Compare commits

..

1 Commits

Author SHA1 Message Date
Hugging Face Bot (RC Testing)
22c46c56db Test hfh v0.29.0.rc0 2025-02-18 15:56:36 +00:00
497 changed files with 5303 additions and 50703 deletions

View File

@@ -1,38 +0,0 @@
name: "\U0001F31F Remote VAE"
description: Feedback for remote VAE pilot
labels: [ "Remote VAE" ]
body:
- type: textarea
id: positive
validations:
required: true
attributes:
label: Did you like the remote VAE solution?
description: |
If you liked it, we would appreciate it if you could elaborate what you liked.
- type: textarea
id: feedback
validations:
required: true
attributes:
label: What can be improved about the current solution?
description: |
Let us know the things you would like to see improved. Note that we will work optimizing the solution once the pilot is over and we have usage.
- type: textarea
id: others
validations:
required: true
attributes:
label: What other VAEs you would like to see if the pilot goes well?
description: |
Provide a list of the VAEs you would like to see in the future if the pilot goes well.
- type: textarea
id: additional-info
attributes:
label: Notify the members of the team
description: |
Tag the following folks when submitting this feedback: @hlky @sayakpaul

View File

@@ -38,7 +38,6 @@ jobs:
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install pandas peft
python -m uv pip uninstall transformers && python -m uv pip install transformers==4.48.0
- name: Environment
run: |
python utils/print_env.py

View File

@@ -414,16 +414,10 @@ jobs:
config:
- backend: "bitsandbytes"
test_location: "bnb"
additional_deps: ["peft"]
- backend: "gguf"
test_location: "gguf"
additional_deps: []
- backend: "torchao"
test_location: "torchao"
additional_deps: []
- backend: "optimum_quanto"
test_location: "quanto"
additional_deps: []
runs-on:
group: aws-g6e-xlarge-plus
container:
@@ -441,9 +435,6 @@ jobs:
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -U ${{ matrix.config.backend }}
if [ "${{ join(matrix.config.additional_deps, ' ') }}" != "" ]; then
python -m uv pip install ${{ join(matrix.config.additional_deps, ' ') }}
fi
python -m uv pip install pytest-reportlog
- name: Environment
run: |

View File

@@ -1,17 +0,0 @@
name: PR Style Bot
on:
issue_comment:
types: [created]
permissions:
contents: write
pull-requests: write
jobs:
style:
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
with:
python_quality_dependencies: "[quality]"
secrets:
bot_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -2,7 +2,8 @@ name: Fast tests for PRs
on:
pull_request:
branches: [main]
branches:
- main
paths:
- "src/diffusers/**.py"
- "benchmarks/**.py"
@@ -63,7 +64,6 @@ jobs:
run: |
python utils/check_copies.py
python utils/check_dummies.py
python utils/check_support_list.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
@@ -120,8 +120,7 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
python -m uv pip install accelerate
- name: Environment
run: |

View File

@@ -1,296 +0,0 @@
name: Fast GPU Tests on PR
on:
pull_request:
branches: main
paths:
- "src/diffusers/models/modeling_utils.py"
- "src/diffusers/models/model_loading_utils.py"
- "src/diffusers/pipelines/pipeline_utils.py"
- "src/diffusers/pipeline_loading_utils.py"
- "src/diffusers/loaders/lora_base.py"
- "src/diffusers/loaders/lora_pipeline.py"
- "src/diffusers/loaders/peft.py"
- "tests/pipelines/test_pipelines_common.py"
- "tests/models/test_modeling_common.py"
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 1000000000 # set high cutoff so that only always-test pipelines run
jobs:
check_code_quality:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
python utils/check_copies.py
python utils/check_dummies.py
python utils/check_support_list.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
setup_torch_cuda_pipeline_matrix:
needs: [check_code_quality, check_repository_consistency]
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
- name: Environment
run: |
python utils/print_env.py
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
run: |
matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
echo $matrix
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
torch_pipelines_cuda_tests:
name: Torch Pipelines CUDA Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 8
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
- name: Environment
run: |
python utils/print_env.py
- name: Extract tests
id: extract_tests
run: |
pattern=$(python utils/extract_tests_from_mixin.py --type pipeline)
echo "$pattern" > /tmp/test_pattern.txt
echo "pattern_file=/tmp/test_pattern.txt" >> $GITHUB_OUTPUT
- name: PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
if [ "${{ matrix.module }}" = "ip_adapters" ]; then
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
else
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and $pattern" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
fi
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
torch_cuda_tests:
name: Torch CUDA Tests
needs: [check_code_quality, check_repository_consistency]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
- name: Environment
run: |
python utils/print_env.py
- name: Extract tests
id: extract_tests
run: |
pattern=$(python utils/extract_tests_from_mixin.py --type ${{ matrix.module }})
echo "$pattern" > /tmp/test_pattern.txt
echo "pattern_file=/tmp/test_pattern.txt" >> $GITHUB_OUTPUT
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
if [ -z "$pattern" ]; then
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
else
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx and $pattern" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
fi
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_cuda_${{ matrix.module }}_stats.txt
cat reports/tests_torch_cuda_${{ matrix.module }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_test_reports_${{ matrix.module }}
path: reports
run_examples_tests:
name: Examples PyTorch CUDA tests on Ubuntu
needs: [check_code_quality, check_repository_consistency]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/examples_torch_cuda_stats.txt
cat reports/examples_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: examples_test_reports
path: reports

View File

@@ -349,6 +349,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -358,6 +359,7 @@ jobs:
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"

View File

@@ -7,8 +7,8 @@ on:
default: 'diffusers/diffusers-pytorch-cuda'
description: 'Name of the Docker image'
required: true
pr_number:
description: 'PR number to test on'
branch:
description: 'PR Branch to test on'
required: true
test:
description: 'Tests to run (e.g.: `tests/models`).'
@@ -43,8 +43,8 @@ jobs:
exit 1
fi
if [[ ! "$PY_TEST" =~ ^tests/(models|pipelines|lora) ]]; then
echo "Error: The input string must contain either 'models', 'pipelines', or 'lora' after 'tests/'."
if [[ ! "$PY_TEST" =~ ^tests/(models|pipelines) ]]; then
echo "Error: The input string must contain either 'models' or 'pipelines' after 'tests/'."
exit 1
fi
@@ -53,13 +53,13 @@ jobs:
exit 1
fi
echo "$PY_TEST"
shell: bash -e {0}
- name: Checkout PR branch
uses: actions/checkout@v4
with:
ref: refs/pull/${{ inputs.pr_number }}/head
ref: ${{ github.event.inputs.branch }}
repository: ${{ github.event.pull_request.head.repo.full_name }}
- name: Install pytest
run: |

View File

@@ -76,16 +76,6 @@
- local: advanced_inference/outpaint
title: Outpainting
title: Advanced inference
- sections:
- local: hybrid_inference/overview
title: Overview
- local: hybrid_inference/vae_decode
title: VAE Decode
- local: hybrid_inference/vae_encode
title: VAE Encode
- local: hybrid_inference/api_reference
title: API Reference
title: Hybrid Inference
- sections:
- local: using-diffusers/cogvideox
title: CogVideoX
@@ -175,8 +165,6 @@
title: gguf
- local: quantization/torchao
title: torchao
- local: quantization/quanto
title: quanto
title: Quantization Methods
- sections:
- local: optimization/fp16
@@ -294,8 +282,6 @@
title: CogView4Transformer2DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/easyanimate_transformer3d
title: EasyAnimateTransformer3DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/hunyuan_transformer2d
@@ -328,8 +314,6 @@
title: Transformer2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
- local: api/models/wan_transformer_3d
title: WanTransformer3DModel
title: Transformers
- sections:
- local: api/models/stable_cascade_unet
@@ -358,12 +342,8 @@
title: AutoencoderKLHunyuanVideo
- local: api/models/autoencoderkl_ltx_video
title: AutoencoderKLLTXVideo
- local: api/models/autoencoderkl_magvit
title: AutoencoderKLMagvit
- local: api/models/autoencoderkl_mochi
title: AutoencoderKLMochi
- local: api/models/autoencoder_kl_wan
title: AutoencoderKLWan
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_dc
@@ -438,8 +418,6 @@
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/easyanimate
title: EasyAnimate
- local: api/pipelines/flux
title: Flux
- local: api/pipelines/control_flux_inpaint
@@ -496,8 +474,6 @@
title: PixArt-Σ
- local: api/pipelines/sana
title: Sana
- local: api/pipelines/sana_sprint
title: Sana Sprint
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion
@@ -558,8 +534,6 @@
title: UniDiffuser
- local: api/pipelines/value_guided_sampling
title: Value-guided sampling
- local: api/pipelines/wan
title: Wan
- local: api/pipelines/wuerstchen
title: Wuerstchen
title: Pipelines
@@ -569,10 +543,6 @@
title: Overview
- local: api/schedulers/cm_stochastic_iterative
title: CMStochasticIterativeScheduler
- local: api/schedulers/ddim_cogvideox
title: CogVideoXDDIMScheduler
- local: api/schedulers/multistep_dpm_solver_cogvideox
title: CogVideoXDPMScheduler
- local: api/schedulers/consistency_decoder
title: ConsistencyDecoderScheduler
- local: api/schedulers/cosine_dpm

View File

@@ -25,16 +25,3 @@ Customized activation functions for supporting various models in 🤗 Diffusers.
## ApproximateGELU
[[autodoc]] models.activations.ApproximateGELU
## SwiGLU
[[autodoc]] models.activations.SwiGLU
## FP32SiLU
[[autodoc]] models.activations.FP32SiLU
## LinearActivation
[[autodoc]] models.activations.LinearActivation

View File

@@ -147,20 +147,3 @@ An attention processor is a class for applying different types of attention mech
## XLAFlashAttnProcessor2_0
[[autodoc]] models.attention_processor.XLAFlashAttnProcessor2_0
## XFormersJointAttnProcessor
[[autodoc]] models.attention_processor.XFormersJointAttnProcessor
## IPAdapterXFormersAttnProcessor
[[autodoc]] models.attention_processor.IPAdapterXFormersAttnProcessor
## FluxIPAdapterJointAttnProcessor2_0
[[autodoc]] models.attention_processor.FluxIPAdapterJointAttnProcessor2_0
## XLAFluxFlashAttnProcessor2_0
[[autodoc]] models.attention_processor.XLAFluxFlashAttnProcessor2_0

