .text_encoder로의 할당도 작동해야 합니다)
pipeline = DiffusionPipeline.from_pretrained(
model_id,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
)
# 추론을 수행하거나 저장하거나, 허브에 푸시합니다.
pipeline.save_pretrained("dreambooth-pipeline")
```
## 각 GPU 용량에서의 최적화
하드웨어에 따라 16GB에서 8GB까지 GPU에서 DreamBooth를 최적화하는 몇 가지 방법이 있습니다!
### xFormers
[xFormers](https://github.com/facebookresearch/xformers)는 Transformers를 최적화하기 위한 toolbox이며, 🧨 Diffusers에서 사용되는[memory-efficient attention](https://facebookresearch.github.io/xformers/components/ops.html#module-xformers.ops) 메커니즘을 포함하고 있습니다. [xFormers를 설치](./optimization/xformers)한 다음 학습 스크립트에 다음 인수를 추가합니다:
```bash
--enable_xformers_memory_efficient_attention
```
xFormers는 Flax에서 사용할 수 없습니다.
### 그래디언트 없음으로 설정
메모리 사용량을 줄일 수 있는 또 다른 방법은 [기울기 설정](https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html)을 0 대신 `None`으로 하는 것입니다. 그러나 이로 인해 특정 동작이 변경될 수 있으므로 문제가 발생하면 이 인수를 제거해 보십시오. 학습 스크립트에 다음 인수를 추가하여 그래디언트를 `None`으로 설정합니다.
```bash
--set_grads_to_none
```
### 16GB GPU
Gradient checkpointing과 [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)의 8비트 옵티마이저의 도움으로, 16GB GPU에서 dreambooth를 훈련할 수 있습니다. bitsandbytes가 설치되어 있는지 확인하세요:
```bash
pip install bitsandbytes
```
그 다음, 학습 스크립트에 `--use_8bit_adam` 옵션을 명시합니다:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \
--with_prior_preservation --prior_loss_weight=1.0 \
--instance_prompt="a photo of sks dog" \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=2 --gradient_checkpointing \
--use_8bit_adam \
--learning_rate=5e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800
```
### 12GB GPU
12GB GPU에서 DreamBooth를 실행하려면 gradient checkpointing, 8비트 옵티마이저, xFormers를 활성화하고 그래디언트를 `None`으로 설정해야 합니다.
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path-to-instance-images"
export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \
--with_prior_preservation --prior_loss_weight=1.0 \
--instance_prompt="a photo of sks dog" \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 --gradient_checkpointing \
--use_8bit_adam \
--enable_xformers_memory_efficient_attention \
--set_grads_to_none \
--learning_rate=2e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800
```
### 8GB GPU에서 학습하기
8GB GPU에 대해서는 [DeepSpeed](https://www.deepspeed.ai/)를 사용해 일부 텐서를 VRAM에서 CPU 또는 NVME로 오프로드하여 더 적은 GPU 메모리로 학습할 수도 있습니다.
🤗 Accelerate 환경을 구성하려면 다음 명령을 실행하세요:
```bash
accelerate config
```
환경 구성 중에 DeepSpeed를 사용할 것을 확인하세요.
그러면 DeepSpeed stage 2, fp16 혼합 정밀도를 결합하고 모델 매개변수와 옵티마이저 상태를 모두 CPU로 오프로드하면 8GB VRAM 미만에서 학습할 수 있습니다.
단점은 더 많은 시스템 RAM(약 25GB)이 필요하다는 것입니다. 추가 구성 옵션은 [DeepSpeed 문서](https://huggingface.co/docs/accelerate/usage_guides/deepspeed)를 참조하세요.
또한 기본 Adam 옵티마이저를 DeepSpeed의 최적화된 Adam 버전으로 변경해야 합니다.
이는 상당한 속도 향상을 위한 Adam인 [`deepspeed.ops.adam.DeepSpeedCPUAdam`](https://deepspeed.readthedocs.io/en/latest/optimizers.html#adam-cpu)입니다.
`DeepSpeedCPUAdam`을 활성화하려면 시스템의 CUDA toolchain 버전이 PyTorch와 함께 설치된 것과 동일해야 합니다.
8비트 옵티마이저는 현재 DeepSpeed와 호환되지 않는 것 같습니다.
다음 명령으로 학습을 시작합니다:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export INSTANCE_DIR="path_to_training_images"
export CLASS_DIR="path_to_class_images"
export OUTPUT_DIR="path_to_saved_model"
accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \
--with_prior_preservation --prior_loss_weight=1.0 \
--instance_prompt="a photo of sks dog" \
--class_prompt="a photo of dog" \
--resolution=512 \
--train_batch_size=1 \
--sample_batch_size=1 \
--gradient_accumulation_steps=1 --gradient_checkpointing \
--learning_rate=5e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=200 \
--max_train_steps=800 \
--mixed_precision=fp16
```
## 추론
모델을 학습한 후에는, 모델이 저장된 경로를 지정해 [`StableDiffusionPipeline`]로 추론을 수행할 수 있습니다. 프롬프트에 학습에 사용된 특수 `식별자`(이전 예시의 `sks`)가 포함되어 있는지 확인하세요.
**`"accelerate>=0.16.0"`**이 설치되어 있는 경우 다음 코드를 사용하여 중간 체크포인트에서 추론을 실행할 수 있습니다:
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "path_to_saved_model"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
prompt = "A photo of sks dog in a bucket"
image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("dog-bucket.png")
```
[저장된 학습 체크포인트](#inference-from-a-saved-checkpoint)에서도 추론을 실행할 수도 있습니다.

View File

@@ -0,0 +1,128 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Low-Rank Adaptation of Large Language Models (LoRA)
[[open-in-colab]]
<Tip warning={true}>
현재 LoRA는 [`UNet2DConditionalModel`]의 어텐션 레이어에서만 지원됩니다.
</Tip>
[LoRA(Low-Rank Adaptation of Large Language Models)](https://arxiv.org/abs/2106.09685)는 메모리를 적게 사용하면서 대규모 모델의 학습을 가속화하는 학습 방법입니다. 이는 rank-decomposition weight 행렬 쌍(**업데이트 행렬**이라고 함)을 추가하고 새로 추가된 가중치**만** 학습합니다. 여기에는 몇 가지 장점이 있습니다.
- 이전에 미리 학습된 가중치는 고정된 상태로 유지되므로 모델이 [치명적인 망각](https://www.pnas.org/doi/10.1073/pnas.1611835114) 경향이 없습니다.
- Rank-decomposition 행렬은 원래 모델보다 파라메터 수가 훨씬 적으므로 학습된 LoRA 가중치를 쉽게 끼워넣을 수 있습니다.
- LoRA 매트릭스는 일반적으로 원본 모델의 어텐션 레이어에 추가됩니다. 🧨 Diffusers는 [`~diffusers.loaders.UNet2DConditionLoadersMixin.load_attn_procs`] 메서드를 제공하여 LoRA 가중치를 모델의 어텐션 레이어로 불러옵니다. `scale` 매개변수를 통해 모델이 새로운 학습 이미지에 맞게 조정되는 범위를 제어할 수 있습니다.
- 메모리 효율성이 향상되어 Tesla T4, RTX 3080 또는 RTX 2080 Ti와 같은 소비자용 GPU에서 파인튜닝을 실행할 수 있습니다! T4와 같은 GPU는 무료이며 Kaggle 또는 Google Colab 노트북에서 쉽게 액세스할 수 있습니다.
<Tip>
💡 LoRA는 어텐션 레이어에만 한정되지는 않습니다. 저자는 언어 모델의 어텐션 레이어를 수정하는 것이 매우 효율적으로 죻은 성능을 얻기에 충분하다는 것을 발견했습니다. 이것이 LoRA 가중치를 모델의 어텐션 레이어에 추가하는 것이 일반적인 이유입니다. LoRA 작동 방식에 대한 자세한 내용은 [Using LoRA for effective Stable Diffusion fine-tuning](https://huggingface.co/blog/lora) 블로그를 확인하세요!
</Tip>
[cloneofsimo](https://github.com/cloneofsimo)는 인기 있는 [lora](https://github.com/cloneofsimo/lora) GitHub 리포지토리에서 Stable Diffusion을 위한 LoRA 학습을 최초로 시도했습니다. 🧨 Diffusers는 [text-to-image 생성](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image#training-with-lora) 및 [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#training-with-low-rank-adaptation-of-large-language-models-lora)을 지원합니다. 이 가이드는 두 가지를 모두 수행하는 방법을 보여줍니다.
모델을 저장하거나 커뮤니티와 공유하려면 Hugging Face 계정에 로그인하세요(아직 계정이 없는 경우 [생성](hf.co/join)하세요):
```bash
huggingface-cli login
```
## Text-to-image
수십억 개의 파라메터들이 있는 Stable Diffusion과 같은 모델을 파인튜닝하는 것은 느리고 어려울 수 있습니다. LoRA를 사용하면 diffusion 모델을 파인튜닝하는 것이 훨씬 쉽고 빠릅니다. 8비트 옵티마이저와 같은 트릭에 의존하지 않고도 11GB의 GPU RAM으로 하드웨어에서 실행할 수 있습니다.
### 학습 [[text-to-image 학습]]
[Pokémon BLIP 캡션](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) 데이터셋으로 [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)를 파인튜닝해 나만의 포켓몬을 생성해 보겠습니다.
시작하려면 `MODEL_NAME` 및 `DATASET_NAME` 환경 변수가 설정되어 있는지 확인하십시오. `OUTPUT_DIR` 및 `HUB_MODEL_ID` 변수는 선택 사항이며 허브에서 모델을 저장할 위치를 지정합니다.
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export OUTPUT_DIR="/sddata/finetune/lora/pokemon"
export HUB_MODEL_ID="pokemon-lora"
export DATASET_NAME="lambdalabs/pokemon-blip-captions"
```
학습을 시작하기 전에 알아야 할 몇 가지 플래그가 있습니다.
* `--push_to_hub`를 명시하면 학습된 LoRA 임베딩을 허브에 저장합니다.
* `--report_to=wandb`는 학습 결과를 가중치 및 편향 대시보드에 보고하고 기록합니다(예를 들어, 이 [보고서](https://wandb.ai/pcuenq/text2image-fine-tune/run/b4k1w0tn?workspace=user-pcuenq)를 참조하세요).
* `--learning_rate=1e-04`, 일반적으로 LoRA에서 사용하는 것보다 더 높은 학습률을 사용할 수 있습니다.
이제 학습을 시작할 준비가 되었습니다 (전체 학습 스크립트는 [여기](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py)에서 찾을 수 있습니다).
```bash
accelerate launch train_dreambooth_lora.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=1 \
--checkpointing_steps=100 \
--learning_rate=1e-4 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=500 \
--validation_prompt="A photo of sks dog in a bucket" \
--validation_epochs=50 \
--seed="0" \
--push_to_hub
```
### 추론 [[dreambooth 추론]]
이제 [`StableDiffusionPipeline`]에서 기본 모델을 불러와 추론을 위해 모델을 사용할 수 있습니다:
```py
>>> import torch
>>> from diffusers import StableDiffusionPipeline
>>> model_base = "runwayml/stable-diffusion-v1-5"
>>> pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16)
```
*기본 모델의 가중치 위에* 파인튜닝된 DreamBooth 모델에서 LoRA 가중치를 로드한 다음, 더 빠른 추론을 위해 파이프라인을 GPU로 이동합니다. LoRA 가중치를 프리징된 사전 훈련된 모델 가중치와 병합할 때, 선택적으로 'scale' 매개변수로 어느 정도의 가중치를 병합할 지 조절할 수 있습니다:
<Tip>
💡 `0`의 `scale` 값은 LoRA 가중치를 사용하지 않아 원래 모델의 가중치만 사용한 것과 같고, `1`의 `scale` 값은 파인튜닝된 LoRA 가중치만 사용함을 의미합니다. 0과 1 사이의 값들은 두 결과들 사이로 보간됩니다.