View File

@@ -38,33 +38,6 @@ config = PyramidAttentionBroadcastConfig(
pipe.transformer.enable_cache(config)
```
## Faster Cache
[FasterCache](https://huggingface.co/papers/2410.19355) from Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, Kwan-Yee K. Wong.
FasterCache is a method that speeds up inference in diffusion transformers by:
- Reusing attention states between successive inference steps, due to high similarity between them
- Skipping unconditional branch prediction used in classifier-free guidance by revealing redundancies between unconditional and conditional branch outputs for the same timestep, and therefore approximating the unconditional branch output using the conditional branch output
```python
import torch
from diffusers import CogVideoXPipeline, FasterCacheConfig
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
pipe.to("cuda")
config = FasterCacheConfig(
spatial_attention_block_skip_range=2,
spatial_attention_timestep_skip_range=(-1, 681),
current_timestep_callback=lambda: pipe.current_timestep,
attention_weight_callback=lambda _: 0.3,
unconditional_batch_skip_range=5,
unconditional_batch_timestep_skip_range=(-1, 781),
tensor_format="BFCHW",
)
pipe.transformer.enable_cache(config)
```
### CacheMixin
[[autodoc]] CacheMixin
@@ -74,9 +47,3 @@ pipe.transformer.enable_cache(config)
[[autodoc]] PyramidAttentionBroadcastConfig
[[autodoc]] apply_pyramid_attention_broadcast
### FasterCacheConfig
[[autodoc]] FasterCacheConfig
[[autodoc]] apply_faster_cache

View File

@@ -20,10 +20,6 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
- [`FluxLoraLoaderMixin`] provides similar functions for [Flux](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux).
- [`CogVideoXLoraLoaderMixin`] provides similar functions for [CogVideoX](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox).
- [`Mochi1LoraLoaderMixin`] provides similar functions for [Mochi](https://huggingface.co/docs/diffusers/main/en/api/pipelines/mochi).
- [`LTXVideoLoraLoaderMixin`] provides similar functions for [LTX-Video](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video).
- [`SanaLoraLoaderMixin`] provides similar functions for [Sana](https://huggingface.co/docs/diffusers/main/en/api/pipelines/sana).
- [`HunyuanVideoLoraLoaderMixin`] provides similar functions for [HunyuanVideo](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hunyuan_video).
- [`Lumina2LoraLoaderMixin`] provides similar functions for [Lumina2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/lumina2).
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
@@ -57,22 +53,6 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
[[autodoc]] loaders.lora_pipeline.Mochi1LoraLoaderMixin
## LTXVideoLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.LTXVideoLoraLoaderMixin
## SanaLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.SanaLoraLoaderMixin
## HunyuanVideoLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.HunyuanVideoLoraLoaderMixin
## Lumina2LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.Lumina2LoraLoaderMixin
## AmusedLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.AmusedLoraLoaderMixin

View File

@@ -1,32 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLWan
The 3D variational autoencoder (VAE) model with KL loss used in [Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLWan
vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
```
## AutoencoderKLWan
[[autodoc]] AutoencoderKLWan
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,37 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLMagvit
The 3D variational autoencoder (VAE) model with KL loss used in [EasyAnimate](https://github.com/aigc-apps/EasyAnimate) was introduced by Alibaba PAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLMagvit
vae = AutoencoderKLMagvit.from_pretrained("alibaba-pai/EasyAnimateV5.1-12b-zh", subfolder="vae", torch_dtype=torch.float16).to("cuda")
```
## AutoencoderKLMagvit
[[autodoc]] AutoencoderKLMagvit
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,30 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# EasyAnimateTransformer3DModel
A Diffusion Transformer model for 3D data from [EasyAnimate](https://github.com/aigc-apps/EasyAnimate) was introduced by Alibaba PAI.
The model can be loaded with the following code snippet.
```python
from diffusers import EasyAnimateTransformer3DModel
transformer = EasyAnimateTransformer3DModel.from_pretrained("alibaba-pai/EasyAnimateV5.1-12b-zh", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## EasyAnimateTransformer3DModel
[[autodoc]] EasyAnimateTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# WanTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
The model can be loaded with the following code snippet.
```python
from diffusers import WanTransformer3DModel
transformer = WanTransformer3DModel.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## WanTransformer3DModel
[[autodoc]] WanTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -29,43 +29,3 @@ Customized normalization layers for supporting various models in 🤗 Diffusers.
## AdaGroupNorm
[[autodoc]] models.normalization.AdaGroupNorm
## AdaLayerNormContinuous
[[autodoc]] models.normalization.AdaLayerNormContinuous
## RMSNorm
[[autodoc]] models.normalization.RMSNorm
## GlobalResponseNorm
[[autodoc]] models.normalization.GlobalResponseNorm
## LuminaLayerNormContinuous
[[autodoc]] models.normalization.LuminaLayerNormContinuous
## SD35AdaLayerNormZeroX
[[autodoc]] models.normalization.SD35AdaLayerNormZeroX
## AdaLayerNormZeroSingle
[[autodoc]] models.normalization.AdaLayerNormZeroSingle
## LuminaRMSNormZero
[[autodoc]] models.normalization.LuminaRMSNormZero
## LpNorm
[[autodoc]] models.normalization.LpNorm
## CogView3PlusAdaLayerNormZeroTextImage
[[autodoc]] models.normalization.CogView3PlusAdaLayerNormZeroTextImage
## CogVideoXLayerNormZero
[[autodoc]] models.normalization.CogVideoXLayerNormZero
## MochiRMSNormZero
[[autodoc]] models.transformers.transformer_mochi.MochiRMSNormZero
## MochiRMSNorm
[[autodoc]] models.normalization.MochiRMSNorm

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Text-to-Video Generation with AnimateDiff
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
## Overview
[AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning](https://arxiv.org/abs/2307.04725) by Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai.

View File

@@ -15,10 +15,6 @@
# CogVideoX
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://arxiv.org/abs/2408.06072) from Tsinghua University & ZhipuAI, by Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang, Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, Jie Tang.
The abstract from the paper is:

View File

@@ -15,10 +15,6 @@
# ConsisID
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://arxiv.org/abs/2411.17440) from Peking University & University of Rochester & etc, by Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyang Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, Li Yuan.
The abstract from the paper is:

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# FluxControlInpaint
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
FluxControlInpaintPipeline is an implementation of Inpainting for Flux.1 Depth/Canny models. It is a pipeline that allows you to inpaint images using the Flux.1 Depth/Canny models. The pipeline takes an image and a mask as input and returns the inpainted image.
FLUX.1 Depth and Canny [dev] is a 12 billion parameter rectified flow transformer capable of generating an image based on a text description while following the structure of a given input image. **This is not a ControlNet model**.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# ControlNet
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# ControlNet with Flux.1
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
FluxControlNetPipeline is an implementation of ControlNet for Flux.1.
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# ControlNet with Stable Diffusion 3
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
StableDiffusion3ControlNetPipeline is an implementation of ControlNet for Stable Diffusion 3.
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# ControlNet with Stable Diffusion XL
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# ControlNetUnion
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
ControlNetUnionModel is an implementation of ControlNet for Stable Diffusion XL.
The ControlNet model was introduced in [ControlNetPlus](https://github.com/xinsir6/ControlNetPlus) by xinsir6. It supports multiple conditioning inputs without increasing computation.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# ControlNet-XS
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
ControlNet-XS was introduced in [ControlNet-XS](https://vislearn.github.io/ControlNet-XS/) by Denis Zavadski and Carsten Rother. It is based on the observation that the control model in the [original ControlNet](https://huggingface.co/papers/2302.05543) can be made much smaller and still produce good results.
Like the original ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# DeepFloyd IF
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
## Overview
DeepFloyd IF is a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding.

View File

@@ -1,88 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# EasyAnimate
[EasyAnimate](https://github.com/aigc-apps/EasyAnimate) by Alibaba PAI.
The description from it's GitHub page:
*EasyAnimate is a pipeline based on the transformer architecture, designed for generating AI images and videos, and for training baseline models and Lora models for Diffusion Transformer. We support direct prediction from pre-trained EasyAnimate models, allowing for the generation of videos with various resolutions, approximately 6 seconds in length, at 8fps (EasyAnimateV5.1, 1 to 49 frames). Additionally, users can train their own baseline and Lora models for specific style transformations.*
This pipeline was contributed by [bubbliiiing](https://github.com/bubbliiiing). The original codebase can be found [here](https://huggingface.co/alibaba-pai). The original weights can be found under [hf.co/alibaba-pai](https://huggingface.co/alibaba-pai).
There are two official EasyAnimate checkpoints for text-to-video and video-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`alibaba-pai/EasyAnimateV5.1-12b-zh`](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh) | torch.float16 |
| [`alibaba-pai/EasyAnimateV5.1-12b-zh-InP`](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-InP) | torch.float16 |
There is one official EasyAnimate checkpoints available for image-to-video and video-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`alibaba-pai/EasyAnimateV5.1-12b-zh-InP`](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-InP) | torch.float16 |
There are two official EasyAnimate checkpoints available for control-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`alibaba-pai/EasyAnimateV5.1-12b-zh-Control`](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-Control) | torch.float16 |
| [`alibaba-pai/EasyAnimateV5.1-12b-zh-Control-Camera`](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-Control-Camera) | torch.float16 |
For the EasyAnimateV5.1 series:
- Text-to-video (T2V) and Image-to-video (I2V) works for multiple resolutions. The width and height can vary from 256 to 1024.
- Both T2V and I2V models support generation with 1~49 frames and work best at this value. Exporting videos at 8 FPS is recommended.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`EasyAnimatePipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, EasyAnimateTransformer3DModel, EasyAnimatePipeline
from diffusers.utils import export_to_video
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = EasyAnimateTransformer3DModel.from_pretrained(
"alibaba-pai/EasyAnimateV5.1-12b-zh",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = EasyAnimatePipeline.from_pretrained(
"alibaba-pai/EasyAnimateV5.1-12b-zh",
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A cat walks on the grass, realistic style."
negative_prompt = "bad detailed"
video = pipeline(prompt=prompt, negative_prompt=negative_prompt, num_frames=49, num_inference_steps=30).frames[0]
export_to_video(video, "cat.mp4", fps=8)
```
## EasyAnimatePipeline
[[autodoc]] EasyAnimatePipeline
- all
- __call__
## EasyAnimatePipelineOutput
[[autodoc]] pipelines.easyanimate.pipeline_output.EasyAnimatePipelineOutput

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Flux
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
Flux is a series of text-to-image generation models based on diffusion transformers. To know more about Flux, check out the original [blog post](https://blackforestlabs.ai/announcing-black-forest-labs/) by the creators of Flux, Black Forest Labs.
Original model checkpoints for Flux can be found [here](https://huggingface.co/black-forest-labs). Original inference code can be found [here](https://github.com/black-forest-labs/flux).
@@ -359,74 +355,8 @@ image.save('flux_ip_adapter_output.jpg')
<figcaption class="mt-2 text-sm text-center text-gray-500">IP-Adapter examples with prompt "wearing sunglasses"</figcaption>
</div>
## Optimize
Flux is a very large model and requires ~50GB of RAM/VRAM to load all the modeling components. Enable some of the optimizations below to lower the memory requirements.
### Group offloading
[Group offloading](../../optimization/memory#group-offloading) lowers VRAM usage by offloading groups of internal layers rather than the whole model or weights. You need to use [`~hooks.apply_group_offloading`] on all the model components of a pipeline. The `offload_type` parameter allows you to toggle between block and leaf-level offloading. Setting it to `leaf_level` offloads the lowest leaf-level parameters to the CPU instead of offloading at the module-level.
On CUDA devices that support asynchronous data streaming, set `use_stream=True` to overlap data transfer and computation to accelerate inference.
> [!TIP]
> It is possible to mix block and leaf-level offloading for different components in a pipeline.
```py
import torch
from diffusers import FluxPipeline
from diffusers.hooks import apply_group_offloading
model_id = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
pipe = FluxPipeline.from_pretrained(
model_id,
torch_dtype=dtype,
)
apply_group_offloading(
pipe.transformer,
offload_type="leaf_level",
offload_device=torch.device("cpu"),
onload_device=torch.device("cuda"),
use_stream=True,
)
apply_group_offloading(
pipe.text_encoder,
offload_device=torch.device("cpu"),
onload_device=torch.device("cuda"),
offload_type="leaf_level",
use_stream=True,
)
apply_group_offloading(
pipe.text_encoder_2,
offload_device=torch.device("cpu"),
onload_device=torch.device("cuda"),
offload_type="leaf_level",
use_stream=True,
)
apply_group_offloading(
pipe.vae,
offload_device=torch.device("cpu"),
onload_device=torch.device("cuda"),
offload_type="leaf_level",
use_stream=True,
)
prompt="A cat wearing sunglasses and working as a lifeguard at pool."
generator = torch.Generator().manual_seed(181201)
image = pipe(
prompt,
width=576,
height=1024,
num_inference_steps=30,
generator=generator
).images[0]
image
```
### Running FP16 inference
## Running FP16 inference
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.
@@ -455,7 +385,7 @@ out = pipe(
out.save("image.png")
```
### Quantization
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.

View File

@@ -14,10 +14,6 @@
# HunyuanVideo
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[HunyuanVideo](https://www.arxiv.org/abs/2412.03603) by Tencent.
*Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at [this https URL](https://github.com/tencent/HunyuanVideo).*
@@ -36,23 +32,6 @@ Recommendations for inference:
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution images, try higher values (between `7.0` and `12.0`). The default value is `7.0` for HunyuanVideo.
- For more information about supported resolutions and other details, please refer to the original repository [here](https://github.com/Tencent/HunyuanVideo/).
## Available models
The following models are available for the [`HunyuanVideoPipeline`](text-to-video) pipeline:
| Model name | Description |
|:---|:---|
| [`hunyuanvideo-community/HunyuanVideo`](https://huggingface.co/hunyuanvideo-community/HunyuanVideo) | Official HunyuanVideo (guidance-distilled). Performs best at multiple resolutions and frames. Performs best with `guidance_scale=6.0`, `true_cfg_scale=1.0` and without a negative prompt. |
| [`https://huggingface.co/Skywork/SkyReels-V1-Hunyuan-T2V`](https://huggingface.co/Skywork/SkyReels-V1-Hunyuan-T2V) | Skywork's custom finetune of HunyuanVideo (de-distilled). Performs best with `97x544x960` resolution, `guidance_scale=1.0`, `true_cfg_scale=6.0` and a negative prompt. |
The following models are available for the image-to-video pipeline:
| Model name | Description |
|:---|:---|
| [`Skywork/SkyReels-V1-Hunyuan-I2V`](https://huggingface.co/Skywork/SkyReels-V1-Hunyuan-I2V) | Skywork's custom finetune of HunyuanVideo (de-distilled). Performs best with `97x544x960` resolution. Performs best at `97x544x960` resolution, `guidance_scale=1.0`, `true_cfg_scale=6.0` and a negative prompt. |
| [`hunyuanvideo-community/HunyuanVideo-I2V-33ch`](https://huggingface.co/hunyuanvideo-community/HunyuanVideo-I2V) | Tecent's official HunyuanVideo 33-channel I2V model. Performs best at resolutions of 480, 720, 960, 1280. A higher `shift` value when initializing the scheduler is recommended (good values are between 7 and 20). |
| [`hunyuanvideo-community/HunyuanVideo-I2V`](https://huggingface.co/hunyuanvideo-community/HunyuanVideo-I2V) | Tecent's official HunyuanVideo 16-channel I2V model. Performs best at resolutions of 480, 720, 960, 1280. A higher `shift` value when initializing the scheduler is recommended (good values are between 7 and 20) |
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.

View File

@@ -9,10 +9,6 @@ specific language governing permissions and limitations under the License.
# Kandinsky 3
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
Kandinsky 3 is created by [Vladimir Arkhipkin](https://github.com/oriBetelgeuse),[Anastasia Maltseva](https://github.com/NastyaMittseva),[Igor Pavlov](https://github.com/boomb0om),[Andrei Filatov](https://github.com/anvilarth),[Arseniy Shakhmatov](https://github.com/cene555),[Andrey Kuznetsov](https://github.com/kuznetsoffandrey),[Denis Dimitrov](https://github.com/denndimitrov), [Zein Shaheen](https://github.com/zeinsh)
The description from it's GitHub page:

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Kolors: Effective Training of Diffusion Model for Photorealistic Text-to-Image Synthesis
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/kolors/kolors_header_collage.png)
Kolors is a large-scale text-to-image generation model based on latent diffusion, developed by [the Kuaishou Kolors team](https://github.com/Kwai-Kolors/Kolors). Trained on billions of text-image pairs, Kolors exhibits significant advantages over both open-source and closed-source models in visual quality, complex semantic accuracy, and text rendering for both Chinese and English characters. Furthermore, Kolors supports both Chinese and English inputs, demonstrating strong performance in understanding and generating Chinese-specific content. For more details, please refer to this [technical report](https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf).

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Latent Consistency Models
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
Latent Consistency Models (LCMs) were proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://huggingface.co/papers/2310.04378) by Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao.
The abstract of the paper is as follows:

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# LEDITS++
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
LEDITS++ was proposed in [LEDITS++: Limitless Image Editing using Text-to-Image Models](https://huggingface.co/papers/2311.16711) by Manuel Brack, Felix Friedrich, Katharina Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian Kersting, Apolinário Passos.
The abstract from the paper is:

View File

@@ -14,10 +14,6 @@
# LTX Video
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[LTX Video](https://huggingface.co/Lightricks/LTX-Video) is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. We provide a model for both text-to-video as well as image + text-to-video usecases.
<Tip>
@@ -196,12 +192,6 @@ export_to_video(video, "ship.mp4", fps=24)
- all
- __call__
## LTXConditionPipeline
[[autodoc]] LTXConditionPipeline
- all
- __call__
## LTXPipelineOutput
[[autodoc]] pipelines.ltx.pipeline_output.LTXPipelineOutput

View File

@@ -58,10 +58,10 @@ Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fa
First, load the pipeline:
```python
from diffusers import LuminaPipeline
from diffusers import LuminaText2ImgPipeline
import torch
pipeline = LuminaPipeline.from_pretrained(
pipeline = LuminaText2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16
).to("cuda")
```
@@ -86,11 +86,11 @@ image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit w
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LuminaPipeline`] for inference with bitsandbytes.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LuminaText2ImgPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, Transformer2DModel, LuminaPipeline
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, Transformer2DModel, LuminaText2ImgPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
@@ -109,7 +109,7 @@ transformer_8bit = Transformer2DModel.from_pretrained(
torch_dtype=torch.float16,
)
pipeline = LuminaPipeline.from_pretrained(
pipeline = LuminaText2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
@@ -122,9 +122,9 @@ image = pipeline(prompt).images[0]
image.save("lumina.png")
```
## LuminaPipeline
## LuminaText2ImgPipeline
[[autodoc]] LuminaPipeline
[[autodoc]] LuminaText2ImgPipeline
- all
- __call__

View File

@@ -14,10 +14,6 @@
# Lumina2
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[Lumina Image 2.0: A Unified and Efficient Image Generative Model](https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0) is a 2 billion parameter flow-based diffusion transformer capable of generating diverse images from text descriptions.
The abstract from the paper is:
@@ -36,14 +32,14 @@ Single file loading for Lumina Image 2.0 is available for the `Lumina2Transforme
```python
import torch
from diffusers import Lumina2Transformer2DModel, Lumina2Pipeline
from diffusers import Lumina2Transformer2DModel, Lumina2Text2ImgPipeline
ckpt_path = "https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0/blob/main/consolidated.00-of-01.pth"
transformer = Lumina2Transformer2DModel.from_single_file(
ckpt_path, torch_dtype=torch.bfloat16
)
pipe = Lumina2Pipeline.from_pretrained(
pipe = Lumina2Text2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Image-2.0", transformer=transformer, torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
@@ -60,7 +56,7 @@ image.save("lumina-single-file.png")
GGUF Quantized checkpoints for the `Lumina2Transformer2DModel` can be loaded via `from_single_file` with the `GGUFQuantizationConfig`
```python
from diffusers import Lumina2Transformer2DModel, Lumina2Pipeline, GGUFQuantizationConfig
from diffusers import Lumina2Transformer2DModel, Lumina2Text2ImgPipeline, GGUFQuantizationConfig
ckpt_path = "https://huggingface.co/calcuis/lumina-gguf/blob/main/lumina2-q4_0.gguf"
transformer = Lumina2Transformer2DModel.from_single_file(
@@ -69,7 +65,7 @@ transformer = Lumina2Transformer2DModel.from_single_file(
torch_dtype=torch.bfloat16,
)
pipe = Lumina2Pipeline.from_pretrained(
pipe = Lumina2Text2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Image-2.0", transformer=transformer, torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
@@ -80,8 +76,8 @@ image = pipe(
image.save("lumina-gguf.png")
```
## Lumina2Pipeline
## Lumina2Text2ImgPipeline
[[autodoc]] Lumina2Pipeline
[[autodoc]] Lumina2Text2ImgPipeline
- all
- __call__

View File

@@ -1,6 +1,4 @@
<!--
Copyright 2023-2025 Marigold Team, ETH Zürich. All rights reserved.
Copyright 2024-2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 Marigold authors and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -12,120 +10,67 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Marigold Computer Vision
# Marigold Pipelines for Computer Vision Tasks
![marigold](https://marigoldmonodepth.github.io/images/teaser_collage_compressed.jpg)
Marigold was proposed in
[Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation](https://huggingface.co/papers/2312.02145),
a CVPR 2024 Oral paper by
[Bingxin Ke](http://www.kebingxin.com/),
[Anton Obukhov](https://www.obukhov.ai/),
[Shengyu Huang](https://shengyuh.github.io/),
[Nando Metzger](https://nandometzger.github.io/),
[Rodrigo Caye Daudt](https://rcdaudt.github.io/), and
[Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ&hl=en).
The core idea is to **repurpose the generative prior of Text-to-Image Latent Diffusion Models (LDMs) for traditional
computer vision tasks**.
This approach was explored by fine-tuning Stable Diffusion for **Monocular Depth Estimation**, as demonstrated in the
teaser above.
Marigold was proposed in [Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation](https://huggingface.co/papers/2312.02145), a CVPR 2024 Oral paper by [Bingxin Ke](http://www.kebingxin.com/), [Anton Obukhov](https://www.obukhov.ai/), [Shengyu Huang](https://shengyuh.github.io/), [Nando Metzger](https://nandometzger.github.io/), [Rodrigo Caye Daudt](https://rcdaudt.github.io/), and [Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ&hl=en).
The idea is to repurpose the rich generative prior of Text-to-Image Latent Diffusion Models (LDMs) for traditional computer vision tasks.
Initially, this idea was explored to fine-tune Stable Diffusion for Monocular Depth Estimation, as shown in the teaser above.
Later,
- [Tianfu Wang](https://tianfwang.github.io/) trained the first Latent Consistency Model (LCM) of Marigold, which unlocked fast single-step inference;
- [Kevin Qu](https://www.linkedin.com/in/kevin-qu-b3417621b/?locale=en_US) extended the approach to Surface Normals Estimation;
- [Anton Obukhov](https://www.obukhov.ai/) contributed the pipelines and documentation into diffusers (enabled and supported by [YiYi Xu](https://yiyixuxu.github.io/) and [Sayak Paul](https://sayak.dev/)).
Marigold was later extended in the follow-up paper,
[Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis](https://huggingface.co/papers/2312.02145),
authored by
[Bingxin Ke](http://www.kebingxin.com/),
[Kevin Qu](https://www.linkedin.com/in/kevin-qu-b3417621b/?locale=en_US),
[Tianfu Wang](https://tianfwang.github.io/),
[Nando Metzger](https://nandometzger.github.io/),
[Shengyu Huang](https://shengyuh.github.io/),
[Bo Li](https://www.linkedin.com/in/bobboli0202/),
[Anton Obukhov](https://www.obukhov.ai/), and
[Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ&hl=en).
This work expanded Marigold to support new modalities such as **Surface Normals** and **Intrinsic Image Decomposition**
(IID), introduced a training protocol for **Latent Consistency Models** (LCM), and demonstrated **High-Resolution** (HR)
processing capability.
The abstract from the paper is:
<Tip>
The early Marigold models (`v1-0` and earlier) were optimized for best results with at least 10 inference steps.
LCM models were later developed to enable high-quality inference in just 1 to 4 steps.
Marigold models `v1-1` and later use the DDIM scheduler to achieve optimal
results in as few as 1 to 4 steps.
</Tip>
*Monocular depth estimation is a fundamental computer vision task. Recovering 3D depth from a single image is geometrically ill-posed and requires scene understanding, so it is not surprising that the rise of deep learning has led to a breakthrough. The impressive progress of monocular depth estimators has mirrored the growth in model capacity, from relatively modest CNNs to large Transformer architectures. Still, monocular depth estimators tend to struggle when presented with images with unfamiliar content and layout, since their knowledge of the visual world is restricted by the data seen during training, and challenged by zero-shot generalization to new domains. This motivates us to explore whether the extensive priors captured in recent generative diffusion models can enable better, more generalizable depth estimation. We introduce Marigold, a method for affine-invariant monocular depth estimation that is derived from Stable Diffusion and retains its rich prior knowledge. The estimator can be fine-tuned in a couple of days on a single GPU using only synthetic training data. It delivers state-of-the-art performance across a wide range of datasets, including over 20% performance gains in specific cases. Project page: https://marigoldmonodepth.github.io.*
## Available Pipelines
Each pipeline is tailored for a specific computer vision task, processing an input RGB image and generating a
corresponding prediction.
Currently, the following computer vision tasks are implemented:
Each pipeline supports one Computer Vision task, which takes an input RGB image as input and produces a *prediction* of the modality of interest, such as a depth map of the input image.
Currently, the following tasks are implemented:
| Pipeline | Predicted Modalities | Demos |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------:|
| [MarigoldDepthPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py) | [Depth](https://en.wikipedia.org/wiki/Depth_map), [Disparity](https://en.wikipedia.org/wiki/Binocular_disparity) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-lcm), [Slow Original Demo (DDIM)](https://huggingface.co/spaces/prs-eth/marigold) |
| [MarigoldNormalsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_normals.py) | [Surface normals](https://en.wikipedia.org/wiki/Normal_mapping) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-normals-lcm) |
| Pipeline | Recommended Model Checkpoints | Spaces (Interactive Apps) | Predicted Modalities |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------:|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [MarigoldDepthPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py) | [prs-eth/marigold-depth-v1-1](https://huggingface.co/prs-eth/marigold-depth-v1-1) | [Depth Estimation](https://huggingface.co/spaces/prs-eth/marigold) | [Depth](https://en.wikipedia.org/wiki/Depth_map), [Disparity](https://en.wikipedia.org/wiki/Binocular_disparity) |
| [MarigoldNormalsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_normals.py) | [prs-eth/marigold-normals-v1-1](https://huggingface.co/prs-eth/marigold-normals-v1-1) | [Surface Normals Estimation](https://huggingface.co/spaces/prs-eth/marigold-normals) | [Surface normals](https://en.wikipedia.org/wiki/Normal_mapping) |
| [MarigoldIntrinsicsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py) | [prs-eth/marigold-iid-appearance-v1-1](https://huggingface.co/prs-eth/marigold-iid-appearance-v1-1),<br>[prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | [Intrinsic Image Decomposition](https://huggingface.co/spaces/prs-eth/marigold-iid) | [Albedo](https://en.wikipedia.org/wiki/Albedo), [Materials](https://www.n.aiq3d.com/wiki/roughnessmetalnessao-map), [Lighting](https://en.wikipedia.org/wiki/Diffuse_reflection) |
## Available Checkpoints
All original checkpoints are available under the [PRS-ETH](https://huggingface.co/prs-eth/) organization on Hugging Face.
They are designed for use with diffusers pipelines and the [original codebase](https://github.com/prs-eth/marigold), which can also be used to train
new model checkpoints.
The following is a summary of the recommended checkpoints, all of which produce reliable results with 1 to 4 steps.
| Checkpoint | Modality | Comment |
|-----------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [prs-eth/marigold-depth-v1-1](https://huggingface.co/prs-eth/marigold-depth-v1-1) | Depth | Affine-invariant depth prediction assigns each pixel a value between 0 (near plane) and 1 (far plane), with both planes determined by the model during inference. |
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | The surface normals predictions are unit-length 3D vectors in the screen space camera, with values in the range from -1 to 1. |
| [prs-eth/marigold-iid-appearance-v1-1](https://huggingface.co/prs-eth/marigold-iid-appearance-v1-1) | Intrinsics | InteriorVerse decomposition is comprised of Albedo and two BRDF material properties: Roughness and Metallicity. |
| [prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | Intrinsics | HyperSim decomposition of an image &nbsp\\(I\\)&nbsp is comprised of Albedo &nbsp\\(A\\), Diffuse shading &nbsp\\(S\\), and Non-diffuse residual &nbsp\\(R\\): &nbsp\\(I = A*S+R\\). |
The original checkpoints can be found under the [PRS-ETH](https://huggingface.co/prs-eth/) Hugging Face organization.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff
between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to
efficiently load the same components into multiple pipelines.
Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section
[here](../../using-diffusers/svd#reduce-memory-usage).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
</Tip>
<Tip warning={true}>
Marigold pipelines were designed and tested with the scheduler embedded in the model checkpoint.
The optimal number of inference steps varies by scheduler, with no universal value that works best across all cases.
To accommodate this, the `num_inference_steps` parameter in the pipeline's `__call__` method defaults to `None` (see the
API reference).
Unless set explicitly, it inherits the value from the `default_denoising_steps` field in the checkpoint configuration
file (`model_index.json`).
This ensures high-quality predictions when invoking the pipeline with only the `image` argument.
Marigold pipelines were designed and tested only with `DDIMScheduler` and `LCMScheduler`.
Depending on the scheduler, the number of inference steps required to get reliable predictions varies, and there is no universal value that works best across schedulers.
Because of that, the default value of `num_inference_steps` in the `__call__` method of the pipeline is set to `None` (see the API reference).
Unless set explicitly, its value will be taken from the checkpoint configuration `model_index.json`.
This is done to ensure high-quality predictions when calling the pipeline with just the `image` argument.
</Tip>
See also Marigold [usage examples](../../using-diffusers/marigold_usage).
## Marigold Depth Prediction API
See also Marigold [usage examples](marigold_usage).
## MarigoldDepthPipeline
[[autodoc]] MarigoldDepthPipeline
- all
- __call__
## MarigoldNormalsPipeline
[[autodoc]] MarigoldNormalsPipeline
- all
- __call__
## MarigoldDepthOutput
[[autodoc]] pipelines.marigold.pipeline_marigold_depth.MarigoldDepthOutput
[[autodoc]] pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_depth
## Marigold Normals Estimation API
[[autodoc]] MarigoldNormalsPipeline
- __call__
[[autodoc]] pipelines.marigold.pipeline_marigold_normals.MarigoldNormalsOutput
[[autodoc]] pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_normals
## Marigold Intrinsic Image Decomposition API
[[autodoc]] MarigoldIntrinsicsPipeline
- __call__
[[autodoc]] pipelines.marigold.pipeline_marigold_intrinsics.MarigoldIntrinsicsOutput
[[autodoc]] pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_intrinsics
## MarigoldNormalsOutput
[[autodoc]] pipelines.marigold.pipeline_marigold_normals.MarigoldNormalsOutput

View File

@@ -15,10 +15,6 @@
# Mochi 1 Preview
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
> [!TIP]
> Only a research preview of the model weights is available at the moment.

View File

@@ -54,7 +54,7 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
| [DiT](dit) | text2image |
| [Flux](flux) | text2image |
| [Hunyuan-DiT](hunyuandit) | text2image |
| [I2VGen-XL](i2vgenxl) | image2video |
| [I2VGen-XL](i2vgenxl) | text2video |
| [InstructPix2Pix](pix2pix) | image editing |
| [Kandinsky 2.1](kandinsky) | text2image, image2image, inpainting, interpolation |
| [Kandinsky 2.2](kandinsky_v22) | text2image, image2image, inpainting |
@@ -65,7 +65,7 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
| [Latte](latte) | text2image |
| [LEDITS++](ledits_pp) | image editing |
| [Lumina-T2X](lumina) | text2image |
| [Marigold](marigold) | depth-estimation, normals-estimation, intrinsic-decomposition |
| [Marigold](marigold) | depth |
| [MultiDiffusion](panorama) | text2image |
| [MusicLDM](musicldm) | text2audio |
| [PAG](pag) | text2image |

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Perturbed-Attention Guidance
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[Perturbed-Attention Guidance (PAG)](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) is a new diffusion sampling guidance that improves sample quality across both unconditional and conditional settings, achieving this without requiring further training or the integration of external modules.
PAG was introduced in [Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance](https://huggingface.co/papers/2403.17377) by Donghoon Ahn, Hyoungwon Cho, Jaewon Min, Wooseok Jang, Jungwoo Kim, SeonHwa Kim, Hyun Hee Park, Kyong Hwan Jin and Seungryong Kim.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# MultiDiffusion
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation](https://huggingface.co/papers/2302.08113) is by Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.
The abstract from the paper is:

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Image-to-Video Generation with PIA (Personalized Image Animator)
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
## Overview
[PIA: Your Personalized Image Animator via Plug-and-Play Modules in Text-to-Image Models](https://arxiv.org/abs/2312.13964) by Yiming Zhang, Zhening Xing, Yanhong Zeng, Youqing Fang, Kai Chen

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# InstructPix2Pix
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[InstructPix2Pix: Learning to Follow Image Editing Instructions](https://huggingface.co/papers/2211.09800) is by Tim Brooks, Aleksander Holynski and Alexei A. Efros.
The abstract from the paper is:

View File

@@ -14,10 +14,6 @@
# SanaPipeline
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers](https://huggingface.co/papers/2410.10629) from NVIDIA and MIT HAN Lab, by Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li, Ligeng Zhu, Yao Lu, Song Han.
The abstract from the paper is:

View File

@@ -1,100 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# SanaSprintPipeline
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation](https://huggingface.co/papers/2503.09641) from NVIDIA, MIT HAN Lab, and Hugging Face by Junsong Chen, Shuchen Xue, Yuyang Zhao, Jincheng Yu, Sayak Paul, Junyu Chen, Han Cai, Enze Xie, Song Han
The abstract from the paper is:
*This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step — outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10× faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024×1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [lawrence-cj](https://github.com/lawrence-cj), [shuchen Xue](https://github.com/scxue) and [Enze Xie](https://github.com/xieenze). The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://huggingface.co/Efficient-Large-Model/).
Available models:
| Model | Recommended dtype |
|:-------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------:|
| [`Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers) | `torch.bfloat16` |
| [`Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers) | `torch.bfloat16` |
Refer to [this](https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76) collection for more information.
Note: The recommended dtype mentioned is for the transformer weights. The text encoder must stay in `torch.bfloat16` and VAE weights must stay in `torch.bfloat16` or `torch.float32` for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`SanaSprintPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SanaTransformer2DModel, SanaSprintPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, AutoModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = AutoModel.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = SanaTransformer2DModel.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)
pipeline = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.bfloat16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt).images[0]
image.save("sana.png")
```
## Setting `max_timesteps`
Users can tweak the `max_timesteps` value for experimenting with the visual quality of the generated outputs. The default `max_timesteps` value was obtained with an inference-time search process. For more details about it, check out the paper.
## SanaSprintPipeline
[[autodoc]] SanaSprintPipeline
- all
- __call__
## SanaPipelineOutput
[[autodoc]] pipelines.sana.pipeline_output.SanaPipelineOutput