</Tip>
```py
>>> pipe.unet.load_attn_procs(model_path)
>>> pipe.to("cuda")
# LoRA 파인튜닝된 모델의 가중치 절반과 기본 모델의 가중치 절반 사용
>>> image = pipe(
... "A picture of a sks dog in a bucket.",
... num_inference_steps=25,
... guidance_scale=7.5,
... cross_attention_kwargs={"scale": 0.5},
... ).images[0]
# 완전히 파인튜닝된 LoRA 모델의 가중치 사용
>>> image = pipe("A picture of a sks dog in a bucket.", num_inference_steps=25, guidance_scale=7.5).images[0]
>>> image.save("bucket-dog.png")
```

View File

@@ -0,0 +1,224 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-to-image
<Tip warning={true}>
text-to-image 파인튜닝 스크립트는 experimental 상태입니다. 과적합하기 쉽고 치명적인 망각과 같은 문제에 부딪히기 쉽습니다. 자체 데이터셋에서 최상의 결과를 얻으려면 다양한 하이퍼파라미터를 탐색하는 것이 좋습니다.
</Tip>
Stable Diffusion과 같은 text-to-image 모델은 텍스트 프롬프트에서 이미지를 생성합니다. 이 가이드는 PyTorch 및 Flax를 사용하여 자체 데이터셋에서 [`CompVis/stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) 모델로 파인튜닝하는 방법을 보여줍니다. 이 가이드에 사용된 text-to-image 파인튜닝을 위한 모든 학습 스크립트에 관심이 있는 경우 이 [리포지토리](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image)에서 자세히 찾을 수 있습니다.
스크립트를 실행하기 전에, 라이브러리의 학습 dependency들을 설치해야 합니다:
```bash
pip install git+https://github.com/huggingface/diffusers.git
pip install -U -r requirements.txt
```
그리고 [🤗Accelerate](https://github.com/huggingface/accelerate/) 환경을 초기화합니다:
```bash
accelerate config
```
리포지토리를 이미 복제한 경우, 이 단계를 수행할 필요가 없습니다. 대신, 로컬 체크아웃 경로를 학습 스크립트에 명시할 수 있으며 거기에서 로드됩니다.
### 하드웨어 요구 사항
`gradient_checkpointing` 및 `mixed_precision`을 사용하면 단일 24GB GPU에서 모델을 파인튜닝할 수 있습니다. 더 높은 `batch_size`와 더 빠른 훈련을 위해서는 GPU 메모리가 30GB 이상인 GPU를 사용하는 것이 좋습니다. TPU 또는 GPU에서 파인튜닝을 위해 JAX나 Flax를 사용할 수도 있습니다. 자세한 내용은 [아래](#flax-jax-finetuning)를 참조하세요.
xFormers로 memory efficient attention을 활성화하여 메모리 사용량 훨씬 더 줄일 수 있습니다. [xFormers가 설치](./optimization/xformers)되어 있는지 확인하고 `--enable_xformers_memory_efficient_attention`를 학습 스크립트에 명시합니다.
xFormers는 Flax에 사용할 수 없습니다.
## Hub에 모델 업로드하기
학습 스크립트에 다음 인수를 추가하여 모델을 허브에 저장합니다:
```bash
--push_to_hub
```
## 체크포인트 저장 및 불러오기
학습 중 발생할 수 있는 일에 대비하여 정기적으로 체크포인트를 저장해 두는 것이 좋습니다. 체크포인트를 저장하려면 학습 스크립트에 다음 인수를 명시합니다.
```bash
--checkpointing_steps=500
```
500스텝마다 전체 학습 state가 'output_dir'의 하위 폴더에 저장됩니다. 체크포인트는 'checkpoint-'에 지금까지 학습된 step 수입니다. 예를 들어 'checkpoint-1500'은 1500 학습 step 후에 저장된 체크포인트입니다.
학습을 재개하기 위해 체크포인트를 불러오려면 '--resume_from_checkpoint' 인수를 학습 스크립트에 명시하고 재개할 체크포인트를 지정하십시오. 예를 들어 다음 인수는 1500개의 학습 step 후에 저장된 체크포인트에서부터 훈련을 재개합니다.
```bash
--resume_from_checkpoint="checkpoint-1500"
```
## 파인튜닝
<frameworkcontent>
<pt>
다음과 같이 [Pokémon BLIP 캡션](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) 데이터셋에서 파인튜닝 실행을 위해 [PyTorch 학습 스크립트](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py)를 실행합니다:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export dataset_name="lambdalabs/pokemon-blip-captions"
accelerate launch train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name \
--use_ema \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--mixed_precision="fp16" \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
--output_dir="sd-pokemon-model"
```
자체 데이터셋으로 파인튜닝하려면 🤗 [Datasets](https://huggingface.co/docs/datasets/index)에서 요구하는 형식에 따라 데이터셋을 준비하세요. [데이터셋을 허브에 업로드](https://huggingface.co/docs/datasets/image_dataset#upload-dataset-to-the-hub)하거나 [파일들이 있는 로컬 폴더를 준비](https ://huggingface.co/docs/datasets/image_dataset#imagefolder)할 수 있습니다.
사용자 커스텀 loading logic을 사용하려면 스크립트를 수정하십시오. 도움이 되도록 코드의 적절한 위치에 포인터를 남겼습니다. 🤗 아래 예제 스크립트는 `TRAIN_DIR`의 로컬 데이터셋으로를 파인튜닝하는 방법과 `OUTPUT_DIR`에서 모델을 저장할 위치를 보여줍니다:
```bash
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export TRAIN_DIR="path_to_your_dataset"
export OUTPUT_DIR="path_to_save_model"
accelerate launch train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$TRAIN_DIR \
--use_ema \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--mixed_precision="fp16" \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
--output_dir=${OUTPUT_DIR}
```
</pt>
<jax>
[@duongna211](https://github.com/duongna21)의 기여로, Flax를 사용해 TPU 및 GPU에서 Stable Diffusion 모델을 더 빠르게 학습할 수 있습니다. 이는 TPU 하드웨어에서 매우 효율적이지만 GPU에서도 훌륭하게 작동합니다. Flax 학습 스크립트는 gradient checkpointing나 gradient accumulation과 같은 기능을 아직 지원하지 않으므로 메모리가 30GB 이상인 GPU 또는 TPU v3가 필요합니다.
스크립트를 실행하기 전에 요구 사항이 설치되어 있는지 확인하십시오:
```bash
pip install -U -r requirements_flax.txt
```
그러면 다음과 같이 [Flax 학습 스크립트](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_flax.py)를 실행할 수 있습니다.
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export dataset_name="lambdalabs/pokemon-blip-captions"
python train_text_to_image_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--output_dir="sd-pokemon-model"
```
자체 데이터셋으로 파인튜닝하려면 🤗 [Datasets](https://huggingface.co/docs/datasets/index)에서 요구하는 형식에 따라 데이터셋을 준비하세요. [데이터셋을 허브에 업로드](https://huggingface.co/docs/datasets/image_dataset#upload-dataset-to-the-hub)하거나 [파일들이 있는 로컬 폴더를 준비](https ://huggingface.co/docs/datasets/image_dataset#imagefolder)할 수 있습니다.
사용자 커스텀 loading logic을 사용하려면 스크립트를 수정하십시오. 도움이 되도록 코드의 적절한 위치에 포인터를 남겼습니다. 🤗 아래 예제 스크립트는 `TRAIN_DIR`의 로컬 데이터셋으로를 파인튜닝하는 방법을 보여줍니다:
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export TRAIN_DIR="path_to_your_dataset"
python train_text_to_image_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$TRAIN_DIR \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--mixed_precision="fp16" \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--output_dir="sd-pokemon-model"
```
</jax>
</frameworkcontent>
## LoRA
Text-to-image 모델 파인튜닝을 위해, 대규모 모델 학습을 가속화하기 위한 파인튜닝 기술인 LoRA(Low-Rank Adaptation of Large Language Models)를 사용할 수 있습니다. 자세한 내용은 [LoRA 학습](lora#text-to-image) 가이드를 참조하세요.
## 추론
허브의 모델 경로 또는 모델 이름을 [`StableDiffusionPipeline`]에 전달하여 추론을 위해 파인 튜닝된 모델을 불러올 수 있습니다:
<frameworkcontent>
<pt>
```python
from diffusers import StableDiffusionPipeline
model_path = "path_to_saved_model"
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
pipe.to("cuda")
image = pipe(prompt="yoda").images[0]
image.save("yoda-pokemon.png")
```
</pt>
<jax>
```python
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
model_path = "path_to_saved_model"
pipe, params = FlaxStableDiffusionPipeline.from_pretrained(model_path, dtype=jax.numpy.bfloat16)
prompt = "yoda pokemon"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
image.save("yoda-pokemon.png")
```
</jax>
</frameworkcontent>

View File

@@ -4,51 +4,79 @@
- local: quicktour
title: 快速入门
- local: stable_diffusion
title: Stable Diffusion
title: Effective and efficient diffusion
- local: installation
title: 安装
title: 开始
- sections:
- local: tutorials/tutorial_overview
title: Overview
- local: using-diffusers/write_own_pipeline
title: Understanding models and schedulers
- local: tutorials/basic_training
title: Train a diffusion model
title: Tutorials
- sections:
- sections:
- local: using-diffusers/loading_overview
title: Overview
- local: using-diffusers/loading
title: Loading Pipelines, Models, and Schedulers
title: Load pipelines, models, and schedulers
- local: using-diffusers/schedulers
title: Using different Schedulers
- local: using-diffusers/configuration
title: Configuring Pipelines, Models, and Schedulers
title: Load and compare different schedulers
- local: using-diffusers/custom_pipeline_overview
title: Loading and Adding Custom Pipelines
title: Load community pipelines
- local: using-diffusers/kerascv
title: Using KerasCV Stable Diffusion Checkpoints in Diffusers
title: Load KerasCV Stable Diffusion checkpoints
title: Loading & Hub
- sections:
- local: using-diffusers/pipeline_overview
title: Overview
- local: using-diffusers/unconditional_image_generation
title: Unconditional Image Generation
title: Unconditional image generation
- local: using-diffusers/conditional_image_generation
title: Text-to-Image Generation
title: Text-to-image generation
- local: using-diffusers/img2img
title: Text-Guided Image-to-Image
title: Text-guided image-to-image
- local: using-diffusers/inpaint
title: Text-Guided Image-Inpainting
title: Text-guided image-inpainting
- local: using-diffusers/depth2img
title: Text-Guided Depth-to-Image
- local: using-diffusers/controlling_generation
title: Controlling generation
title: Text-guided depth-to-image
- local: using-diffusers/reusing_seeds
title: Reusing seeds for deterministic generation
title: Improve image quality with deterministic generation
- local: using-diffusers/reproducibility
title: Reproducibility
title: Create reproducible pipelines
- local: using-diffusers/custom_pipeline_examples
title: Community Pipelines
title: Community pipelines
- local: using-diffusers/contribute_pipeline
title: How to contribute a Pipeline
title: How to contribute a community pipeline
- local: using-diffusers/using_safetensors
title: Using safetensors
- local: using-diffusers/stable_diffusion_jax_how_to
title: Stable Diffusion in JAX/Flax
- local: using-diffusers/weighted_prompts
title: Weighting Prompts
title: Pipelines for Inference
- sections:
- local: training/overview
title: Overview
- local: training/unconditional_training
title: Unconditional image generation
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
title: DreamBooth
- local: training/text2image
title: Text-to-image
- local: training/lora
title: Low-Rank Adaptation of Large Language Models (LoRA)
- local: training/controlnet
title: ControlNet
- local: training/instructpix2pix
title: InstructPix2Pix Training
- local: training/custom_diffusion
title: Custom Diffusion
title: Training
- sections:
- local: using-diffusers/rl
title: Reinforcement Learning
@@ -59,6 +87,8 @@
title: Taking Diffusers Beyond Images
title: Using Diffusers
- sections:
- local: optimization/opt_overview
title: Overview
- local: optimization/fp16
title: Memory and Speed
- local: optimization/torch2.0
@@ -69,32 +99,26 @@
title: ONNX
- local: optimization/open_vino
title: OpenVINO
- local: optimization/coreml
title: Core ML
- local: optimization/mps
title: MPS
- local: optimization/habana
title: Habana Gaudi
- local: optimization/tome
title: Token Merging
title: Optimization/Special Hardware
- sections:
- local: training/overview
title: Overview
- local: training/unconditional_training
title: Unconditional Image Generation
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
title: DreamBooth
- local: training/text2image
title: Text-to-image
- local: training/lora
title: Low-Rank Adaptation of Large Language Models (LoRA)
title: Training
- sections:
- local: conceptual/philosophy
title: Philosophy
- local: using-diffusers/controlling_generation
title: Controlled generation
- local: conceptual/contribution
title: How to contribute?