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Depth-to-image
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
The Stable Diffusion model can also infer depth based on an image using [MiDaS](https://github.com/isl-org/MiDaS). This allows you to pass a text prompt and an initial image to condition the generation of new images as well as a `depth_map` to preserve the image structure.
<Tip>

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Image-to-image
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
The Stable Diffusion model can also be applied to image-to-image generation by passing a text prompt and an initial image to condition the generation of new images.
The [`StableDiffusionImg2ImgPipeline`] uses the diffusion-denoising mechanism proposed in [SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations](https://huggingface.co/papers/2108.01073) by Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, Stefano Ermon.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Inpainting
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
The Stable Diffusion model can also be applied to inpainting which lets you edit specific parts of an image by providing a mask and a text prompt using Stable Diffusion.
## Tips

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Text-to-(RGB, depth)
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
LDM3D was proposed in [LDM3D: Latent Diffusion Model for 3D](https://huggingface.co/papers/2305.10853) by Gabriela Ben Melech Stan, Diana Wofk, Scottie Fox, Alex Redden, Will Saxton, Jean Yu, Estelle Aflalo, Shao-Yen Tseng, Fabio Nonato, Matthias Muller, and Vasudev Lal. LDM3D generates an image and a depth map from a given text prompt unlike the existing text-to-image diffusion models such as [Stable Diffusion](./overview) which only generates an image. With almost the same number of parameters, LDM3D achieves to create a latent space that can compress both the RGB images and the depth maps.
Two checkpoints are available for use:

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Stable Diffusion pipelines
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). Latent diffusion applies the diffusion process over a lower dimensional latent space to reduce memory and compute complexity. This specific type of diffusion model was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
Stable Diffusion is trained on 512x512 images from a subset of the LAION-5B dataset. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and can run on consumer GPUs.

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Stable Diffusion 3
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
Stable Diffusion 3 (SD3) was proposed in [Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/pdf/2403.03206.pdf) by Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Muller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach.
The abstract from the paper is:
@@ -81,7 +77,7 @@ from diffusers import StableDiffusion3Pipeline
from transformers import SiglipVisionModel, SiglipImageProcessor
image_encoder_id = "google/siglip-so400m-patch14-384"
ip_adapter_id = "InstantX/SD3.5-Large-IP-Adapter"
ip_adapter_id = "guiyrt/InstantX-SD3.5-Large-IP-Adapter-diffusers"
feature_extractor = SiglipImageProcessor.from_pretrained(
image_encoder_id,

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Stable Diffusion XL
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
Stable Diffusion XL (SDXL) was proposed in [SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis](https://huggingface.co/papers/2307.01952) by Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach.
The abstract from the paper is:

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Text-to-image
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
The Stable Diffusion model was created by researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), [Runway](https://github.com/runwayml), and [LAION](https://laion.ai/). The [`StableDiffusionPipeline`] is capable of generating photorealistic images given any text input. It's trained on 512x512 images from a subset of the LAION-5B dataset. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and can run on consumer GPUs. Latent diffusion is the research on top of which Stable Diffusion was built. It was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
The abstract from the paper is:

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Super-resolution
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
The Stable Diffusion upscaler diffusion model was created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), and [LAION](https://laion.ai/). It is used to enhance the resolution of input images by a factor of 4.
<Tip>

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Stable unCLIP
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
Stable unCLIP checkpoints are finetuned from [Stable Diffusion 2.1](./stable_diffusion/stable_diffusion_2) checkpoints to condition on CLIP image embeddings.
Stable unCLIP still conditions on text embeddings. Given the two separate conditionings, stable unCLIP can be used
for text guided image variation. When combined with an unCLIP prior, it can also be used for full text to image generation.

View File

@@ -18,10 +18,6 @@ specific language governing permissions and limitations under the License.
# Text-to-video
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[ModelScope Text-to-Video Technical Report](https://arxiv.org/abs/2308.06571) is by Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, Shiwei Zhang.
The abstract from the paper is:

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Text2Video-Zero
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators](https://huggingface.co/papers/2303.13439) is by Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, [Zhangyang Wang](https://www.ece.utexas.edu/people/faculty/atlas-wang), Shant Navasardyan, [Humphrey Shi](https://www.humphreyshi.com).
Text2Video-Zero enables zero-shot video generation using either:

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# UniDiffuser
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
The UniDiffuser model was proposed in [One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale](https://huggingface.co/papers/2303.06555) by Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, Jun Zhu.
The abstract from the paper is:

View File

@@ -1,465 +0,0 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# Wan
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
[Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
<!-- TODO(aryan): update abstract once paper is out -->
## Generating Videos with Wan 2.1
We will first need to install some addtional dependencies.
```shell
pip install -u ftfy imageio-ffmpeg imageio
```
### Text to Video Generation
The following example requires 11GB VRAM to run and uses the smaller `Wan-AI/Wan2.1-T2V-1.3B-Diffusers` model. You can switch it out
for the larger `Wan2.1-I2V-14B-720P-Diffusers` or `Wan-AI/Wan2.1-I2V-14B-480P-Diffusers` if you have at least 35GB VRAM available.
```python
from diffusers import WanPipeline
from diffusers.utils import export_to_video
# Available models: Wan-AI/Wan2.1-I2V-14B-720P-Diffusers or Wan-AI/Wan2.1-I2V-14B-480P-Diffusers
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
pipe = WanPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
frames = pipe(prompt=prompt, negative_prompt=negative_prompt, num_frames=num_frames).frames[0]
export_to_video(frames, "wan-t2v.mp4", fps=16)
```
<Tip>
You can improve the quality of the generated video by running the decoding step in full precision.
</Tip>
```python
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
# replace this with pipe.to("cuda") if you have sufficient VRAM
pipe.enable_model_cpu_offload()
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
frames = pipe(prompt=prompt, num_frames=num_frames).frames[0]
export_to_video(frames, "wan-t2v.mp4", fps=16)
```
### Image to Video Generation
The Image to Video pipeline requires loading the `AutoencoderKLWan` and the `CLIPVisionModel` components in full precision. The following example will need at least
35GB of VRAM to run.
```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
model_id = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
# replace this with pipe.to("cuda") if you have sufficient VRAM
pipe.enable_model_cpu_offload()
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)
max_area = 480 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
prompt = (
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
```
### Video to Video Generation
```python
import torch
from diffusers.utils import load_video, export_to_video
from diffusers import AutoencoderKLWan, WanVideoToVideoPipeline, UniPCMultistepScheduler
# Available models: Wan-AI/Wan2.1-T2V-14B-Diffusers, Wan-AI/Wan2.1-T2V-1.3B-Diffusers
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(
model_id, subfolder="vae", torch_dtype=torch.float32
)
pipe = WanVideoToVideoPipeline.from_pretrained(
model_id, vae=vae, torch_dtype=torch.bfloat16
)
flow_shift = 3.0 # 5.0 for 720P, 3.0 for 480P
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config, flow_shift=flow_shift
)
# change to pipe.to("cuda") if you have sufficient VRAM
pipe.enable_model_cpu_offload()
prompt = "A robot standing on a mountain top. The sun is setting in the background"
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
video = load_video(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4"
)
output = pipe(
video=video,
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=512,
guidance_scale=7.0,
strength=0.7,
).frames[0]
export_to_video(output, "wan-v2v.mp4", fps=16)
```
## Memory Optimizations for Wan 2.1
Base inference with the large 14B Wan 2.1 models can take up to 35GB of VRAM when generating videos at 720p resolution. We'll outline a few memory optimizations we can apply to reduce the VRAM required to run the model.
We'll use `Wan-AI/Wan2.1-I2V-14B-720P-Diffusers` model in these examples to demonstrate the memory savings, but the techniques are applicable to all model checkpoints.
### Group Offloading the Transformer and UMT5 Text Encoder
Find more information about group offloading [here](../optimization/memory.md)
#### Block Level Group Offloading
We can reduce our VRAM requirements by applying group offloading to the larger model components of the pipeline; the `WanTransformer3DModel` and `UMT5EncoderModel`. Group offloading will break up the individual modules of a model and offload/onload them onto your GPU as needed during inference. In this example, we'll apply `block_level` offloading, which will group the modules in a model into blocks of size `num_blocks_per_group` and offload/onload them to GPU. Moving to between CPU and GPU does add latency to the inference process. You can trade off between latency and memory savings by increasing or decreasing the `num_blocks_per_group`.
The following example will now only require 14GB of VRAM to run, but will take approximately 30 minutes to generate a video.
```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel, CLIPVisionModel
# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
apply_group_offloading(text_encoder,
onload_device=onload_device,
offload_device=offload_device,
offload_type="block_level",
num_blocks_per_group=4
)
transformer.enable_group_offload(
onload_device=onload_device,
offload_device=offload_device,
offload_type="block_level",
num_blocks_per_group=4,
)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id,
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16
)
# Since we've offloaded the larger models alrady, we can move the rest of the model components to GPU
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)
max_area = 720 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
prompt = (
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
```
#### Block Level Group Offloading with CUDA Streams
We can speed up group offloading inference, by enabling the use of [CUDA streams](https://pytorch.org/docs/stable/generated/torch.cuda.Stream.html). However, using CUDA streams requires moving the model parameters into pinned memory. This allocation is handled by Pytorch under the hood, and can result in a significant spike in CPU RAM usage. Please consider this option if your CPU RAM is atleast 2X the size of the model you are group offloading.
In the following example we will use CUDA streams when group offloading the `WanTransformer3DModel`. When testing on an A100, this example will require 14GB of VRAM, 52GB of CPU RAM, but will generate a video in approximately 9 minutes.
```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel, CLIPVisionModel
# Available models: Wan-AI/Wan2.1-I2V-14B-480P-Diffusers, Wan-AI/Wan2.1-I2V-14B-720P-Diffusers
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
apply_group_offloading(text_encoder,
onload_device=onload_device,
offload_device=offload_device,
offload_type="block_level",
num_blocks_per_group=4
)
transformer.enable_group_offload(
onload_device=onload_device,
offload_device=offload_device,
offload_type="leaf_level",
use_stream=True
)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id,
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16
)
# Since we've offloaded the larger models alrady, we can move the rest of the model components to GPU
pipe.to("cuda")
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
)
max_area = 720 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
prompt = (
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
```
### Applying Layerwise Casting to the Transformer
Find more information about layerwise casting [here](../optimization/memory.md)
In this example, we will model offloading with layerwise casting. Layerwise casting will downcast each layer's weights to `torch.float8_e4m3fn`, temporarily upcast to `torch.bfloat16` during the forward pass of the layer, then revert to `torch.float8_e4m3fn` afterward. This approach reduces memory requirements by approximately 50% while introducing a minor quality reduction in the generated video due to the precision trade-off.
This example will require 20GB of VRAM.
```python
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanTransformer3DModel, WanImageToVideoPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel, CLIPVisionModel
model_id = "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
image_encoder = CLIPVisionModel.from_pretrained(
model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id,
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg")
max_area = 720 * 832
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
prompt = (
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
"the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
num_frames = 33
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=50,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "wan-i2v.mp4", fps=16)
```
## Using a Custom Scheduler
Wan can be used with many different schedulers, each with their own benefits regarding speed and generation quality. By default, Wan uses the `UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)` scheduler. You can use a different scheduler as follows:
```python
from diffusers import FlowMatchEulerDiscreteScheduler, UniPCMultistepScheduler, WanPipeline
scheduler_a = FlowMatchEulerDiscreteScheduler(shift=5.0)
scheduler_b = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=4.0)
pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", scheduler=<CUSTOM_SCHEDULER_HERE>)
# or,
pipe.scheduler = <CUSTOM_SCHEDULER_HERE>
```
## Using Single File Loading with Wan 2.1
The `WanTransformer3DModel` and `AutoencoderKLWan` models support loading checkpoints in their original format via the `from_single_file` loading
method.
```python
import torch
from diffusers import WanPipeline, WanTransformer3DModel
ckpt_path = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors"
transformer = WanTransformer3DModel.from_single_file(ckpt_path, torch_dtype=torch.bfloat16)
pipe = WanPipeline.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", transformer=transformer)
```
## Recommendations for Inference
- Keep `AutencoderKLWan` in `torch.float32` for better decoding quality.
- `num_frames` should satisfy the following constraint: `(num_frames - 1) % 4 == 0`
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution videos, try higher values (between `7.0` and `12.0`). The default value is `3.0` for Wan.
## WanPipeline
[[autodoc]] WanPipeline
- all
- __call__
## WanImageToVideoPipeline
[[autodoc]] WanImageToVideoPipeline
- all
- __call__
## WanPipelineOutput
[[autodoc]] pipelines.wan.pipeline_output.WanPipelineOutput

View File

@@ -12,10 +12,6 @@ specific language governing permissions and limitations under the License.
# Würstchen
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
<img src="https://github.com/dome272/Wuerstchen/assets/61938694/0617c863-165a-43ee-9303-2a17299a0cf9">
[Wuerstchen: An Efficient Architecture for Large-Scale Text-to-Image Diffusion Models](https://huggingface.co/papers/2306.00637) is by Pablo Pernias, Dominic Rampas, Mats L. Richter and Christopher Pal and Marc Aubreville.

View File

@@ -31,11 +31,6 @@ Learn how to quantize models in the [Quantization](../quantization/overview) gui
## GGUFQuantizationConfig
[[autodoc]] GGUFQuantizationConfig
## QuantoConfig
[[autodoc]] QuantoConfig
## TorchAoConfig
[[autodoc]] TorchAoConfig

View File

@@ -1,19 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# CogVideoXDDIMScheduler
`CogVideoXDDIMScheduler` is based on [Denoising Diffusion Implicit Models](https://huggingface.co/papers/2010.02502), specifically for CogVideoX models.
## CogVideoXDDIMScheduler
[[autodoc]] CogVideoXDDIMScheduler

View File

@@ -1,19 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# CogVideoXDPMScheduler
`CogVideoXDPMScheduler` is based on [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models](https://huggingface.co/papers/2211.01095), specifically for CogVideoX models.
## CogVideoXDPMScheduler
[[autodoc]] CogVideoXDPMScheduler

View File

@@ -16,11 +16,6 @@ specific language governing permissions and limitations under the License.
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
> [!TIP]
> This document has now grown outdated given the emergence of existing evaluation frameworks for diffusion models for image generation. Please check
> out works like [HEIM](https://crfm.stanford.edu/helm/heim/latest/), [T2I-Compbench](https://arxiv.org/abs/2307.06350),
> [GenEval](https://arxiv.org/abs/2310.11513).
Evaluation of generative models like [Stable Diffusion](https://huggingface.co/docs/diffusers/stable_diffusion) is subjective in nature. But as practitioners and researchers, we often have to make careful choices amongst many different possibilities. So, when working with different generative models (like GANs, Diffusion, etc.), how do we choose one over the other?
Qualitative evaluation of such models can be error-prone and might incorrectly influence a decision.

View File

@@ -1,9 +0,0 @@
# Hybrid Inference API Reference
## Remote Decode
[[autodoc]] utils.remote_utils.remote_decode
## Remote Encode
[[autodoc]] utils.remote_utils.remote_encode

View File

@@ -1,60 +0,0 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Hybrid Inference
**Empowering local AI builders with Hybrid Inference**
> [!TIP]
> Hybrid Inference is an [experimental feature](https://huggingface.co/blog/remote_vae).
> Feedback can be provided [here](https://github.com/huggingface/diffusers/issues/new?template=remote-vae-pilot-feedback.yml).
## Why use Hybrid Inference?
Hybrid Inference offers a fast and simple way to offload local generation requirements.
- 🚀 **Reduced Requirements:** Access powerful models without expensive hardware.
- 💎 **Without Compromise:** Achieve the highest quality without sacrificing performance.
- 💰 **Cost Effective:** It's free! 🤑
- 🎯 **Diverse Use Cases:** Fully compatible with Diffusers 🧨 and the wider community.
- 🔧 **Developer-Friendly:** Simple requests, fast responses.
---
## Available Models
* **VAE Decode 🖼️:** Quickly decode latent representations into high-quality images without compromising performance or workflow speed.
* **VAE Encode 🔢:** Efficiently encode images into latent representations for generation and training.
* **Text Encoders 📃 (coming soon):** Compute text embeddings for your prompts quickly and accurately, ensuring a smooth and high-quality workflow.
---
## Integrations
* **[SD.Next](https://github.com/vladmandic/sdnext):** All-in-one UI with direct supports Hybrid Inference.
* **[ComfyUI-HFRemoteVae](https://github.com/kijai/ComfyUI-HFRemoteVae):** ComfyUI node for Hybrid Inference.
## Changelog
- March 10 2025: Added VAE encode
- March 2 2025: Initial release with VAE decoding
## Contents
The documentation is organized into three sections:
* **VAE Decode** Learn the basics of how to use VAE Decode with Hybrid Inference.
* **VAE Encode** Learn the basics of how to use VAE Encode with Hybrid Inference.
* **API Reference** Dive into task-specific settings and parameters.