- local: conceptual/ethical_guidelines
title: Diffusers' Ethical Guidelines
- local: conceptual/evaluation
title: Evaluating Diffusion Models
title: Conceptual Guides
- sections:
- sections:
@@ -118,6 +142,8 @@
title: AltDiffusion
- local: api/pipelines/audio_diffusion
title: Audio Diffusion
- local: api/pipelines/audioldm
title: AudioLDM
- local: api/pipelines/cycle_diffusion
title: Cycle Diffusion
- local: api/pipelines/dance_diffusion
@@ -128,6 +154,8 @@
title: DDPM
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/if
title: IF
- local: api/pipelines/latent_diffusion
title: Latent Diffusion
- local: api/pipelines/paint_by_example
@@ -142,6 +170,8 @@
title: Score SDE VE
- local: api/pipelines/semantic_stable_diffusion
title: Semantic Guidance
- local: api/pipelines/spectrogram_diffusion
title: "Spectrogram Diffusion"
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
@@ -171,6 +201,8 @@
title: MultiDiffusion Panorama
- local: api/pipelines/stable_diffusion/controlnet
title: Text-to-Image Generation with ControlNet Conditioning
- local: api/pipelines/stable_diffusion/model_editing
title: Text-to-Image Model Editing
title: Stable Diffusion
- local: api/pipelines/stable_diffusion_2
title: Stable Diffusion 2
@@ -178,6 +210,10 @@
title: Stable unCLIP
- local: api/pipelines/stochastic_karras_ve
title: Stochastic Karras VE
- local: api/pipelines/text_to_video
title: Text-to-Video
- local: api/pipelines/text_to_video_zero
title: Text-to-Video Zero
- local: api/pipelines/unclip
title: UnCLIP
- local: api/pipelines/latent_diffusion_uncond
@@ -235,4 +271,4 @@
- local: api/experimental/rl
title: RL Planning
title: Experimental Features
title: API
title: API

View File

@@ -18,61 +18,84 @@ specific language governing permissions and limitations under the License.
# 🧨 Diffusers
🤗Diffusers提供了预训练好的视觉和音频扩散模型,并可以作为推理和训练的模块化工具箱
🤗 Diffusers 是一个值得首选用于生成图像、音频甚至 3D 分子结构的,最先进的预训练扩散模型库
无论您是在寻找简单的推理解决方案,还是想训练自己的扩散模型,🤗 Diffusers 这一模块化工具箱都能对其提供支持。
本库的设计更偏重于[可用而非高性能](conceptual/philosophy#usability-over-performance)、[简明而非简单](conceptual/philosophy#simple-over-easy)以及[易用而非抽象](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction)。
更准确地说🤗Diffusers提供了
- 最先进的扩散管道,可以在推理中仅用几行代码运行(详情看[**Using Diffusers**](./using-diffusers/conditional_image_generation))或看[**管道**](#pipelines) 以获取所有支持的管道及其对应的论文的概述。
- 可以在推理中交替使用的各种噪声调度程序,以便在推理过程中权衡如何选择速度和质量。有关更多信息,可以看[**Schedulers**](./api/schedulers/overview)。
- 多种类型的模型如U-Net可用作端到端扩散系统中的构建模块。有关更多详细信息可以看 [**Models**](./api/models) 。
- 训练示例,展示如何训练最流行的扩散模型任务。更多相关信息,可以看[**Training**](./training/overview)。
本库包含三个主要组件:
- 最先进的扩散管道 [diffusion pipelines](api/pipelines/overview),只需几行代码即可进行推理。
- 可交替使用的各种噪声调度器 [noise schedulers](api/schedulers/overview),用于平衡生成速度和质量。
- 预训练模型 [models](api/models),可作为构建模块,并与调度程序结合使用,来创建您自己的端到端扩散系统。
<div class="mt-10">
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./tutorials/tutorial_overview"
><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div>
<p class="text-gray-700">Learn the fundamental skills you need to start generating outputs, build your own diffusion system, and train a diffusion model. We recommend starting here if you're using 🤗 Diffusers for the first time!</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./using-diffusers/loading_overview"
><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div>
<p class="text-gray-700">Practical guides for helping you load pipelines, models, and schedulers. You'll also learn how to use pipelines for specific tasks, control how outputs are generated, optimize for inference speed, and different training techniques.</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual/philosophy"
><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div>
<p class="text-gray-700">Understand why the library was designed the way it was, and learn more about the ethical guidelines and safety implementations for using the library.</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./api/models"
><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div>
<p class="text-gray-700">Technical descriptions of how 🤗 Diffusers classes and methods work.</p>
</a>
</div>
</div>
## 🧨 Diffusers pipelines
下表总结了所有官方支持的pipelines及其对应的论文部分提供了colab可以直接尝试一下。
下表汇总了当前所有官方支持的pipelines及其对应的论文.
| 管道 | 论文 | 任务 | Colab
|---|---|:---:|:---:|
| [alt_diffusion](./api/pipelines/alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
| [audio_diffusion](./api/pipelines/audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/audio_diffusion_pipeline.ipynb)
| [controlnet](./api/pipelines/stable_diffusion/controlnet) | [**ControlNet with Stable Diffusion**](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb)
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [paint_by_example](./api/pipelines/paint_by_example) | [**Paint by Example: Exemplar-based Image Editing with Diffusion Models**](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./api/pipelines/score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [**Semantic Guidance**](https://arxiv.org/abs/2301.12247) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/semantic-image-editing/blob/main/examples/SemanticGuidance.ipynb)
| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [**MultiDiffusion**](https://multidiffusion.github.io/) | Text-to-Panorama Generation |
| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [**InstructPix2Pix**](https://github.com/timothybrooks/instruct-pix2pix) | Text-Guided Image Editing|
| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [**Zero-shot Image-to-Image Translation**](https://pix2pixzero.github.io/) | Text-Guided Image Editing |
| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [**Attend and Excite for Stable Diffusion**](https://attendandexcite.github.io/Attend-and-Excite/) | Text-to-Image Generation |
| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [**Self-Attention Guidance**](https://ku-cvlab.github.io/Self-Attention-Guidance) | Text-to-Image Generation |
| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [**Stable Diffusion Image Variations**](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [**Stable Diffusion Latent Upscaler**](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Depth-Conditional Stable Diffusion**](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb)
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Text-to-Image Generation |
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Image-to-Image Text-Guided Generation |
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
**注意**: 管道是如何使用相应论文中提出的扩散模型的简单示例。
| 管道 | 论文/仓库 | 任务 |
|---|---|:---:|
| [alt_diffusion](./api/pipelines/alt_diffusion) | [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation |
| [audio_diffusion](./api/pipelines/audio_diffusion) | [Audio Diffusion](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation |
| [controlnet](./api/pipelines/stable_diffusion/controlnet) | [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation |
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./api/pipelines/dance_diffusion) | [Dance Diffusion](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./api/pipelines/ddpm) | [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./api/pipelines/ddim) | [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [if](./if) | [**IF**](./api/pipelines/if) | Image Generation |
| [if_img2img](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
| [if_inpainting](./if) | [**IF**](./api/pipelines/if) | Image-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./api/pipelines/latent_diffusion) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [paint_by_example](./api/pipelines/paint_by_example) | [Paint by Example: Exemplar-based Image Editing with Diffusion Models](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
| [pndm](./api/pipelines/pndm) | [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./api/pipelines/score_sde_ve) | [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./api/pipelines/score_sde_vp) | [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [Semantic Guidance](https://arxiv.org/abs/2301.12247) | Text-Guided Generation |
| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation |
| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation |
| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting |
| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [MultiDiffusion](https://multidiffusion.github.io/) | Text-to-Panorama Generation |
| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [InstructPix2Pix: Learning to Follow Image Editing Instructions](https://arxiv.org/abs/2211.09800) | Text-Guided Image Editing|
| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [Zero-shot Image-to-Image Translation](https://pix2pixzero.github.io/) | Text-Guided Image Editing |
| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://arxiv.org/abs/2301.13826) | Text-to-Image Generation |
| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [Improving Sample Quality of Diffusion Models Using Self-Attention Guidance](https://arxiv.org/abs/2210.00939) | Text-to-Image Generation Unconditional Image Generation |
| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [Stable Diffusion Image Variations](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [Stable Diffusion Latent Upscaler](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_model_editing](./api/pipelines/stable_diffusion/model_editing) | [Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://time-diffusion.github.io/) | Text-to-Image Model Editing |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Depth-Conditional Stable Diffusion](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation |
| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [Stable Diffusion 2](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [Safe Stable Diffusion](https://arxiv.org/abs/2211.05105) | Text-Guided Generation |
| [stable_unclip](./stable_unclip) | Stable unCLIP | Text-to-Image Generation |
| [stable_unclip](./stable_unclip) | Stable unCLIP | Image-to-Image Text-Guided Generation |
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [text_to_video_sd](./api/pipelines/text_to_video) | [Modelscope's Text-to-video-synthesis Model in Open Domain](https://modelscope.cn/models/damo/text-to-video-synthesis/summary) | Text-to-Video Generation |
| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125)(implementation by [kakaobrain](https://github.com/kakaobrain/karlo)) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# 安装
安装🤗 Diffusers 到你正在使用的任何深度学习框架中
在你正在使用的任意深度学习框架中安装 🤗 Diffusers 。
🤗 Diffusers已在Python 3.7+、PyTorch 1.7.0+和Flax上进行了测试。按照下面的安装说明针对你正在使用的深度学习框架进行安装
@@ -21,11 +21,11 @@ specific language governing permissions and limitations under the License.
## 使用pip安装
你需要在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装🤗 Diffusers 。
你需要在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Diffusers 。
如果你对 Python 虚拟环境不熟悉,可以看看这个[教程](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
使用虚拟环境你可以轻松管理不同的项目,避免依赖项之间的兼容性问题。
虚拟环境中,你可以轻松管理不同的项目,避免依赖项之间的兼容性问题。
首先,在你的项目目录下创建一个虚拟环境:
@@ -39,7 +39,7 @@ python -m venv .env
source .env/bin/activate
```
现在你就可以安装 🤗 Diffusers了使用下边这个命令
现在你就可以安装 🤗 Diffusers了使用下边这个命令
**PyTorch**
@@ -55,7 +55,7 @@ pip install diffusers["flax"]
## 从源代码安装
在从源代码安装 `diffusers` 之前,你先确定你已经安装了 `torch` 和 `accelerate`。
在从源代码安装 `diffusers` 之前,确保你已经安装了 `torch` 和 `accelerate`。
`torch`的安装教程可以看 `torch` [文档](https://pytorch.org/get-started/locally/#start-locally).
@@ -65,17 +65,17 @@ pip install diffusers["flax"]
pip install accelerate
```
从源码安装 🤗 Diffusers 使用以下命令:
从源码安装 🤗 Diffusers 需要使用以下命令:
```bash
pip install git+https://github.com/huggingface/diffusers
```
这个命令安装的是最新的 `main`版本,而不是最近的`stable`版。
`main`是一直和最新进展保持一致的。比如,上次正式版发布了有bug新的正式版还没推出但是`main`中可以看到这个bug被修复了。
但是这也意味着 `main`版本并不总是稳定的。
`main`是一直和最新进展保持一致的。比如,上次发布的正式版中有bug`main`中可以看到这个bug被修复了,但是新的正式版此时尚未推出
但是这也意味着 `main`版本不保证是稳定的。
我们努力保持`main`版本正常运行,大多数问题都能在几个小时或一天之内解决
我们努力保持`main`版本正常运行大多数问题都能在几个小时或一天之内解决
如果你遇到了问题,可以提 [Issue](https://github.com/huggingface/transformers/issues),这样我们就能更快修复问题了。
@@ -105,8 +105,8 @@ pip install -e ".[torch]"
pip install -e ".[flax]"
```
这些命令将连接你克隆的版本库和你的 Python 库路径。
现在,除了正常的库路径Python 还会在你克隆的文件夹内寻找。
这些命令将连接你克隆的版本库和你的 Python 库路径。
现在,不只是在通常的库路径Python 还会在你克隆的文件夹内寻找
例如,如果你的 Python 包通常安装在 `~/anaconda3/envs/main/lib/python3.7/Site-packages/`Python 也会搜索你克隆到的文件夹。`~/diffusers/`。
<Tip warning={true}>
@@ -116,32 +116,31 @@ pip install -e ".[flax]"
</Tip>
现在你可以用下面的命令轻松地将你克隆的🤗Diffusers库更新到最新版本。
现在你可以用下面的命令轻松地将你克隆的 🤗 Diffusers 库更新到最新版本。
```bash
cd ~/diffusers/
git pull
```
你的Python环境将在下次运行时找到`main`版本的🤗 Diffusers。
你的Python环境将在下次运行时找到`main`版本的 🤗 Diffusers。
## 注意遥测日志
## 注意 Telemetry 日志
我们的库会在使用`from_pretrained()`请求期间收集信息。这些数据包括Diffusers和PyTorch/Flax的版本请求的模型或管道以及预训练检查点的路径如果它被托管在Hub上
我们的库会在使用`from_pretrained()`请求期间收集 telemetry 信息。这些数据包括Diffusers和PyTorch/Flax的版本请求的模型或管道以及预训练检查点的路径如果它被托管在Hub上的话)。
这些使用数据有助于我们调试问题并确定新功能的开发优先级。
Telemetry 数据仅在从 HuggingFace Hub 中加载模型和管道时发送,而不会在本地使用期间收集。
这些使用数据有助于我们调试问题并优先考虑新功能。
当从HuggingFace Hub加载模型和管道时才会发送遥测数据并且在本地使用时不会收集数据。
我们知道并不是每个人都想分享这些的信息,我们尊重您的隐私,
因此您可以通过在终端中设置“DISABLE_TELEMETRY”环境变量来禁用遥测数据的收集
我们知道,并不是每个人都想分享这些的信息,我们尊重您的隐私,
因此您可以通过在终端中设置 `DISABLE_TELEMETRY` 环境变量从而禁用 Telemetry 数据收集:
Linux/MacOS:
Linux/MacOS :
```bash
export DISABLE_TELEMETRY=YES
```
Windows:
Windows :
```bash
set DISABLE_TELEMETRY=YES
```

597
examples/community/README.md Normal file → Executable file
View File

@@ -6,33 +6,38 @@
Please have a look at the following table to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste ready code example that you can try out.
If a community doesn't work as expected, please open an issue and ping the author on it.
| Example | Description | Code Example | Colab | Author |
|:---------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------:|
| CLIP Guided Stable Diffusion | Doing CLIP guidance for text to image generation with Stable Diffusion | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) | [Suraj Patil](https://github.com/patil-suraj/) |
| One Step U-Net (Dummy) | Example showcasing of how to use Community Pipelines (see https://github.com/huggingface/diffusers/issues/841) | [One Step U-Net](#one-step-unet) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Stable Diffusion Interpolation | Interpolate the latent space of Stable Diffusion between different prompts/seeds | [Stable Diffusion Interpolation](#stable-diffusion-interpolation) | - | [Nate Raw](https://github.com/nateraw/) |
| Stable Diffusion Mega | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Long Prompt Weighting Stable Diffusion | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt. | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion) | - | [SkyTNT](https://github.com/SkyTNT) |
| Speech to Image | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images | [Speech to Image](#speech-to-image) | - | [Mikail Duzenli](https://github.com/MikailINTech)
| Wild Card Stable Diffusion | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values | [Wildcard Stable Diffusion](#wildcard-stable-diffusion) | - | [Shyam Sudhakaran](https://github.com/shyamsn97) |
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts. | [Composable Stable Diffusion](#composable-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| Seed Resizing Stable Diffusion| Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation. | [Seed Resizing](#seed-resizing) | - | [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image| [Imagic Stable Diffusion](#imagic-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| Multilingual Stable Diffusion| Stable Diffusion Pipeline that supports prompts in 50 different languages. | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline) | - | [Juan Carlos Piñeros](https://github.com/juancopi81) |
| Image to Image Inpainting Stable Diffusion | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting| [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Alex McKinney](https://github.com/vvvm23) |
| Text Based Inpainting Stable Diffusion | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting| [Text Based Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Dhruv Karan](https://github.com/unography) |
| Bit Diffusion | Diffusion on discrete data | [Bit Diffusion](#bit-diffusion) | - |[Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py) | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Checkpoint Merger Pipeline | Diffusion Pipeline that enables merging of saved model checkpoints | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Diffusion and compare their results together | [Stable Diffusion Comparison](#stable-diffusion-comparisons) | - | [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
MagicMix | Diffusion Pipeline for semantic mixing of an image and a text prompt | [MagicMix](#magic-mix) | - | [Partho Das](https://github.com/daspartho) |
| Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | - |[Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| UnCLIP Image Interpolation Pipeline | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227)) | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline) | - |[Aengus (Duc-Anh)](https://github.com/aengusng8) |
| CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | - | [Nipun Jindal](https://github.com/nipunjindal/) |
| Example | Description | Code Example | Colab | Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
| CLIP Guided Stable Diffusion | Doing CLIP guidance for text to image generation with Stable Diffusion | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) | [Suraj Patil](https://github.com/patil-suraj/) |
| One Step U-Net (Dummy) | Example showcasing of how to use Community Pipelines (see https://github.com/huggingface/diffusers/issues/841) | [One Step U-Net](#one-step-unet) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Stable Diffusion Interpolation | Interpolate the latent space of Stable Diffusion between different prompts/seeds | [Stable Diffusion Interpolation](#stable-diffusion-interpolation) | - | [Nate Raw](https://github.com/nateraw/) |
| Stable Diffusion Mega | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Long Prompt Weighting Stable Diffusion | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt. | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion) | - | [SkyTNT](https://github.com/SkyTNT) |
| Speech to Image | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images | [Speech to Image](#speech-to-image) | - | [Mikail Duzenli](https://github.com/MikailINTech)
| Wild Card Stable Diffusion | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values | [Wildcard Stable Diffusion](#wildcard-stable-diffusion) | - | [Shyam Sudhakaran](https://github.com/shyamsn97) |
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts. | [Composable Stable Diffusion](#composable-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| Seed Resizing Stable Diffusion | Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation. | [Seed Resizing](#seed-resizing) | - | [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image | [Imagic Stable Diffusion](#imagic-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| Multilingual Stable Diffusion | Stable Diffusion Pipeline that supports prompts in 50 different languages. | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline) | - | [Juan Carlos Piñeros](https://github.com/juancopi81) |
| Image to Image Inpainting Stable Diffusion | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting | [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Alex McKinney](https://github.com/vvvm23) |
| Text Based Inpainting Stable Diffusion | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting | [Text Based Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Dhruv Karan](https://github.com/unography) |
| Bit Diffusion | Diffusion on discrete data | [Bit Diffusion](#bit-diffusion) | - | [Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py) | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Checkpoint Merger Pipeline | Diffusion Pipeline that enables merging of saved model checkpoints | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Diffusion and compare their results together | [Stable Diffusion Comparison](#stable-diffusion-comparisons) | - | [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
MagicMix | Diffusion Pipeline for semantic mixing of an image and a text prompt | [MagicMix](#magic-mix) | - | [Partho Das](https://github.com/daspartho) |
| Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | - | [Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| UnCLIP Image Interpolation Pipeline | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227)) | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline) | - | [Aengus (Duc-Anh)](https://github.com/aengusng8) |
| CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | - | [Nipun Jindal](https://github.com/nipunjindal/) |
| TensorRT Stable Diffusion Text to Image Pipeline | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| EDICT Image Editing Pipeline | Diffusion pipeline for text-guided image editing | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline) | - | [Joqsan Azocar](https://github.com/Joqsan) |
| Stable Diffusion RePaint | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.0986) for inpainting. | [Stable Diffusion RePaint](#stable-diffusion-repaint ) | - | [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
| TensorRT Stable Diffusion Image to Image Pipeline | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | - | [Karachev Denis](https://github.com/TheDenk) |
| TensorRT Stable Diffusion Inpainting Pipeline | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
```py
@@ -1130,3 +1135,541 @@ Init Image
Output Image
![img2img_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img.jpg)
### TensorRT Text2Image Stable Diffusion Pipeline
The TensorRT Pipeline can be used to accelerate the Text2Image Stable Diffusion Inference run.
NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.
```python
import torch
from diffusers import DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
# Use the DDIMScheduler scheduler here instead
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
custom_pipeline="stable_diffusion_tensorrt_txt2img",
revision='fp16',
torch_dtype=torch.float16,
scheduler=scheduler,)
# re-use cached folder to save ONNX models and TensorRT Engines
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", revision='fp16',)
pipe = pipe.to("cuda")
prompt = "a beautiful photograph of Mt. Fuji during cherry blossom"
image = pipe(prompt).images[0]
image.save('tensorrt_mt_fuji.png')
```
### EDICT Image Editing Pipeline
This pipeline implements the text-guided image editing approach from the paper [EDICT: Exact Diffusion Inversion via Coupled Transformations](https://arxiv.org/abs/2211.12446). You have to pass:
- (`PIL`) `image` you want to edit.
- `base_prompt`: the text prompt describing the current image (before editing).
- `target_prompt`: the text prompt describing with the edits.
```python
from diffusers import DiffusionPipeline, DDIMScheduler
from transformers import CLIPTextModel
import torch, PIL, requests
from io import BytesIO
from IPython.display import display
def center_crop_and_resize(im):
width, height = im.size
d = min(width, height)
left = (width - d) / 2
upper = (height - d) / 2
right = (width + d) / 2
lower = (height + d) / 2
return im.crop((left, upper, right, lower)).resize((512, 512))
torch_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# scheduler and text_encoder param values as in the paper
scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
set_alpha_to_one=False,
clip_sample=False,
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path="openai/clip-vit-large-patch14",
torch_dtype=torch_dtype,
)
# initialize pipeline
pipeline = DiffusionPipeline.from_pretrained(
pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
custom_pipeline="edict_pipeline",
revision="fp16",
scheduler=scheduler,
text_encoder=text_encoder,
leapfrog_steps=True,
torch_dtype=torch_dtype,
).to(device)
# download image
image_url = "https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg"
response = requests.get(image_url)
image = PIL.Image.open(BytesIO(response.content))
# preprocess it
cropped_image = center_crop_and_resize(image)
# define the prompts
base_prompt = "A dog"
target_prompt = "A golden retriever"
# run the pipeline
result_image = pipeline(
base_prompt=base_prompt,
target_prompt=target_prompt,
image=cropped_image,
)
display(result_image)
```
Init Image
![img2img_init_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg)
Output Image
![img2img_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1_cropped_generated.png)
### Stable Diffusion RePaint
This pipeline uses the [RePaint](https://arxiv.org/abs/2201.09865) logic on the latent space of stable diffusion. It can
be used similarly to other image inpainting pipelines but does not rely on a specific inpainting model. This means you can use
models that are not specifically created for inpainting.
Make sure to use the ```RePaintScheduler``` as shown in the example below.
Disclaimer: The mask gets transferred into latent space, this may lead to unexpected changes on the edge of the masked part.
The inference time is a lot slower.