View File

@@ -1,345 +0,0 @@
# Getting Started: VAE Decode with Hybrid Inference
VAE decode is an essential component of diffusion models - turning latent representations into images or videos.
## Memory
These tables demonstrate the VRAM requirements for VAE decode with SD v1 and SD XL on different GPUs.
For the majority of these GPUs the memory usage % dictates other models (text encoders, UNet/Transformer) must be offloaded, or tiled decoding has to be used which increases time taken and impacts quality.
<details><summary>SD v1.5</summary>
| GPU | Resolution | Time (seconds) | Memory (%) | Tiled Time (secs) | Tiled Memory (%) |
| --- | --- | --- | --- | --- | --- |
| NVIDIA GeForce RTX 4090 | 512x512 | 0.031 | 5.60% | 0.031 (0%) | 5.60% |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.148 | 20.00% | 0.301 (+103%) | 5.60% |
| NVIDIA GeForce RTX 4080 | 512x512 | 0.05 | 8.40% | 0.050 (0%) | 8.40% |
| NVIDIA GeForce RTX 4080 | 1024x1024 | 0.224 | 30.00% | 0.356 (+59%) | 8.40% |
| NVIDIA GeForce RTX 4070 Ti | 512x512 | 0.066 | 11.30% | 0.066 (0%) | 11.30% |
| NVIDIA GeForce RTX 4070 Ti | 1024x1024 | 0.284 | 40.50% | 0.454 (+60%) | 11.40% |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.062 | 5.20% | 0.062 (0%) | 5.20% |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.253 | 18.50% | 0.464 (+83%) | 5.20% |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.07 | 12.80% | 0.070 (0%) | 12.80% |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.286 | 45.30% | 0.466 (+63%) | 12.90% |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.102 | 15.90% | 0.102 (0%) | 15.90% |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.421 | 56.30% | 0.746 (+77%) | 16.00% |
</details>
<details><summary>SDXL</summary>
| GPU | Resolution | Time (seconds) | Memory Consumed (%) | Tiled Time (seconds) | Tiled Memory (%) |
| --- | --- | --- | --- | --- | --- |
| NVIDIA GeForce RTX 4090 | 512x512 | 0.057 | 10.00% | 0.057 (0%) | 10.00% |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.256 | 35.50% | 0.257 (+0.4%) | 35.50% |
| NVIDIA GeForce RTX 4080 | 512x512 | 0.092 | 15.00% | 0.092 (0%) | 15.00% |
| NVIDIA GeForce RTX 4080 | 1024x1024 | 0.406 | 53.30% | 0.406 (0%) | 53.30% |
| NVIDIA GeForce RTX 4070 Ti | 512x512 | 0.121 | 20.20% | 0.120 (-0.8%) | 20.20% |
| NVIDIA GeForce RTX 4070 Ti | 1024x1024 | 0.519 | 72.00% | 0.519 (0%) | 72.00% |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.107 | 10.50% | 0.107 (0%) | 10.50% |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.459 | 38.00% | 0.460 (+0.2%) | 38.00% |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.121 | 25.60% | 0.121 (0%) | 25.60% |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.524 | 93.00% | 0.524 (0%) | 93.00% |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.183 | 31.80% | 0.183 (0%) | 31.80% |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.794 | 96.40% | 0.794 (0%) | 96.40% |
</details>
## Available VAEs
| | **Endpoint** | **Model** |
|:-:|:-----------:|:--------:|
| **Stable Diffusion v1** | [https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud](https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud) | [`stabilityai/sd-vae-ft-mse`](https://hf.co/stabilityai/sd-vae-ft-mse) |
| **Stable Diffusion XL** | [https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud](https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud) | [`madebyollin/sdxl-vae-fp16-fix`](https://hf.co/madebyollin/sdxl-vae-fp16-fix) |
| **Flux** | [https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud](https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud) | [`black-forest-labs/FLUX.1-schnell`](https://hf.co/black-forest-labs/FLUX.1-schnell) |
| **HunyuanVideo** | [https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud](https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud) | [`hunyuanvideo-community/HunyuanVideo`](https://hf.co/hunyuanvideo-community/HunyuanVideo) |
> [!TIP]
> Model support can be requested [here](https://github.com/huggingface/diffusers/issues/new?template=remote-vae-pilot-feedback.yml).
## Code
> [!TIP]
> Install `diffusers` from `main` to run the code: `pip install git+https://github.com/huggingface/diffusers@main`
A helper method simplifies interacting with Hybrid Inference.
```python
from diffusers.utils.remote_utils import remote_decode
```
### Basic example
Here, we show how to use the remote VAE on random tensors.
<details><summary>Code</summary>
```python
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=torch.randn([1, 4, 64, 64], dtype=torch.float16),
scaling_factor=0.18215,
)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/output.png"/>
</figure>
Usage for Flux is slightly different. Flux latents are packed so we need to send the `height` and `width`.
<details><summary>Code</summary>
```python
image = remote_decode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=torch.randn([1, 4096, 64], dtype=torch.float16),
height=1024,
width=1024,
scaling_factor=0.3611,
shift_factor=0.1159,
)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/flux_random_latent.png"/>
</figure>
Finally, an example for HunyuanVideo.
<details><summary>Code</summary>
```python
video = remote_decode(
endpoint="https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=torch.randn([1, 16, 3, 40, 64], dtype=torch.float16),
output_type="mp4",
)
with open("video.mp4", "wb") as f:
f.write(video)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<video
alt="queue.mp4"
autoplay loop autobuffer muted playsinline
>
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/video_1.mp4" type="video/mp4">
</video>
</figure>
### Generation
But we want to use the VAE on an actual pipeline to get an actual image, not random noise. The example below shows how to do it with SD v1.5.
<details><summary>Code</summary>
```python
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
variant="fp16",
vae=None,
).to("cuda")
prompt = "Strawberry ice cream, in a stylish modern glass, coconut, splashing milk cream and honey, in a gradient purple background, fluid motion, dynamic movement, cinematic lighting, Mysterious"
latent = pipe(
prompt=prompt,
output_type="latent",
).images
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.18215,
)
image.save("test.jpg")
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/test.jpg"/>
</figure>
Heres another example with Flux.
<details><summary>Code</summary>
```python
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=torch.bfloat16,
vae=None,
).to("cuda")
prompt = "Strawberry ice cream, in a stylish modern glass, coconut, splashing milk cream and honey, in a gradient purple background, fluid motion, dynamic movement, cinematic lighting, Mysterious"
latent = pipe(
prompt=prompt,
guidance_scale=0.0,
num_inference_steps=4,
output_type="latent",
).images
image = remote_decode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
height=1024,
width=1024,
scaling_factor=0.3611,
shift_factor=0.1159,
)
image.save("test.jpg")
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/test_1.jpg"/>
</figure>
Heres an example with HunyuanVideo.
<details><summary>Code</summary>
```python
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
model_id = "hunyuanvideo-community/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = HunyuanVideoPipeline.from_pretrained(
model_id, transformer=transformer, vae=None, torch_dtype=torch.float16
).to("cuda")
latent = pipe(
prompt="A cat walks on the grass, realistic",
height=320,
width=512,
num_frames=61,
num_inference_steps=30,
output_type="latent",
).frames
video = remote_decode(
endpoint="https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
output_type="mp4",
)
if isinstance(video, bytes):
with open("video.mp4", "wb") as f:
f.write(video)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<video
alt="queue.mp4"
autoplay loop autobuffer muted playsinline
>
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/video.mp4" type="video/mp4">
</video>
</figure>
### Queueing
One of the great benefits of using a remote VAE is that we can queue multiple generation requests. While the current latent is being processed for decoding, we can already queue another one. This helps improve concurrency.
<details><summary>Code</summary>
```python
import queue
import threading
from IPython.display import display
from diffusers import StableDiffusionPipeline
def decode_worker(q: queue.Queue):
while True:
item = q.get()
if item is None:
break
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=item,
scaling_factor=0.18215,
)
display(image)
q.task_done()
q = queue.Queue()
thread = threading.Thread(target=decode_worker, args=(q,), daemon=True)
thread.start()
def decode(latent: torch.Tensor):
q.put(latent)
prompts = [
"Blueberry ice cream, in a stylish modern glass , ice cubes, nuts, mint leaves, splashing milk cream, in a gradient purple background, fluid motion, dynamic movement, cinematic lighting, Mysterious",
"Lemonade in a glass, mint leaves, in an aqua and white background, flowers, ice cubes, halo, fluid motion, dynamic movement, soft lighting, digital painting, rule of thirds composition, Art by Greg rutkowski, Coby whitmore",
"Comic book art, beautiful, vintage, pastel neon colors, extremely detailed pupils, delicate features, light on face, slight smile, Artgerm, Mary Blair, Edmund Dulac, long dark locks, bangs, glowing, fashionable style, fairytale ambience, hot pink.",
"Masterpiece, vanilla cone ice cream garnished with chocolate syrup, crushed nuts, choco flakes, in a brown background, gold, cinematic lighting, Art by WLOP",
"A bowl of milk, falling cornflakes, berries, blueberries, in a white background, soft lighting, intricate details, rule of thirds, octane render, volumetric lighting",
"Cold Coffee with cream, crushed almonds, in a glass, choco flakes, ice cubes, wet, in a wooden background, cinematic lighting, hyper realistic painting, art by Carne Griffiths, octane render, volumetric lighting, fluid motion, dynamic movement, muted colors,",
]
pipe = StableDiffusionPipeline.from_pretrained(
"Lykon/dreamshaper-8",
torch_dtype=torch.float16,
vae=None,
).to("cuda")
pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
_ = pipe(
prompt=prompts[0],
output_type="latent",
)
for prompt in prompts:
latent = pipe(
prompt=prompt,
output_type="latent",
).images
decode(latent)
q.put(None)
thread.join()
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<video
alt="queue.mp4"
autoplay loop autobuffer muted playsinline
>
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/queue.mp4" type="video/mp4">
</video>
</figure>
## Integrations
* **[SD.Next](https://github.com/vladmandic/sdnext):** All-in-one UI with direct supports Hybrid Inference.
* **[ComfyUI-HFRemoteVae](https://github.com/kijai/ComfyUI-HFRemoteVae):** ComfyUI node for Hybrid Inference.

View File

@@ -1,183 +0,0 @@
# Getting Started: VAE Encode with Hybrid Inference
VAE encode is used for training, image-to-image and image-to-video - turning into images or videos into latent representations.
## Memory
These tables demonstrate the VRAM requirements for VAE encode with SD v1 and SD XL on different GPUs.
For the majority of these GPUs the memory usage % dictates other models (text encoders, UNet/Transformer) must be offloaded, or tiled encoding has to be used which increases time taken and impacts quality.
<details><summary>SD v1.5</summary>
| GPU | Resolution | Time (seconds) | Memory (%) | Tiled Time (secs) | Tiled Memory (%) |
|:------------------------------|:-------------|-----------------:|-------------:|--------------------:|-------------------:|
| NVIDIA GeForce RTX 4090 | 512x512 | 0.015 | 3.51901 | 0.015 | 3.51901 |
| NVIDIA GeForce RTX 4090 | 256x256 | 0.004 | 1.3154 | 0.005 | 1.3154 |
| NVIDIA GeForce RTX 4090 | 2048x2048 | 0.402 | 47.1852 | 0.496 | 3.51901 |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.078 | 12.2658 | 0.094 | 3.51901 |
| NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.023 | 5.30105 | 0.023 | 5.30105 |
| NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.006 | 1.98152 | 0.006 | 1.98152 |
| NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 0.574 | 71.08 | 0.656 | 5.30105 |
| NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.111 | 18.4772 | 0.14 | 5.30105 |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.032 | 3.52782 | 0.032 | 3.52782 |
| NVIDIA GeForce RTX 3090 | 256x256 | 0.01 | 1.31869 | 0.009 | 1.31869 |
| NVIDIA GeForce RTX 3090 | 2048x2048 | 0.742 | 47.3033 | 0.954 | 3.52782 |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.136 | 12.2965 | 0.207 | 3.52782 |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.036 | 8.51761 | 0.036 | 8.51761 |
| NVIDIA GeForce RTX 3080 | 256x256 | 0.01 | 3.18387 | 0.01 | 3.18387 |
| NVIDIA GeForce RTX 3080 | 2048x2048 | 0.863 | 86.7424 | 1.191 | 8.51761 |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.157 | 29.6888 | 0.227 | 8.51761 |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.051 | 10.6941 | 0.051 | 10.6941 |
| NVIDIA GeForce RTX 3070 | 256x256 | 0.015 | 3.99743 | 0.015 | 3.99743 |
| NVIDIA GeForce RTX 3070 | 2048x2048 | 1.217 | 96.054 | 1.482 | 10.6941 |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.223 | 37.2751 | 0.327 | 10.6941 |
</details>
<details><summary>SDXL</summary>
| GPU | Resolution | Time (seconds) | Memory Consumed (%) | Tiled Time (seconds) | Tiled Memory (%) |
|:------------------------------|:-------------|-----------------:|----------------------:|-----------------------:|-------------------:|
| NVIDIA GeForce RTX 4090 | 512x512 | 0.029 | 4.95707 | 0.029 | 4.95707 |
| NVIDIA GeForce RTX 4090 | 256x256 | 0.007 | 2.29666 | 0.007 | 2.29666 |
| NVIDIA GeForce RTX 4090 | 2048x2048 | 0.873 | 66.3452 | 0.863 | 15.5649 |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.142 | 15.5479 | 0.143 | 15.5479 |
| NVIDIA GeForce RTX 4080 SUPER | 512x512 | 0.044 | 7.46735 | 0.044 | 7.46735 |
| NVIDIA GeForce RTX 4080 SUPER | 256x256 | 0.01 | 3.4597 | 0.01 | 3.4597 |
| NVIDIA GeForce RTX 4080 SUPER | 2048x2048 | 1.317 | 87.1615 | 1.291 | 23.447 |
| NVIDIA GeForce RTX 4080 SUPER | 1024x1024 | 0.213 | 23.4215 | 0.214 | 23.4215 |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.058 | 5.65638 | 0.058 | 5.65638 |
| NVIDIA GeForce RTX 3090 | 256x256 | 0.016 | 2.45081 | 0.016 | 2.45081 |
| NVIDIA GeForce RTX 3090 | 2048x2048 | 1.755 | 77.8239 | 1.614 | 18.4193 |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.265 | 18.4023 | 0.265 | 18.4023 |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.064 | 13.6568 | 0.064 | 13.6568 |
| NVIDIA GeForce RTX 3080 | 256x256 | 0.018 | 5.91728 | 0.018 | 5.91728 |
| NVIDIA GeForce RTX 3080 | 2048x2048 | OOM | OOM | 1.866 | 44.4717 |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.302 | 44.4308 | 0.302 | 44.4308 |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.093 | 17.1465 | 0.093 | 17.1465 |
| NVIDIA GeForce RTX 3070 | 256x256 | 0.025 | 7.42931 | 0.026 | 7.42931 |
| NVIDIA GeForce RTX 3070 | 2048x2048 | OOM | OOM | 2.674 | 55.8355 |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.443 | 55.7841 | 0.443 | 55.7841 |
</details>
## Available VAEs
| | **Endpoint** | **Model** |
|:-:|:-----------:|:--------:|
| **Stable Diffusion v1** | [https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud](https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud) | [`stabilityai/sd-vae-ft-mse`](https://hf.co/stabilityai/sd-vae-ft-mse) |
| **Stable Diffusion XL** | [https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud](https://xjqqhmyn62rog84g.us-east-1.aws.endpoints.huggingface.cloud) | [`madebyollin/sdxl-vae-fp16-fix`](https://hf.co/madebyollin/sdxl-vae-fp16-fix) |
| **Flux** | [https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud](https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud) | [`black-forest-labs/FLUX.1-schnell`](https://hf.co/black-forest-labs/FLUX.1-schnell) |
> [!TIP]
> Model support can be requested [here](https://github.com/huggingface/diffusers/issues/new?template=remote-vae-pilot-feedback.yml).
## Code
> [!TIP]
> Install `diffusers` from `main` to run the code: `pip install git+https://github.com/huggingface/diffusers@main`
A helper method simplifies interacting with Hybrid Inference.
```python
from diffusers.utils.remote_utils import remote_encode
```
### Basic example
Let's encode an image, then decode it to demonstrate.
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"/>
</figure>
<details><summary>Code</summary>
```python
from diffusers.utils import load_image
from diffusers.utils.remote_utils import remote_decode
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg?download=true")
latent = remote_encode(
endpoint="https://ptccx55jz97f9zgo.us-east-1.aws.endpoints.huggingface.cloud/",
scaling_factor=0.3611,
shift_factor=0.1159,
)
decoded = remote_decode(
endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.3611,
shift_factor=0.1159,
)
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/decoded.png"/>
</figure>
### Generation
Now let's look at a generation example, we'll encode the image, generate then remotely decode too!
<details><summary>Code</summary>
```python
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.utils import load_image
from diffusers.utils.remote_utils import remote_decode, remote_encode
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
variant="fp16",
vae=None,
).to("cuda")
init_image = load_image(
"https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
init_latent = remote_encode(
endpoint="https://qc6479g0aac6qwy9.us-east-1.aws.endpoints.huggingface.cloud/",
image=init_image,
scaling_factor=0.18215,
)
prompt = "A fantasy landscape, trending on artstation"
latent = pipe(
prompt=prompt,
image=init_latent,
strength=0.75,
output_type="latent",
).images
image = remote_decode(
endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
tensor=latent,
scaling_factor=0.18215,
)
image.save("fantasy_landscape.jpg")
```
</details>
<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/fantasy_landscape.png"/>
</figure>
## Integrations
* **[SD.Next](https://github.com/vladmandic/sdnext):** All-in-one UI with direct supports Hybrid Inference.
* **[ComfyUI-HFRemoteVae](https://github.com/kijai/ComfyUI-HFRemoteVae):** ComfyUI node for Hybrid Inference.