```py
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionPipeline, RePaintScheduler
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
mask_image = PIL.ImageOps.invert(mask_image)
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, custom_pipeline="stable_diffusion_repaint",
)
pipe.scheduler = RePaintScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
### TensorRT Image2Image Stable Diffusion Pipeline
The TensorRT Pipeline can be used to accelerate the Image2Image Stable Diffusion Inference run.
NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.
```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionImg2ImgPipeline
# Use the DDIMScheduler scheduler here instead
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
subfolder="scheduler")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
custom_pipeline="stable_diffusion_tensorrt_img2img",
revision='fp16',
torch_dtype=torch.float16,
scheduler=scheduler,)
# re-use cached folder to save ONNX models and TensorRT Engines
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", revision='fp16',)
pipe = pipe.to("cuda")
url = "https://pajoca.com/wp-content/uploads/2022/09/tekito-yamakawa-1.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")
prompt = "photorealistic new zealand hills"
image = pipe(prompt, image=input_image, strength=0.75,).images[0]
image.save('tensorrt_img2img_new_zealand_hills.png')
```
### Stable Diffusion Reference
This pipeline uses the Reference Control. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).
Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
- `EulerAncestralDiscreteScheduler` got poor results.
```py
import torch
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image
input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
pipe = StableDiffusionReferencePipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
safety_checker=None,
torch_dtype=torch.float16
).to('cuda:0')
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
result_img = pipe(ref_image=input_image,
prompt="1girl",
num_inference_steps=20,
reference_attn=True,
reference_adain=True).images[0]
```
Reference Image
![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)
Output Image of `reference_attn=True` and `reference_adain=False`
![output_image](https://github.com/huggingface/diffusers/assets/24734142/813b5c6a-6d89-46ba-b7a4-2624e240eea5)
Output Image of `reference_attn=False` and `reference_adain=True`
![output_image](https://github.com/huggingface/diffusers/assets/24734142/ffc90339-9ef0-4c4d-a544-135c3e5644da)
Output Image of `reference_attn=True` and `reference_adain=True`
![output_image](https://github.com/huggingface/diffusers/assets/24734142/3c5255d6-867d-4d35-b202-8dfd30cc6827)
### Stable Diffusion ControlNet Reference
This pipeline uses the Reference Control with ControlNet. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).
Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
- `EulerAncestralDiscreteScheduler` got poor results.
- `guess_mode=True` works well for ControlNet v1.1
```py
import cv2
import torch
import numpy as np
from PIL import Image
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image
input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
# get canny image
image = cv2.Canny(np.array(input_image), 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
).to('cuda:0')
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
result_img = pipe(ref_image=input_image,
prompt="1girl",
image=canny_image,
num_inference_steps=20,
reference_attn=True,
reference_adain=True).images[0]
```
Reference Image
![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)
Output Image
![output_image](https://github.com/huggingface/diffusers/assets/24734142/7b9a5830-f173-4b92-b0cf-73d0e9c01d60)
### Stable Diffusion on IPEX
This diffusion pipeline aims to accelarate the inference of Stable-Diffusion on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).
To use this pipeline, you need to:
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)
**Note:** For each PyTorch release, there is a corresponding release of the IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.0 to get the best performance.
|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|
You can simply use pip to install IPEX with the latest version.
```python
python -m pip install intel_extension_for_pytorch
```
**Note:** To install a specific version, run with the following command:
```
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX accelaration. Supported inference datatypes are Float32 and BFloat16.
**Note:** The setting of generated image height/width for `prepare_for_ipex()` should be same as the setting of pipeline inference.
```python
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_ipex")
# For Float32
pipe.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512) #value of image height/width should be consistent with the pipeline inference
# For BFloat16
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512) #value of image height/width should be consistent with the pipeline inference
```
Then you can use the ipex pipeline in a similar way to the default stable diffusion pipeline.
```python
# For Float32
image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] #value of image height/width should be consistent with 'prepare_for_ipex()'
# For BFloat16
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] #value of image height/width should be consistent with 'prepare_for_ipex()'
```
The following code compares the performance of the original stable diffusion pipeline with the ipex-optimized pipeline.
```python
import torch
import intel_extension_for_pytorch as ipex
from diffusers import StableDiffusionPipeline
import time
prompt = "sailing ship in storm by Rembrandt"
model_id = "runwayml/stable-diffusion-v1-5"
# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=20):
# warmup
for _ in range(2):
images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512).images
#time evaluation
start = time.time()
for _ in range(nb_pass):
pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512)
end = time.time()
return (end - start) / nb_pass
############## bf16 inference performance ###############
# 1. IPEX Pipeline initialization
pipe = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512)
# 2. Original Pipeline initialization
pipe2 = StableDiffusionPipeline.from_pretrained(model_id)
# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
latency = elapsed_time(pipe)
print("Latency of StableDiffusionIPEXPipeline--bf16", latency)
latency = elapsed_time(pipe2)
print("Latency of StableDiffusionPipeline--bf16",latency)
############## fp32 inference performance ###############
# 1. IPEX Pipeline initialization
pipe3 = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe3.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512)
# 2. Original Pipeline initialization
pipe4 = StableDiffusionPipeline.from_pretrained(model_id)
# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3)
print("Latency of StableDiffusionIPEXPipeline--fp32", latency)
latency = elapsed_time(pipe4)
print("Latency of StableDiffusionPipeline--fp32",latency)
```
### CLIP Guided Images Mixing With Stable Diffusion
![clip_guided_images_mixing_examples](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/main.png)
CLIP guided stable diffusion images mixing pipline allows to combine two images using standard diffusion models.
This approach is using (optional) CoCa model to avoid writing image description.
[More code examples](https://github.com/TheDenk/images_mixing)
## Example Images Mixing (with CoCa)
```python
import requests
from io import BytesIO
import PIL
import torch
import open_clip
from open_clip import SimpleTokenizer
from diffusers import DiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPModel
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
# Loading additional models
feature_extractor = CLIPFeatureExtractor.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
coca_model = open_clip.create_model('coca_ViT-L-14', pretrained='laion2B-s13B-b90k').to('cuda')
coca_model.dtype = torch.float16
coca_transform = open_clip.image_transform(
coca_model.visual.image_size,
is_train = False,
mean = getattr(coca_model.visual, 'image_mean', None),
std = getattr(coca_model.visual, 'image_std', None),
)
coca_tokenizer = SimpleTokenizer()
# Pipline creating
mixing_pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="clip_guided_images_mixing_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
coca_model=coca_model,
coca_tokenizer=coca_tokenizer,
coca_transform=coca_transform,
torch_dtype=torch.float16,
)
mixing_pipeline.enable_attention_slicing()
mixing_pipeline = mixing_pipeline.to("cuda")
# Pipline running
generator = torch.Generator(device="cuda").manual_seed(17)
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
content_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir.jpg")
style_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/gigachad.jpg")
pipe_images = mixing_pipeline(
num_inference_steps=50,
content_image=content_image,
style_image=style_image,
noise_strength=0.65,
slerp_latent_style_strength=0.9,
slerp_prompt_style_strength=0.1,
slerp_clip_image_style_strength=0.1,
guidance_scale=9.0,
batch_size=1,
clip_guidance_scale=100,
generator=generator,
).images
```
![image_mixing_result](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir_gigachad.png)
### Stable Diffusion Mixture
This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.
```python
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
# Creater scheduler and model (similar to StableDiffusionPipeline)
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler, custom_pipeline="mixture_tiling")
pipeline.to("cuda")
# Mixture of Diffusers generation
image = pipeline(
prompt=[[
"A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
"A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
"An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
]],
tile_height=640,
tile_width=640,
tile_row_overlap=0,
tile_col_overlap=256,
guidance_scale=8,
seed=7178915308,
num_inference_steps=50,
)["images"][0]
```
![mixture_tiling_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/mixture_tiling.png)
### TensorRT Inpainting Stable Diffusion Pipeline
The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.
NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.
```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import PNDMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionImg2ImgPipeline
# Use the PNDMScheduler scheduler here instead
scheduler = PNDMScheduler.from_pretrained("stabilityai/stable-diffusion-2-inpainting", subfolder="scheduler")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting",
custom_pipeline="stable_diffusion_tensorrt_inpaint",
revision='fp16',
torch_dtype=torch.float16,
scheduler=scheduler,
)
# re-use cached folder to save ONNX models and TensorRT Engines
pipe.set_cached_folder("stabilityai/stable-diffusion-2-inpainting", revision='fp16',)
pipe = pipe.to("cuda")
url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
response = requests.get(mask_url)
mask_image = Image.open(BytesIO(response.content)).convert("RGB")
prompt = "a mecha robot sitting on a bench"
image = pipe(prompt, image=input_image, mask_image=mask_image, strength=0.75,).images[0]
image.save('tensorrt_inpaint_mecha_robot.png')
```

View File

@@ -0,0 +1,456 @@
# -*- coding: utf-8 -*-
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def preprocess(image, w, h):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
input_device = v0.device
v0 = v0.cpu().numpy()
v1 = v1.cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(input_device)
return v2
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
clip_model: CLIPModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
feature_extractor: CLIPFeatureExtractor,
coca_model=None,
coca_tokenizer=None,
coca_transform=None,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
clip_model=clip_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
coca_model=coca_model,
coca_tokenizer=coca_tokenizer,
coca_transform=coca_transform,
)
self.feature_extractor_size = (
feature_extractor.size
if isinstance(feature_extractor.size, int)
else feature_extractor.size["shortest_edge"]
)
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
set_requires_grad(self.text_encoder, False)
set_requires_grad(self.clip_model, False)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
self.enable_attention_slicing(None)
def freeze_vae(self):
set_requires_grad(self.vae, False)
def unfreeze_vae(self):
set_requires_grad(self.vae, True)
def freeze_unet(self):
set_requires_grad(self.unet, False)
def unfreeze_unet(self):
set_requires_grad(self.unet, True)
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None):
if not isinstance(image, torch.Tensor):
raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(image)}")
image = image.to(device=device, dtype=dtype)
if isinstance(generator, list):
init_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = self.vae.encode(image).latent_dist.sample(generator)
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
init_latents = 0.18215 * init_latents
init_latents = init_latents.repeat_interleave(batch_size, dim=0)
noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
def get_image_description(self, image):
transformed_image = self.coca_transform(image).unsqueeze(0)
with torch.no_grad(), torch.cuda.amp.autocast():
generated = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype))
generated = self.coca_tokenizer.decode(generated[0].cpu().numpy())
return generated.split("<end_of_text>")[0].replace("<start_of_text>", "").rstrip(" .,")
def get_clip_image_embeddings(self, image, batch_size):
clip_image_input = self.feature_extractor.preprocess(image)
clip_image_features = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half()
image_embeddings_clip = self.clip_model.get_image_features(clip_image_features)
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
image_embeddings_clip = image_embeddings_clip.repeat_interleave(batch_size, dim=0)
return image_embeddings_clip
@torch.enable_grad()
def cond_fn(
self,
latents,
timestep,
index,
text_embeddings,
noise_pred_original,
original_image_embeddings_clip,
clip_guidance_scale,
):
latents = latents.detach().requires_grad_()
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# predict the noise residual
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
fac = torch.sqrt(beta_prod_t)
sample = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[index]
sample = latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
sample = 1 / 0.18215 * sample
image = self.vae.decode(sample).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = transforms.Resize(self.feature_extractor_size)(image)
image = self.normalize(image).to(latents.dtype)
image_embeddings_clip = self.clip_model.get_image_features(image)
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
loss = spherical_dist_loss(image_embeddings_clip, original_image_embeddings_clip).mean() * clip_guidance_scale
grads = -torch.autograd.grad(loss, latents)[0]
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents.detach() + grads * (sigma**2)
noise_pred = noise_pred_original
else:
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(
self,
style_image: Union[torch.FloatTensor, PIL.Image.Image],
content_image: Union[torch.FloatTensor, PIL.Image.Image],
style_prompt: Optional[str] = None,
content_prompt: Optional[str] = None,
height: Optional[int] = 512,
width: Optional[int] = 512,
noise_strength: float = 0.6,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
batch_size: Optional[int] = 1,
eta: float = 0.0,
clip_guidance_scale: Optional[float] = 100,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
slerp_latent_style_strength: float = 0.8,
slerp_prompt_style_strength: float = 0.1,
slerp_clip_image_style_strength: float = 0.1,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(f"You have passed {batch_size} batch_size, but only {len(generator)} generators.")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if isinstance(generator, torch.Generator) and batch_size > 1:
generator = [generator] + [None] * (batch_size - 1)
coca_is_none = [
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
coca_is_none = [x[0] for x in coca_is_none if x[1]]
coca_is_none_str = ", ".join(coca_is_none)
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(coca_is_none):
raise ValueError(
f"Content prompt is None and CoCa [{coca_is_none_str}] is None."
f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
)
content_prompt = self.get_image_description(content_image)
if style_prompt is None:
if len(coca_is_none):
raise ValueError(
f"Style prompt is None and CoCa [{coca_is_none_str}] is None."
f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
)
style_prompt = self.get_image_description(style_image)
# get prompt text embeddings for content and style
content_text_input = self.tokenizer(
content_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
content_text_embeddings = self.text_encoder(content_text_input.input_ids.to(self.device))[0]
style_text_input = self.tokenizer(
style_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
style_text_embeddings = self.text_encoder(style_text_input.input_ids.to(self.device))[0]
text_embeddings = slerp(slerp_prompt_style_strength, content_text_embeddings, style_text_embeddings)
# duplicate text embeddings for each generation per prompt
text_embeddings = text_embeddings.repeat_interleave(batch_size, dim=0)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, noise_strength, self.device)
latent_timestep = timesteps[:1].repeat(batch_size)
# Preprocess image
preprocessed_content_image = preprocess(content_image, width, height)
content_latents = self.prepare_latents(
preprocessed_content_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
)
preprocessed_style_image = preprocess(style_image, width, height)
style_latents = self.prepare_latents(
preprocessed_style_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
)
latents = slerp(slerp_latent_style_strength, content_latents, style_latents)
if clip_guidance_scale > 0:
content_clip_image_embedding = self.get_clip_image_embeddings(content_image, batch_size)
style_clip_image_embedding = self.get_clip_image_embeddings(style_image, batch_size)
clip_image_embeddings = slerp(
slerp_clip_image_style_strength, content_clip_image_embedding, style_clip_image_embedding
)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = content_text_input.input_ids.shape[-1]
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt
uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size, dim=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
with self.progress_bar(total=num_inference_steps):
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
text_embeddings_for_guidance = (
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
)
noise_pred, latents = self.cond_fn(
latents,
t,
i,
text_embeddings_for_guidance,
noise_pred,
clip_image_embeddings,
clip_guidance_scale,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)

View File

@@ -0,0 +1,264 @@
from typing import Optional
import torch
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import (
deprecate,
)
class EDICTPipeline(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: DDIMScheduler,
mixing_coeff: float = 0.93,
leapfrog_steps: bool = True,
):
self.mixing_coeff = mixing_coeff
self.leapfrog_steps = leapfrog_steps
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def _encode_prompt(
self, prompt: str, negative_prompt: Optional[str] = None, do_classifier_free_guidance: bool = False
):
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
prompt_embeds = self.text_encoder(text_inputs.input_ids.to(self.device)).last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=self.device)
if do_classifier_free_guidance:
uncond_tokens = "" if negative_prompt is None else negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(self.device)).last_hidden_state
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def denoise_mixing_layer(self, x: torch.Tensor, y: torch.Tensor):
x = self.mixing_coeff * x + (1 - self.mixing_coeff) * y
y = self.mixing_coeff * y + (1 - self.mixing_coeff) * x
return [x, y]
def noise_mixing_layer(self, x: torch.Tensor, y: torch.Tensor):
y = (y - (1 - self.mixing_coeff) * x) / self.mixing_coeff
x = (x - (1 - self.mixing_coeff) * y) / self.mixing_coeff
return [x, y]
def _get_alpha_and_beta(self, t: torch.Tensor):
# as self.alphas_cumprod is always in cpu
t = int(t)
alpha_prod = self.scheduler.alphas_cumprod[t] if t >= 0 else self.scheduler.final_alpha_cumprod
return alpha_prod, 1 - alpha_prod
def noise_step(
self,
base: torch.Tensor,
model_input: torch.Tensor,
model_output: torch.Tensor,
timestep: torch.Tensor,
):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps
alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep)
alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep)
a_t = (alpha_prod_t_prev / alpha_prod_t) ** 0.5
b_t = -a_t * (beta_prod_t**0.5) + beta_prod_t_prev**0.5
next_model_input = (base - b_t * model_output) / a_t
return model_input, next_model_input.to(base.dtype)
def denoise_step(
self,
base: torch.Tensor,
model_input: torch.Tensor,
model_output: torch.Tensor,
timestep: torch.Tensor,
):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps
alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep)
alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep)
a_t = (alpha_prod_t_prev / alpha_prod_t) ** 0.5
b_t = -a_t * (beta_prod_t**0.5) + beta_prod_t_prev**0.5
next_model_input = a_t * base + b_t * model_output
return model_input, next_model_input.to(base.dtype)
@torch.no_grad()
def decode_latents(self, latents: torch.Tensor):
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
return image
@torch.no_grad()
def prepare_latents(
self,
image: Image.Image,
text_embeds: torch.Tensor,
timesteps: torch.Tensor,
guidance_scale: float,
generator: Optional[torch.Generator] = None,
):
do_classifier_free_guidance = guidance_scale > 1.0
image = image.to(device=self.device, dtype=text_embeds.dtype)
latent = self.vae.encode(image).latent_dist.sample(generator)
latent = self.vae.config.scaling_factor * latent
coupled_latents = [latent.clone(), latent.clone()]
for i, t in tqdm(enumerate(timesteps), total=len(timesteps)):
coupled_latents = self.noise_mixing_layer(x=coupled_latents[0], y=coupled_latents[1])
# j - model_input index, k - base index
for j in range(2):
k = j ^ 1
if self.leapfrog_steps:
if i % 2 == 0:
k, j = j, k
model_input = coupled_latents[j]
base = coupled_latents[k]
latent_model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds).sample
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
base, model_input = self.noise_step(
base=base,
model_input=model_input,
model_output=noise_pred,
timestep=t,
)
coupled_latents[k] = model_input
return coupled_latents
@torch.no_grad()
def __call__(
self,
base_prompt: str,
target_prompt: str,
image: Image.Image,
guidance_scale: float = 3.0,
num_inference_steps: int = 50,
strength: float = 0.8,
negative_prompt: Optional[str] = None,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
):
do_classifier_free_guidance = guidance_scale > 1.0
image = self.image_processor.preprocess(image)
base_embeds = self._encode_prompt(base_prompt, negative_prompt, do_classifier_free_guidance)
target_embeds = self._encode_prompt(target_prompt, negative_prompt, do_classifier_free_guidance)
self.scheduler.set_timesteps(num_inference_steps, self.device)
t_limit = num_inference_steps - int(num_inference_steps * strength)
fwd_timesteps = self.scheduler.timesteps[t_limit:]
bwd_timesteps = fwd_timesteps.flip(0)
coupled_latents = self.prepare_latents(image, base_embeds, bwd_timesteps, guidance_scale, generator)
for i, t in tqdm(enumerate(fwd_timesteps), total=len(fwd_timesteps)):
# j - model_input index, k - base index
for k in range(2):
j = k ^ 1
if self.leapfrog_steps:
if i % 2 == 1:
k, j = j, k
model_input = coupled_latents[j]
base = coupled_latents[k]
latent_model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=target_embeds).sample
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
base, model_input = self.denoise_step(
base=base,
model_input=model_input,
model_output=noise_pred,
timestep=t,
)
coupled_latents[k] = model_input
coupled_latents = self.denoise_mixing_layer(x=coupled_latents[0], y=coupled_latents[1])
# either one is fine
final_latent = coupled_latents[0]
if output_type not in ["latent", "pt", "np", "pil"]:
deprecation_message = (
f"the output_type {output_type} is outdated. Please make sure to set it to one of these instead: "
"`pil`, `np`, `pt`, `latent`"
)
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
output_type = "np"
if output_type == "latent":
image = final_latent
else:
image = self.decode_latents(final_latent)
image = self.image_processor.postprocess(image, output_type=output_type)
return image

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,401 @@
import inspect
from copy import deepcopy
from enum import Enum
from typing import List, Optional, Tuple, Union
import torch
from ligo.segments import segment
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import LMSDiscreteScheduler
>>> from mixdiff import StableDiffusionTilingPipeline
>>> scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
>>> pipeline = StableDiffusionTilingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler)
>>> pipeline.to("cuda:0")
>>> image = pipeline(
>>> prompt=[[
>>> "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
>>> "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
>>> "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
>>> ]],
>>> tile_height=640,
>>> tile_width=640,
>>> tile_row_overlap=0,
>>> tile_col_overlap=256,
>>> guidance_scale=8,
>>> seed=7178915308,
>>> num_inference_steps=50,
>>> )["images"][0]
```
"""
def _tile2pixel_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap):
"""Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image
Returns a tuple with:
- Starting coordinates of rows in pixel space
- Ending coordinates of rows in pixel space
- Starting coordinates of columns in pixel space
- Ending coordinates of columns in pixel space
"""
px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap)
px_row_end = px_row_init + tile_height
px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap)
px_col_end = px_col_init + tile_width
return px_row_init, px_row_end, px_col_init, px_col_end
def _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end):
"""Translates coordinates in pixel space to coordinates in latent space"""
return px_row_init // 8, px_row_end // 8, px_col_init // 8, px_col_end // 8
def _tile2latent_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap):
"""Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image
Returns a tuple with:
- Starting coordinates of rows in latent space
- Ending coordinates of rows in latent space
- Starting coordinates of columns in latent space
- Ending coordinates of columns in latent space
"""
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
return _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end)
def _tile2latent_exclusive_indices(
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, rows, columns
):
"""Given a tile row and column numbers returns the range of latents affected only by that tile in the overall image
Returns a tuple with:
- Starting coordinates of rows in latent space
- Ending coordinates of rows in latent space
- Starting coordinates of columns in latent space
- Ending coordinates of columns in latent space
"""
row_init, row_end, col_init, col_end = _tile2latent_indices(
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
row_segment = segment(row_init, row_end)
col_segment = segment(col_init, col_end)
# Iterate over the rest of tiles, clipping the region for the current tile
for row in range(rows):
for column in range(columns):
if row != tile_row and column != tile_col:
clip_row_init, clip_row_end, clip_col_init, clip_col_end = _tile2latent_indices(
row, column, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
row_segment = row_segment - segment(clip_row_init, clip_row_end)
col_segment = col_segment - segment(clip_col_init, clip_col_end)
# return row_init, row_end, col_init, col_end
return row_segment[0], row_segment[1], col_segment[0], col_segment[1]
class StableDiffusionExtrasMixin:
"""Mixin providing additional convenience method to Stable Diffusion pipelines"""
def decode_latents(self, latents, cpu_vae=False):
"""Decodes a given array of latents into pixel space"""
# scale and decode the image latents with vae
if cpu_vae:
lat = deepcopy(latents).cpu()
vae = deepcopy(self.vae).cpu()
else:
lat = latents
vae = self.vae
lat = 1 / 0.18215 * lat
image = vae.decode(lat).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
return self.numpy_to_pil(image)
class StableDiffusionTilingPipeline(DiffusionPipeline, StableDiffusionExtrasMixin):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
class SeedTilesMode(Enum):
"""Modes in which the latents of a particular tile can be re-seeded"""
FULL = "full"
EXCLUSIVE = "exclusive"
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[List[str]]],
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
eta: Optional[float] = 0.0,
seed: Optional[int] = None,
tile_height: Optional[int] = 512,
tile_width: Optional[int] = 512,
tile_row_overlap: Optional[int] = 256,
tile_col_overlap: Optional[int] = 256,
guidance_scale_tiles: Optional[List[List[float]]] = None,
seed_tiles: Optional[List[List[int]]] = None,
seed_tiles_mode: Optional[Union[str, List[List[str]]]] = "full",
seed_reroll_regions: Optional[List[Tuple[int, int, int, int, int]]] = None,
cpu_vae: Optional[bool] = False,
):
r"""
Function to run the diffusion pipeline with tiling support.