View File

@@ -161,10 +161,10 @@ Your Python environment will find the `main` version of 🤗 Diffusers on the ne
Model weights and files are downloaded from the Hub to a cache which is usually your home directory. You can change the cache location by specifying the `HF_HOME` or `HUGGINFACE_HUB_CACHE` environment variables or configuring the `cache_dir` parameter in methods like [`~DiffusionPipeline.from_pretrained`].
Cached files allow you to run 🤗 Diffusers offline. To prevent 🤗 Diffusers from connecting to the internet, set the `HF_HUB_OFFLINE` environment variable to `1` and 🤗 Diffusers will only load previously downloaded files in the cache.
Cached files allow you to run 🤗 Diffusers offline. To prevent 🤗 Diffusers from connecting to the internet, set the `HF_HUB_OFFLINE` environment variable to `True` and 🤗 Diffusers will only load previously downloaded files in the cache.
```shell
export HF_HUB_OFFLINE=1
export HF_HUB_OFFLINE=True
```
For more details about managing and cleaning the cache, take a look at the [caching](https://huggingface.co/docs/huggingface_hub/guides/manage-cache) guide.
@@ -179,16 +179,14 @@ Telemetry is only sent when loading models and pipelines from the Hub,
and it is not collected if you're loading local files.
We understand that not everyone wants to share additional information,and we respect your privacy.
You can disable telemetry collection by setting the `HF_HUB_DISABLE_TELEMETRY` environment variable from your terminal:
You can disable telemetry collection by setting the `DISABLE_TELEMETRY` environment variable from your terminal:
On Linux/MacOS:
```bash
export HF_HUB_DISABLE_TELEMETRY=1
export DISABLE_TELEMETRY=YES
```
On Windows:
```bash
set HF_HUB_DISABLE_TELEMETRY=1
set DISABLE_TELEMETRY=YES
```

View File

@@ -198,18 +198,6 @@ export_to_video(video, "output.mp4", fps=8)
Group offloading (for CUDA devices with support for asynchronous data transfer streams) overlaps data transfer and computation to reduce the overall execution time compared to sequential offloading. This is enabled using layer prefetching with CUDA streams. The next layer to be executed is loaded onto the accelerator device while the current layer is being executed - this increases the memory requirements slightly. Group offloading also supports leaf-level offloading (equivalent to sequential CPU offloading) but can be made much faster when using streams.
<Tip>
- Group offloading may not work with all models out-of-the-box. If the forward implementations of the model contain weight-dependent device-casting of inputs, it may clash with the offloading mechanism's handling of device-casting.
- The `offload_type` parameter can be set to either `block_level` or `leaf_level`. `block_level` offloads groups of `torch::nn::ModuleList` or `torch::nn:Sequential` modules based on a configurable attribute `num_blocks_per_group`. For example, if you set `num_blocks_per_group=2` on a standard transformer model containing 40 layers, it will onload/offload 2 layers at a time for a total of 20 onload/offloads. This drastically reduces the VRAM requirements. `leaf_level` offloads individual layers at the lowest level, which is equivalent to sequential offloading. However, unlike sequential offloading, group offloading can be made much faster when using streams, with minimal compromise to end-to-end generation time.
- The `use_stream` parameter can be used with CUDA devices to enable prefetching layers for onload. It defaults to `False`. Layer prefetching allows overlapping computation and data transfer of model weights, which drastically reduces the overall execution time compared to other offloading methods. However, it can increase the CPU RAM usage significantly. Ensure that available CPU RAM that is at least twice the size of the model when setting `use_stream=True`. You can find more information about CUDA streams [here](https://pytorch.org/docs/stable/generated/torch.cuda.Stream.html)
- If specifying `use_stream=True` on VAEs with tiling enabled, make sure to do a dummy forward pass (possibly with dummy inputs) before the actual inference to avoid device-mismatch errors. This may not work on all implementations. Please open an issue if you encounter any problems.
- The parameter `low_cpu_mem_usage` can be set to `True` to reduce CPU memory usage when using streams for group offloading. This is useful when the CPU memory is the bottleneck, but it may counteract the benefits of using streams and increase the overall execution time. The CPU memory savings come from creating pinned-tensors on-the-fly instead of pre-pinning them. This parameter is better suited for using `leaf_level` offloading.
For more information about available parameters and an explanation of how group offloading works, refer to [`~hooks.group_offloading.apply_group_offloading`].
</Tip>
## FP8 layerwise weight-casting
PyTorch supports `torch.float8_e4m3fn` and `torch.float8_e5m2` as weight storage dtypes, but they can't be used for computation in many different tensor operations due to unimplemented kernel support. However, you can use these dtypes to store model weights in fp8 precision and upcast them on-the-fly when the layers are used in the forward pass. This is known as layerwise weight-casting.
@@ -247,14 +235,6 @@ In the above example, layerwise casting is enabled on the transformer component
However, you gain more control and flexibility by directly utilizing the [`~hooks.layerwise_casting.apply_layerwise_casting`] function instead of [`~ModelMixin.enable_layerwise_casting`].
<Tip>
- Layerwise casting may not work with all models out-of-the-box. Sometimes, the forward implementations of the model might contain internal typecasting of weight values. Such implementations are not supported due to the currently simplistic implementation of layerwise casting, which assumes that the forward pass is independent of the weight precision and that the input dtypes are always in `compute_dtype`. An example of an incompatible implementation can be found [here](https://github.com/huggingface/transformers/blob/7f5077e53682ca855afc826162b204ebf809f1f9/src/transformers/models/t5/modeling_t5.py#L294-L299).
- Layerwise casting may fail on custom modeling implementations that make use of [PEFT](https://github.com/huggingface/peft) layers. Some minimal checks to handle this case is implemented but is not extensively tested or guaranteed to work in all cases.
- It can be also be applied partially to specific layers of a model. Partially applying layerwise casting can either be done manually by calling the `apply_layerwise_casting` function on specific internal modules, or by specifying the `skip_modules_pattern` and `skip_modules_classes` parameters for a root module. These parameters are particularly useful for layers such as normalization and modulation.
</Tip>
## Channels-last memory format
The channels-last memory format is an alternative way of ordering NCHW tensors in memory to preserve dimension ordering. Channels-last tensors are ordered in such a way that the channels become the densest dimension (storing images pixel-per-pixel). Since not all operators currently support the channels-last format, it may result in worst performance but you should still try and see if it works for your model.

View File

@@ -36,6 +36,5 @@ Diffusers currently supports the following quantization methods.
- [BitsandBytes](./bitsandbytes)
- [TorchAO](./torchao)
- [GGUF](./gguf)
- [Quanto](./quanto.md)
[This resource](https://huggingface.co/docs/transformers/main/en/quantization/overview#when-to-use-what) provides a good overview of the pros and cons of different quantization techniques.

View File

@@ -1,148 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Quanto
[Quanto](https://github.com/huggingface/optimum-quanto) is a PyTorch quantization backend for [Optimum](https://huggingface.co/docs/optimum/en/index). It has been designed with versatility and simplicity in mind:
- All features are available in eager mode (works with non-traceable models)
- Supports quantization aware training
- Quantized models are compatible with `torch.compile`
- Quantized models are Device agnostic (e.g CUDA,XPU,MPS,CPU)
In order to use the Quanto backend, you will first need to install `optimum-quanto>=0.2.6` and `accelerate`
```shell
pip install optimum-quanto accelerate
```
Now you can quantize a model by passing the `QuantoConfig` object to the `from_pretrained()` method. Although the Quanto library does allow quantizing `nn.Conv2d` and `nn.LayerNorm` modules, currently, Diffusers only supports quantizing the weights in the `nn.Linear` layers of a model. The following snippet demonstrates how to apply `float8` quantization with Quanto.
```python
import torch
from diffusers import FluxTransformer2DModel, QuantoConfig
model_id = "black-forest-labs/FLUX.1-dev"
quantization_config = QuantoConfig(weights_dtype="float8")
transformer = FluxTransformer2DModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
pipe = FluxPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch_dtype)
pipe.to("cuda")
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt, num_inference_steps=50, guidance_scale=4.5, max_sequence_length=512
).images[0]
image.save("output.png")
```
## Skipping Quantization on specific modules
It is possible to skip applying quantization on certain modules using the `modules_to_not_convert` argument in the `QuantoConfig`. Please ensure that the modules passed in to this argument match the keys of the modules in the `state_dict`
```python
import torch
from diffusers import FluxTransformer2DModel, QuantoConfig
model_id = "black-forest-labs/FLUX.1-dev"
quantization_config = QuantoConfig(weights_dtype="float8", modules_to_not_convert=["proj_out"])
transformer = FluxTransformer2DModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
```
## Using `from_single_file` with the Quanto Backend
`QuantoConfig` is compatible with `~FromOriginalModelMixin.from_single_file`.
```python
import torch
from diffusers import FluxTransformer2DModel, QuantoConfig
ckpt_path = "https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/flux1-dev.safetensors"
quantization_config = QuantoConfig(weights_dtype="float8")
transformer = FluxTransformer2DModel.from_single_file(ckpt_path, quantization_config=quantization_config, torch_dtype=torch.bfloat16)
```
## Saving Quantized models
Diffusers supports serializing Quanto models using the `~ModelMixin.save_pretrained` method.
The serialization and loading requirements are different for models quantized directly with the Quanto library and models quantized
with Diffusers using Quanto as the backend. It is currently not possible to load models quantized directly with Quanto into Diffusers using `~ModelMixin.from_pretrained`
```python
import torch
from diffusers import FluxTransformer2DModel, QuantoConfig
model_id = "black-forest-labs/FLUX.1-dev"
quantization_config = QuantoConfig(weights_dtype="float8")
transformer = FluxTransformer2DModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
# save quantized model to reuse
transformer.save_pretrained("<your quantized model save path>")
# you can reload your quantized model with
model = FluxTransformer2DModel.from_pretrained("<your quantized model save path>")
```
## Using `torch.compile` with Quanto
Currently the Quanto backend supports `torch.compile` for the following quantization types:
- `int8` weights
```python
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel, QuantoConfig
model_id = "black-forest-labs/FLUX.1-dev"
quantization_config = QuantoConfig(weights_dtype="int8")
transformer = FluxTransformer2DModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
transformer = torch.compile(transformer, mode="max-autotune", fullgraph=True)
pipe = FluxPipeline.from_pretrained(
model_id, transformer=transformer, torch_dtype=torch_dtype
)
pipe.to("cuda")
images = pipe("A cat holding a sign that says hello").images[0]
images.save("flux-quanto-compile.png")
```
## Supported Quantization Types
### Weights
- float8
- int8
- int4
- int2

View File

@@ -126,7 +126,7 @@ image = pipe(prompt, num_inference_steps=30, guidance_scale=7.0).images[0]
image.save("output.png")
```
If you are using `torch<=2.6.0`, some quantization methods, such as `uint4wo`, cannot be loaded directly and may result in an `UnpicklingError` when trying to load the models, but work as expected when saving them. In order to work around this, one can load the state dict manually into the model. Note, however, that this requires using `weights_only=False` in `torch.load`, so it should be run only if the weights were obtained from a trustable source.
Some quantization methods, such as `uint4wo`, cannot be loaded directly and may result in an `UnpicklingError` when trying to load the models, but work as expected when saving them. In order to work around this, one can load the state dict manually into the model. Note, however, that this requires using `weights_only=False` in `torch.load`, so it should be run only if the weights were obtained from a trustable source.
```python
import torch

View File

@@ -157,84 +157,6 @@ pipeline(
)
```
## IP Adapter Cutoff
IP Adapter is an image prompt adapter that can be used for diffusion models without any changes to the underlying model. We can use the IP Adapter Cutoff Callback to disable the IP Adapter after a certain number of steps. To set up the callback, you need to specify the number of denoising steps after which the callback comes into effect. You can do so by using either one of these two arguments:
- `cutoff_step_ratio`: Float number with the ratio of the steps.
- `cutoff_step_index`: Integer number with the exact number of the step.
We need to download the diffusion model and load the ip_adapter for it as follows:
```py
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
pipeline.set_ip_adapter_scale(0.6)
```
The setup for the callback should look something like this:
```py
from diffusers import AutoPipelineForText2Image
from diffusers.callbacks import IPAdapterScaleCutoffCallback
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.6)
callback = IPAdapterScaleCutoffCallback(
cutoff_step_ratio=None,
cutoff_step_index=5
)
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png"
)
generator = torch.Generator(device="cuda").manual_seed(2628670641)
images = pipeline(
prompt="a tiger sitting in a chair drinking orange juice",
ip_adapter_image=image,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
generator=generator,
num_inference_steps=50,
callback_on_step_end=callback,
).images
images[0].save("custom_callback_img.png")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/without_callback.png" alt="generated image of a tiger sitting in a chair drinking orange juice" />
<figcaption class="mt-2 text-center text-sm text-gray-500">without IPAdapterScaleCutoffCallback</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/with_callback2.png" alt="generated image of a tiger sitting in a chair drinking orange juice with ip adapter callback" />
<figcaption class="mt-2 text-center text-sm text-gray-500">with IPAdapterScaleCutoffCallback</figcaption>
</div>
</div>
## Display image after each generation step
> [!TIP]

View File

@@ -95,23 +95,6 @@ Use the Space below to gauge a pipeline's memory requirements before you downloa
></iframe>
</div>
### Specifying Component-Specific Data Types
You can customize the data types for individual sub-models by passing a dictionary to the `torch_dtype` parameter. This allows you to load different components of a pipeline in different floating point precisions. For instance, if you want to load the transformer with `torch.bfloat16` and all other components with `torch.float16`, you can pass a dictionary mapping:
```python
from diffusers import HunyuanVideoPipeline
import torch
pipe = HunyuanVideoPipeline.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
torch_dtype={'transformer': torch.bfloat16, 'default': torch.float16},
)
print(pipe.transformer.dtype, pipe.vae.dtype) # (torch.bfloat16, torch.float16)
```
If a component is not explicitly specified in the dictionary and no `default` is provided, it will be loaded with `torch.float32`.
### Local pipeline
To load a pipeline locally, use [git-lfs](https://git-lfs.github.com/) to manually download a checkpoint to your local disk.