Args:
prompt: either a single string (no tiling) or a list of lists with all the prompts to use (one list for each row of tiles). This will also define the tiling structure.
num_inference_steps: number of diffusions steps.
guidance_scale: classifier-free guidance.
seed: general random seed to initialize latents.
tile_height: height in pixels of each grid tile.
tile_width: width in pixels of each grid tile.
tile_row_overlap: number of overlap pixels between tiles in consecutive rows.
tile_col_overlap: number of overlap pixels between tiles in consecutive columns.
guidance_scale_tiles: specific weights for classifier-free guidance in each tile.
guidance_scale_tiles: specific weights for classifier-free guidance in each tile. If None, the value provided in guidance_scale will be used.
seed_tiles: specific seeds for the initialization latents in each tile. These will override the latents generated for the whole canvas using the standard seed parameter.
seed_tiles_mode: either "full" "exclusive". If "full", all the latents affected by the tile be overriden. If "exclusive", only the latents that are affected exclusively by this tile (and no other tiles) will be overrriden.
seed_reroll_regions: a list of tuples in the form (start row, end row, start column, end column, seed) defining regions in pixel space for which the latents will be overriden using the given seed. Takes priority over seed_tiles.
cpu_vae: the decoder from latent space to pixel space can require too mucho GPU RAM for large images. If you find out of memory errors at the end of the generation process, try setting this parameter to True to run the decoder in CPU. Slower, but should run without memory issues.
Examples:
Returns:
A PIL image with the generated image.
"""
if not isinstance(prompt, list) or not all(isinstance(row, list) for row in prompt):
raise ValueError(f"`prompt` has to be a list of lists but is {type(prompt)}")
grid_rows = len(prompt)
grid_cols = len(prompt[0])
if not all(len(row) == grid_cols for row in prompt):
raise ValueError("All prompt rows must have the same number of prompt columns")
if not isinstance(seed_tiles_mode, str) and (
not isinstance(seed_tiles_mode, list) or not all(isinstance(row, list) for row in seed_tiles_mode)
):
raise ValueError(f"`seed_tiles_mode` has to be a string or list of lists but is {type(prompt)}")
if isinstance(seed_tiles_mode, str):
seed_tiles_mode = [[seed_tiles_mode for _ in range(len(row))] for row in prompt]
modes = [mode.value for mode in self.SeedTilesMode]
if any(mode not in modes for row in seed_tiles_mode for mode in row):
raise ValueError(f"Seed tiles mode must be one of {modes}")
if seed_reroll_regions is None:
seed_reroll_regions = []
batch_size = 1
# create original noisy latents using the timesteps
height = tile_height + (grid_rows - 1) * (tile_height - tile_row_overlap)
width = tile_width + (grid_cols - 1) * (tile_width - tile_col_overlap)
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
generator = torch.Generator("cuda").manual_seed(seed)
latents = torch.randn(latents_shape, generator=generator, device=self.device)
# overwrite latents for specific tiles if provided
if seed_tiles is not None:
for row in range(grid_rows):
for col in range(grid_cols):
if (seed_tile := seed_tiles[row][col]) is not None:
mode = seed_tiles_mode[row][col]
if mode == self.SeedTilesMode.FULL.value:
row_init, row_end, col_init, col_end = _tile2latent_indices(
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
else:
row_init, row_end, col_init, col_end = _tile2latent_exclusive_indices(
row,
col,
tile_width,
tile_height,
tile_row_overlap,
tile_col_overlap,
grid_rows,
grid_cols,
)
tile_generator = torch.Generator("cuda").manual_seed(seed_tile)
tile_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init)
latents[:, :, row_init:row_end, col_init:col_end] = torch.randn(
tile_shape, generator=tile_generator, device=self.device
)
# overwrite again for seed reroll regions
for row_init, row_end, col_init, col_end, seed_reroll in seed_reroll_regions:
row_init, row_end, col_init, col_end = _pixel2latent_indices(
row_init, row_end, col_init, col_end
) # to latent space coordinates
reroll_generator = torch.Generator("cuda").manual_seed(seed_reroll)
region_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init)
latents[:, :, row_init:row_end, col_init:col_end] = torch.randn(
region_shape, generator=reroll_generator, device=self.device
)
# Prepare scheduler
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents * self.scheduler.sigmas[0]
# get prompts text embeddings
text_input = [
[
self.tokenizer(
col,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
for col in row
]
for row in prompt
]
text_embeddings = [[self.text_encoder(col.input_ids.to(self.device))[0] for col in row] for row in text_input]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0 # TODO: also active if any tile has guidance scale
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
for i in range(grid_rows):
for j in range(grid_cols):
max_length = text_input[i][j].input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings[i][j] = torch.cat([uncond_embeddings, text_embeddings[i][j]])
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# Mask for tile weights strenght
tile_weights = self._gaussian_weights(tile_width, tile_height, batch_size)
# Diffusion timesteps
for i, t in tqdm(enumerate(self.scheduler.timesteps)):
# Diffuse each tile
noise_preds = []
for row in range(grid_rows):
noise_preds_row = []
for col in range(grid_cols):
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end]
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([tile_latents] * 2) if do_classifier_free_guidance else tile_latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings[row][col])[
"sample"
]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
guidance = (
guidance_scale
if guidance_scale_tiles is None or guidance_scale_tiles[row][col] is None
else guidance_scale_tiles[row][col]
)
noise_pred_tile = noise_pred_uncond + guidance * (noise_pred_text - noise_pred_uncond)
noise_preds_row.append(noise_pred_tile)
noise_preds.append(noise_preds_row)
# Stitch noise predictions for all tiles
noise_pred = torch.zeros(latents.shape, device=self.device)
contributors = torch.zeros(latents.shape, device=self.device)
# Add each tile contribution to overall latents
for row in range(grid_rows):
for col in range(grid_cols):
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += (
noise_preds[row][col] * tile_weights
)
contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights
# Average overlapping areas with more than 1 contributor
noise_pred /= contributors
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
# scale and decode the image latents with vae
image = self.decode_latents(latents, cpu_vae)
return {"images": image}
def _gaussian_weights(self, tile_width, tile_height, nbatches):
"""Generates a gaussian mask of weights for tile contributions"""
import numpy as np
from numpy import exp, pi, sqrt
latent_width = tile_width // 8
latent_height = tile_height // 8
var = 0.01
midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1
x_probs = [
exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var)
for x in range(latent_width)
]
midpoint = latent_height / 2
y_probs = [
exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var)
for y in range(latent_height)
]
weights = np.outer(y_probs, x_probs)
return torch.tile(torch.tensor(weights, device=self.device), (nbatches, self.unet.config.in_channels, 1, 1))

View File

@@ -0,0 +1,405 @@
import inspect
from copy import deepcopy
from enum import Enum
from typing import List, Optional, Tuple, Union
import torch
from tqdm.auto import tqdm
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
try:
from ligo.segments import segment
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
except ImportError:
raise ImportError("Please install transformers and ligo-segments to use the mixture pipeline")
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import LMSDiscreteScheduler, DiffusionPipeline
>>> scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler, custom_pipeline="mixture_tiling")
>>> pipeline.to("cuda")
>>> image = pipeline(
>>> prompt=[[
>>> "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
>>> "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
>>> "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
>>> ]],
>>> tile_height=640,
>>> tile_width=640,
>>> tile_row_overlap=0,
>>> tile_col_overlap=256,
>>> guidance_scale=8,
>>> seed=7178915308,
>>> num_inference_steps=50,
>>> )["images"][0]
```
"""
def _tile2pixel_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap):
"""Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image
Returns a tuple with:
- Starting coordinates of rows in pixel space
- Ending coordinates of rows in pixel space
- Starting coordinates of columns in pixel space
- Ending coordinates of columns in pixel space
"""
px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap)
px_row_end = px_row_init + tile_height
px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap)
px_col_end = px_col_init + tile_width
return px_row_init, px_row_end, px_col_init, px_col_end
def _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end):
"""Translates coordinates in pixel space to coordinates in latent space"""
return px_row_init // 8, px_row_end // 8, px_col_init // 8, px_col_end // 8
def _tile2latent_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap):
"""Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image
Returns a tuple with:
- Starting coordinates of rows in latent space
- Ending coordinates of rows in latent space
- Starting coordinates of columns in latent space
- Ending coordinates of columns in latent space
"""
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
return _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end)
def _tile2latent_exclusive_indices(
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, rows, columns
):
"""Given a tile row and column numbers returns the range of latents affected only by that tile in the overall image
Returns a tuple with:
- Starting coordinates of rows in latent space
- Ending coordinates of rows in latent space
- Starting coordinates of columns in latent space
- Ending coordinates of columns in latent space
"""
row_init, row_end, col_init, col_end = _tile2latent_indices(
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
row_segment = segment(row_init, row_end)
col_segment = segment(col_init, col_end)
# Iterate over the rest of tiles, clipping the region for the current tile
for row in range(rows):
for column in range(columns):
if row != tile_row and column != tile_col:
clip_row_init, clip_row_end, clip_col_init, clip_col_end = _tile2latent_indices(
row, column, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
row_segment = row_segment - segment(clip_row_init, clip_row_end)
col_segment = col_segment - segment(clip_col_init, clip_col_end)
# return row_init, row_end, col_init, col_end
return row_segment[0], row_segment[1], col_segment[0], col_segment[1]
class StableDiffusionExtrasMixin:
"""Mixin providing additional convenience method to Stable Diffusion pipelines"""
def decode_latents(self, latents, cpu_vae=False):
"""Decodes a given array of latents into pixel space"""
# scale and decode the image latents with vae
if cpu_vae:
lat = deepcopy(latents).cpu()
vae = deepcopy(self.vae).cpu()
else:
lat = latents
vae = self.vae
lat = 1 / 0.18215 * lat
image = vae.decode(lat).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
return self.numpy_to_pil(image)
class StableDiffusionTilingPipeline(DiffusionPipeline, StableDiffusionExtrasMixin):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
class SeedTilesMode(Enum):
"""Modes in which the latents of a particular tile can be re-seeded"""
FULL = "full"
EXCLUSIVE = "exclusive"
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[List[str]]],
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
eta: Optional[float] = 0.0,
seed: Optional[int] = None,
tile_height: Optional[int] = 512,
tile_width: Optional[int] = 512,
tile_row_overlap: Optional[int] = 256,
tile_col_overlap: Optional[int] = 256,
guidance_scale_tiles: Optional[List[List[float]]] = None,
seed_tiles: Optional[List[List[int]]] = None,
seed_tiles_mode: Optional[Union[str, List[List[str]]]] = "full",
seed_reroll_regions: Optional[List[Tuple[int, int, int, int, int]]] = None,
cpu_vae: Optional[bool] = False,
):
r"""
Function to run the diffusion pipeline with tiling support.
Args:
prompt: either a single string (no tiling) or a list of lists with all the prompts to use (one list for each row of tiles). This will also define the tiling structure.
num_inference_steps: number of diffusions steps.
guidance_scale: classifier-free guidance.
seed: general random seed to initialize latents.
tile_height: height in pixels of each grid tile.
tile_width: width in pixels of each grid tile.
tile_row_overlap: number of overlap pixels between tiles in consecutive rows.
tile_col_overlap: number of overlap pixels between tiles in consecutive columns.
guidance_scale_tiles: specific weights for classifier-free guidance in each tile.
guidance_scale_tiles: specific weights for classifier-free guidance in each tile. If None, the value provided in guidance_scale will be used.
seed_tiles: specific seeds for the initialization latents in each tile. These will override the latents generated for the whole canvas using the standard seed parameter.
seed_tiles_mode: either "full" "exclusive". If "full", all the latents affected by the tile be overriden. If "exclusive", only the latents that are affected exclusively by this tile (and no other tiles) will be overrriden.
seed_reroll_regions: a list of tuples in the form (start row, end row, start column, end column, seed) defining regions in pixel space for which the latents will be overriden using the given seed. Takes priority over seed_tiles.
cpu_vae: the decoder from latent space to pixel space can require too mucho GPU RAM for large images. If you find out of memory errors at the end of the generation process, try setting this parameter to True to run the decoder in CPU. Slower, but should run without memory issues.
Examples:
Returns:
A PIL image with the generated image.
"""
if not isinstance(prompt, list) or not all(isinstance(row, list) for row in prompt):
raise ValueError(f"`prompt` has to be a list of lists but is {type(prompt)}")
grid_rows = len(prompt)
grid_cols = len(prompt[0])
if not all(len(row) == grid_cols for row in prompt):
raise ValueError("All prompt rows must have the same number of prompt columns")
if not isinstance(seed_tiles_mode, str) and (
not isinstance(seed_tiles_mode, list) or not all(isinstance(row, list) for row in seed_tiles_mode)
):
raise ValueError(f"`seed_tiles_mode` has to be a string or list of lists but is {type(prompt)}")
if isinstance(seed_tiles_mode, str):
seed_tiles_mode = [[seed_tiles_mode for _ in range(len(row))] for row in prompt]
modes = [mode.value for mode in self.SeedTilesMode]
if any(mode not in modes for row in seed_tiles_mode for mode in row):
raise ValueError(f"Seed tiles mode must be one of {modes}")
if seed_reroll_regions is None:
seed_reroll_regions = []
batch_size = 1
# create original noisy latents using the timesteps
height = tile_height + (grid_rows - 1) * (tile_height - tile_row_overlap)
width = tile_width + (grid_cols - 1) * (tile_width - tile_col_overlap)
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
generator = torch.Generator("cuda").manual_seed(seed)
latents = torch.randn(latents_shape, generator=generator, device=self.device)
# overwrite latents for specific tiles if provided
if seed_tiles is not None:
for row in range(grid_rows):
for col in range(grid_cols):
if (seed_tile := seed_tiles[row][col]) is not None:
mode = seed_tiles_mode[row][col]
if mode == self.SeedTilesMode.FULL.value:
row_init, row_end, col_init, col_end = _tile2latent_indices(
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
else:
row_init, row_end, col_init, col_end = _tile2latent_exclusive_indices(
row,
col,
tile_width,
tile_height,
tile_row_overlap,
tile_col_overlap,
grid_rows,
grid_cols,
)
tile_generator = torch.Generator("cuda").manual_seed(seed_tile)
tile_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init)
latents[:, :, row_init:row_end, col_init:col_end] = torch.randn(
tile_shape, generator=tile_generator, device=self.device
)
# overwrite again for seed reroll regions
for row_init, row_end, col_init, col_end, seed_reroll in seed_reroll_regions:
row_init, row_end, col_init, col_end = _pixel2latent_indices(
row_init, row_end, col_init, col_end
) # to latent space coordinates
reroll_generator = torch.Generator("cuda").manual_seed(seed_reroll)
region_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init)
latents[:, :, row_init:row_end, col_init:col_end] = torch.randn(
region_shape, generator=reroll_generator, device=self.device
)
# Prepare scheduler
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents * self.scheduler.sigmas[0]
# get prompts text embeddings
text_input = [
[
self.tokenizer(
col,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
for col in row
]
for row in prompt
]
text_embeddings = [[self.text_encoder(col.input_ids.to(self.device))[0] for col in row] for row in text_input]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0 # TODO: also active if any tile has guidance scale
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
for i in range(grid_rows):
for j in range(grid_cols):
max_length = text_input[i][j].input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings[i][j] = torch.cat([uncond_embeddings, text_embeddings[i][j]])
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# Mask for tile weights strenght
tile_weights = self._gaussian_weights(tile_width, tile_height, batch_size)
# Diffusion timesteps
for i, t in tqdm(enumerate(self.scheduler.timesteps)):
# Diffuse each tile
noise_preds = []
for row in range(grid_rows):
noise_preds_row = []
for col in range(grid_cols):
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end]
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([tile_latents] * 2) if do_classifier_free_guidance else tile_latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings[row][col])[
"sample"
]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
guidance = (
guidance_scale
if guidance_scale_tiles is None or guidance_scale_tiles[row][col] is None
else guidance_scale_tiles[row][col]
)
noise_pred_tile = noise_pred_uncond + guidance * (noise_pred_text - noise_pred_uncond)
noise_preds_row.append(noise_pred_tile)
noise_preds.append(noise_preds_row)
# Stitch noise predictions for all tiles
noise_pred = torch.zeros(latents.shape, device=self.device)
contributors = torch.zeros(latents.shape, device=self.device)
# Add each tile contribution to overall latents
for row in range(grid_rows):
for col in range(grid_cols):
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap
)
noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += (
noise_preds[row][col] * tile_weights
)
contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights
# Average overlapping areas with more than 1 contributor
noise_pred /= contributors
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
# scale and decode the image latents with vae
image = self.decode_latents(latents, cpu_vae)
return {"images": image}
def _gaussian_weights(self, tile_width, tile_height, nbatches):
"""Generates a gaussian mask of weights for tile contributions"""
import numpy as np
from numpy import exp, pi, sqrt
latent_width = tile_width // 8
latent_height = tile_height // 8
var = 0.01
midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1
x_probs = [
exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var)
for x in range(latent_width)
]
midpoint = latent_height / 2
y_probs = [
exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var)
for y in range(latent_height)
]
weights = np.outer(y_probs, x_probs)
return torch.tile(torch.tensor(weights, device=self.device), (nbatches, self.unet.config.in_channels, 1, 1))

View File

@@ -1,7 +1,7 @@
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
@@ -11,6 +11,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, ControlNetModel, DiffusionPipeline, UNet2DConditionModel, logging
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
PIL_INTERPOLATION,
@@ -184,7 +185,14 @@ def prepare_mask_image(mask_image):
def prepare_controlnet_conditioning_image(
controlnet_conditioning_image, width, height, batch_size, num_images_per_prompt, device, dtype
controlnet_conditioning_image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance,
):
if not isinstance(controlnet_conditioning_image, torch.Tensor):
if isinstance(controlnet_conditioning_image, PIL.Image.Image):
@@ -214,6 +222,9 @@ def prepare_controlnet_conditioning_image(
controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype)
if do_classifier_free_guidance:
controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)
return controlnet_conditioning_image
@@ -230,7 +241,7 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
controlnet: ControlNetModel,
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
@@ -254,6 +265,9 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
if isinstance(controlnet, (list, tuple)):
controlnet = MultiControlNetModel(controlnet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
@@ -264,6 +278,7 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.register_to_config(requires_safety_checker=requires_safety_checker)
@@ -522,6 +537,42 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_controlnet_conditioning_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
raise TypeError(
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
)
if image_is_pil:
image_batch_size = 1
elif image_is_tensor:
image_batch_size = image.shape[0]
elif image_is_pil_list:
image_batch_size = len(image)
elif image_is_tensor_list:
image_batch_size = len(image)
else:
raise ValueError("controlnet condition image is not valid")
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
else:
raise ValueError("prompt or prompt_embeds are not valid")
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
def check_inputs(
self,
prompt,
@@ -534,6 +585,7 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
controlnet_conditioning_scale=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
@@ -572,45 +624,35 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
f" {negative_prompt_embeds.shape}."
)
controlnet_cond_image_is_pil = isinstance(controlnet_conditioning_image, PIL.Image.Image)
controlnet_cond_image_is_tensor = isinstance(controlnet_conditioning_image, torch.Tensor)
controlnet_cond_image_is_pil_list = isinstance(controlnet_conditioning_image, list) and isinstance(
controlnet_conditioning_image[0], PIL.Image.Image
)
controlnet_cond_image_is_tensor_list = isinstance(controlnet_conditioning_image, list) and isinstance(
controlnet_conditioning_image[0], torch.Tensor
)
# check controlnet condition image
if isinstance(self.controlnet, ControlNetModel):
self.check_controlnet_conditioning_image(controlnet_conditioning_image, prompt, prompt_embeds)
elif isinstance(self.controlnet, MultiControlNetModel):
if not isinstance(controlnet_conditioning_image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
if len(controlnet_conditioning_image) != len(self.controlnet.nets):
raise ValueError(
"For multiple controlnets: `image` must have the same length as the number of controlnets."
)
for image_ in controlnet_conditioning_image:
self.check_controlnet_conditioning_image(image_, prompt, prompt_embeds)
else:
assert False
if (
not controlnet_cond_image_is_pil
and not controlnet_cond_image_is_tensor
and not controlnet_cond_image_is_pil_list
and not controlnet_cond_image_is_tensor_list
):
raise TypeError(
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
)
if controlnet_cond_image_is_pil:
controlnet_cond_image_batch_size = 1
elif controlnet_cond_image_is_tensor:
controlnet_cond_image_batch_size = controlnet_conditioning_image.shape[0]
elif controlnet_cond_image_is_pil_list:
controlnet_cond_image_batch_size = len(controlnet_conditioning_image)
elif controlnet_cond_image_is_tensor_list:
controlnet_cond_image_batch_size = len(controlnet_conditioning_image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if controlnet_cond_image_batch_size != 1 and controlnet_cond_image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {controlnet_cond_image_batch_size}, prompt batch size: {prompt_batch_size}"
)
# Check `controlnet_conditioning_scale`
if isinstance(self.controlnet, ControlNetModel):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif isinstance(self.controlnet, MultiControlNetModel):
if isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
self.controlnet.nets
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if isinstance(image, torch.Tensor) and not isinstance(mask_image, torch.Tensor):
raise TypeError("if `image` is a tensor, `mask_image` must also be a tensor")
@@ -630,6 +672,8 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
image_channels, image_height, image_width = image.shape
elif image.ndim == 4:
image_batch_size, image_channels, image_height, image_width = image.shape
else:
assert False
if mask_image.ndim == 2:
mask_image_batch_size = 1
@@ -797,7 +841,7 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: float = 1.0,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
):
r"""
Function invoked when calling the pipeline for generation.
@@ -897,6 +941,7 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
controlnet_conditioning_scale,
)
# 2. Define call parameters
@@ -913,6 +958,9 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if isinstance(self.controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(self.controlnet.nets)
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
@@ -929,15 +977,37 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
mask_image = prepare_mask_image(mask_image)
controlnet_conditioning_image = prepare_controlnet_conditioning_image(
controlnet_conditioning_image,
width,
height,
batch_size * num_images_per_prompt,
num_images_per_prompt,
device,
self.controlnet.dtype,
)
# condition image(s)
if isinstance(self.controlnet, ControlNetModel):
controlnet_conditioning_image = prepare_controlnet_conditioning_image(
controlnet_conditioning_image=controlnet_conditioning_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
)
elif isinstance(self.controlnet, MultiControlNetModel):
controlnet_conditioning_images = []
for image_ in controlnet_conditioning_image:
image_ = prepare_controlnet_conditioning_image(
controlnet_conditioning_image=image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
)
controlnet_conditioning_images.append(image_)
controlnet_conditioning_image = controlnet_conditioning_images
else:
assert False
masked_image = image * (mask_image < 0.5)
@@ -979,9 +1049,6 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
do_classifier_free_guidance,
)
if do_classifier_free_guidance:
controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
@@ -1007,15 +1074,10 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
t,
encoder_hidden_states=prompt_embeds,
controlnet_cond=controlnet_conditioning_image,
conditioning_scale=controlnet_conditioning_scale,
return_dict=False,
)
down_block_res_samples = [
down_block_res_sample * controlnet_conditioning_scale
for down_block_res_sample in down_block_res_samples
]
mid_block_res_sample *= controlnet_conditioning_scale
# predict the noise residual
noise_pred = self.unet(
inpainting_latent_model_input,

Some files were not shown because too many files have changed in this diff Show More