View File

@@ -1,6 +1,4 @@
<!--
Copyright 2023-2025 Marigold Team, ETH Zürich. All rights reserved.
Copyright 2024-2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 Marigold authors and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -12,38 +10,31 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Marigold Computer Vision
# Marigold Pipelines for Computer Vision Tasks
**Marigold** is a diffusion-based [method](https://huggingface.co/papers/2312.02145) and a collection of [pipelines](../api/pipelines/marigold) designed for
dense computer vision tasks, including **monocular depth prediction**, **surface normals estimation**, and **intrinsic
image decomposition**.
[Marigold](../api/pipelines/marigold) is a novel diffusion-based dense prediction approach, and a set of pipelines for various computer vision tasks, such as monocular depth estimation.
This guide will walk you through using Marigold to generate fast and high-quality predictions for images and videos.
This guide will show you how to use Marigold to obtain fast and high-quality predictions for images and videos.
Each pipeline is tailored for a specific computer vision task, processing an input RGB image and generating a
corresponding prediction.
Currently, the following computer vision tasks are implemented:
Each pipeline supports one Computer Vision task, which takes an input RGB image as input and produces a *prediction* of the modality of interest, such as a depth map of the input image.
Currently, the following tasks are implemented:
| Pipeline | Recommended Model Checkpoints | Spaces (Interactive Apps) | Predicted Modalities |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------:|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [MarigoldDepthPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py) | [prs-eth/marigold-depth-v1-1](https://huggingface.co/prs-eth/marigold-depth-v1-1) | [Depth Estimation](https://huggingface.co/spaces/prs-eth/marigold) | [Depth](https://en.wikipedia.org/wiki/Depth_map), [Disparity](https://en.wikipedia.org/wiki/Binocular_disparity) |
| [MarigoldNormalsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_normals.py) | [prs-eth/marigold-normals-v1-1](https://huggingface.co/prs-eth/marigold-normals-v1-1) | [Surface Normals Estimation](https://huggingface.co/spaces/prs-eth/marigold-normals) | [Surface normals](https://en.wikipedia.org/wiki/Normal_mapping) |
| [MarigoldIntrinsicsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py) | [prs-eth/marigold-iid-appearance-v1-1](https://huggingface.co/prs-eth/marigold-iid-appearance-v1-1),<br>[prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | [Intrinsic Image Decomposition](https://huggingface.co/spaces/prs-eth/marigold-iid) | [Albedo](https://en.wikipedia.org/wiki/Albedo), [Materials](https://www.n.aiq3d.com/wiki/roughnessmetalnessao-map), [Lighting](https://en.wikipedia.org/wiki/Diffuse_reflection) |
| Pipeline | Predicted Modalities | Demos |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------:|
| [MarigoldDepthPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py) | [Depth](https://en.wikipedia.org/wiki/Depth_map), [Disparity](https://en.wikipedia.org/wiki/Binocular_disparity) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-lcm), [Slow Original Demo (DDIM)](https://huggingface.co/spaces/prs-eth/marigold) |
| [MarigoldNormalsPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/marigold/pipeline_marigold_normals.py) | [Surface normals](https://en.wikipedia.org/wiki/Normal_mapping) | [Fast Demo (LCM)](https://huggingface.co/spaces/prs-eth/marigold-normals-lcm) |
All original checkpoints are available under the [PRS-ETH](https://huggingface.co/prs-eth/) organization on Hugging Face.
They are designed for use with diffusers pipelines and the [original codebase](https://github.com/prs-eth/marigold), which can also be used to train
new model checkpoints.
The following is a summary of the recommended checkpoints, all of which produce reliable results with 1 to 4 steps.
The original checkpoints can be found under the [PRS-ETH](https://huggingface.co/prs-eth/) Hugging Face organization.
These checkpoints are meant to work with diffusers pipelines and the [original codebase](https://github.com/prs-eth/marigold).
The original code can also be used to train new checkpoints.
| Checkpoint | Modality | Comment |
|-----------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [prs-eth/marigold-depth-v1-1](https://huggingface.co/prs-eth/marigold-depth-v1-1) | Depth | Affine-invariant depth prediction assigns each pixel a value between 0 (near plane) and 1 (far plane), with both planes determined by the model during inference. |
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | The surface normals predictions are unit-length 3D vectors in the screen space camera, with values in the range from -1 to 1. |
| [prs-eth/marigold-iid-appearance-v1-1](https://huggingface.co/prs-eth/marigold-iid-appearance-v1-1) | Intrinsics | InteriorVerse decomposition is comprised of Albedo and two BRDF material properties: Roughness and Metallicity. |
| [prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | Intrinsics | HyperSim decomposition of an image \\(I\\) is comprised of Albedo \\(A\\), Diffuse shading \\(S\\), and Non-diffuse residual \\(R\\): \\(I = A*S+R\\). |
The examples below are mostly given for depth prediction, but they can be universally applied to other supported
modalities.
| Checkpoint | Modality | Comment |
|-----------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [prs-eth/marigold-v1-0](https://huggingface.co/prs-eth/marigold-v1-0) | Depth | The first Marigold Depth checkpoint, which predicts *affine-invariant depth* maps. The performance of this checkpoint in benchmarks was studied in the original [paper](https://huggingface.co/papers/2312.02145). Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. Affine-invariant depth prediction has a range of values in each pixel between 0 (near plane) and 1 (far plane); both planes are chosen by the model as part of the inference process. See the `MarigoldImageProcessor` reference for visualization utilities. |
| [prs-eth/marigold-depth-lcm-v1-0](https://huggingface.co/prs-eth/marigold-depth-lcm-v1-0) | Depth | The fast Marigold Depth checkpoint, fine-tuned from `prs-eth/marigold-v1-0`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. |
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | A preview checkpoint for the Marigold Normals pipeline. Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. The surface normals predictions are unit-length 3D vectors with values in the range from -1 to 1. *This checkpoint will be phased out after the release of `v1-0` version.* |
| [prs-eth/marigold-normals-lcm-v0-1](https://huggingface.co/prs-eth/marigold-normals-lcm-v0-1) | Normals | The fast Marigold Normals checkpoint, fine-tuned from `prs-eth/marigold-normals-v0-1`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. *This checkpoint will be phased out after the release of `v1-0` version.* |
The examples below are mostly given for depth prediction, but they can be universally applied with other supported modalities.
We showcase the predictions using the same input image of Albert Einstein generated by Midjourney.
This makes it easier to compare visualizations of the predictions across various modalities and checkpoints.
@@ -56,21 +47,19 @@ This makes it easier to compare visualizations of the predictions across various
</div>
</div>
## Depth Prediction
### Depth Prediction Quick Start
To get a depth prediction, load the `prs-eth/marigold-depth-v1-1` checkpoint into [`MarigoldDepthPipeline`],
put the image through the pipeline, and save the predictions:
To get the first depth prediction, load `prs-eth/marigold-depth-lcm-v1-0` checkpoint into `MarigoldDepthPipeline` pipeline, put the image through the pipeline, and save the predictions:
```python
import diffusers
import torch
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-v1-1", variant="fp16", torch_dtype=torch.float16
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(image)
vis = pipe.image_processor.visualize_depth(depth.prediction)
@@ -80,13 +69,10 @@ depth_16bit = pipe.image_processor.export_depth_to_16bit_png(depth.prediction)
depth_16bit[0].save("einstein_depth_16bit.png")
```
The [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_depth`] function applies one of
[matplotlib's colormaps](https://matplotlib.org/stable/users/explain/colors/colormaps.html) (`Spectral` by default) to map the predicted pixel values from a single-channel `[0, 1]`
depth range into an RGB image.
With the `Spectral` colormap, pixels with near depth are painted red, and far pixels are blue.
The visualization function for depth [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_depth`] applies one of [matplotlib's colormaps](https://matplotlib.org/stable/users/explain/colors/colormaps.html) (`Spectral` by default) to map the predicted pixel values from a single-channel `[0, 1]` depth range into an RGB image.
With the `Spectral` colormap, pixels with near depth are painted red, and far pixels are assigned blue color.
The 16-bit PNG file stores the single channel values mapped linearly from the `[0, 1]` range into `[0, 65535]`.
Below are the raw and the visualized predictions. The darker and closer areas (mustache) are easier to distinguish in
the visualization.
Below are the raw and the visualized predictions; as can be seen, dark areas (mustache) are easier to distinguish in the visualization:
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
@@ -103,33 +89,28 @@ the visualization.
</div>
</div>
## Surface Normals Estimation
### Surface Normals Prediction Quick Start
Load the `prs-eth/marigold-normals-v1-1` checkpoint into [`MarigoldNormalsPipeline`], put the image through the
pipeline, and save the predictions:
Load `prs-eth/marigold-normals-lcm-v0-1` checkpoint into `MarigoldNormalsPipeline` pipeline, put the image through the pipeline, and save the predictions:
```python
import diffusers
import torch
pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(
"prs-eth/marigold-normals-v1-1", variant="fp16", torch_dtype=torch.float16
"prs-eth/marigold-normals-lcm-v0-1", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
normals = pipe(image)
vis = pipe.image_processor.visualize_normals(normals.prediction)
vis[0].save("einstein_normals.png")
```
The [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_normals`] maps the three-dimensional
prediction with pixel values in the range `[-1, 1]` into an RGB image.
The visualization function supports flipping surface normals axes to make the visualization compatible with other
choices of the frame of reference.
Conceptually, each pixel is painted according to the surface normal vector in the frame of reference, where `X` axis
points right, `Y` axis points up, and `Z` axis points at the viewer.
The visualization function for normals [`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_normals`] maps the three-dimensional prediction with pixel values in the range `[-1, 1]` into an RGB image.
The visualization function supports flipping surface normals axes to make the visualization compatible with other choices of the frame of reference.
Conceptually, each pixel is painted according to the surface normal vector in the frame of reference, where `X` axis points right, `Y` axis points up, and `Z` axis points at the viewer.
Below is the visualized prediction:
<div class="flex gap-4" style="justify-content: center; width: 100%;">
@@ -141,121 +122,25 @@ Below is the visualized prediction:
</div>
</div>
In this example, the nose tip almost certainly has a point on the surface, in which the surface normal vector points
straight at the viewer, meaning that its coordinates are `[0, 0, 1]`.
In this example, the nose tip almost certainly has a point on the surface, in which the surface normal vector points straight at the viewer, meaning that its coordinates are `[0, 0, 1]`.
This vector maps to the RGB `[128, 128, 255]`, which corresponds to the violet-blue color.
Similarly, a surface normal on the cheek in the right part of the image has a large `X` component, which increases the
red hue.
Similarly, a surface normal on the cheek in the right part of the image has a large `X` component, which increases the red hue.
Points on the shoulders pointing up with a large `Y` promote green color.
## Intrinsic Image Decomposition
### Speeding up inference
Marigold provides two models for Intrinsic Image Decomposition (IID): "Appearance" and "Lighting".
Each model produces Albedo maps, derived from InteriorVerse and Hypersim annotations, respectively.
- The "Appearance" model also estimates Material properties: Roughness and Metallicity.
- The "Lighting" model generates Diffuse Shading and Non-diffuse Residual.
Here is the sample code saving predictions made by the "Appearance" model:
```python
import diffusers
import torch
pipe = diffusers.MarigoldIntrinsicsPipeline.from_pretrained(
"prs-eth/marigold-iid-appearance-v1-1", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
intrinsics = pipe(image)
vis = pipe.image_processor.visualize_intrinsics(intrinsics.prediction, pipe.target_properties)
vis[0]["albedo"].save("einstein_albedo.png")
vis[0]["roughness"].save("einstein_roughness.png")
vis[0]["metallicity"].save("einstein_metallicity.png")
```
Another example demonstrating the predictions made by the "Lighting" model:
```python
import diffusers
import torch
pipe = diffusers.MarigoldIntrinsicsPipeline.from_pretrained(
"prs-eth/marigold-iid-lighting-v1-1", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
intrinsics = pipe(image)
vis = pipe.image_processor.visualize_intrinsics(intrinsics.prediction, pipe.target_properties)
vis[0]["albedo"].save("einstein_albedo.png")
vis[0]["shading"].save("einstein_shading.png")
vis[0]["residual"].save("einstein_residual.png")
```
Both models share the same pipeline while supporting different decomposition types.
The exact decomposition parameterization (e.g., sRGB vs. linear space) is stored in the
`pipe.target_properties` dictionary, which is passed into the
[`~pipelines.marigold.marigold_image_processing.MarigoldImageProcessor.visualize_intrinsics`] function.
Below are some examples showcasing the predicted decomposition outputs.
All modalities can be inspected in the
[Intrinsic Image Decomposition](https://huggingface.co/spaces/prs-eth/marigold-iid) Space.
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/8c7986eaaab5eb9604eb88336311f46a7b0ff5ab/marigold/marigold_einstein_albedo.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted albedo ("Appearance" model)
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/8c7986eaaab5eb9604eb88336311f46a7b0ff5ab/marigold/marigold_einstein_diffuse.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted diffuse shading ("Lighting" model)
</figcaption>
</div>
</div>
## Speeding up inference
The above quick start snippets are already optimized for quality and speed, loading the checkpoint, utilizing the
`fp16` variant of weights and computation, and performing the default number (4) of denoising diffusion steps.
The first step to accelerate inference, at the expense of prediction quality, is to reduce the denoising diffusion
steps to the minimum:
The above quick start snippets are already optimized for speed: they load the LCM checkpoint, use the `fp16` variant of weights and computation, and perform just one denoising diffusion step.
The `pipe(image)` call completes in 280ms on RTX 3090 GPU.
Internally, the input image is encoded with the Stable Diffusion VAE encoder, then the U-Net performs one denoising step, and finally, the prediction latent is decoded with the VAE decoder into pixel space.
In this case, two out of three module calls are dedicated to converting between pixel and latent space of LDM.
Because Marigold's latent space is compatible with the base Stable Diffusion, it is possible to speed up the pipeline call by more than 3x (85ms on RTX 3090) by using a [lightweight replacement of the SD VAE](../api/models/autoencoder_tiny):
```diff
import diffusers
import torch
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-v1-1", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
- depth = pipe(image)
+ depth = pipe(image, num_inference_steps=1)
```
With this change, the `pipe` call completes in 280ms on RTX 3090 GPU.
Internally, the input image is first encoded using the Stable Diffusion VAE encoder, followed by a single denoising
step performed by the U-Net.
Finally, the prediction latent is decoded with the VAE decoder into pixel space.
In this setup, two out of three module calls are dedicated to converting between the pixel and latent spaces of the LDM.
Since Marigold's latent space is compatible with Stable Diffusion 2.0, inference can be accelerated by more than 3x,
reducing the call time to 85ms on an RTX 3090, by using a [lightweight replacement of the SD VAE](../api/models/autoencoder_tiny).
Note that using a lightweight VAE may slightly reduce the visual quality of the predictions.
```diff
import diffusers
import torch
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-v1-1", variant="fp16", torch_dtype=torch.float16
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to("cuda")
+ pipe.vae = diffusers.AutoencoderTiny.from_pretrained(
@@ -263,77 +148,78 @@ Note that using a lightweight VAE may slightly reduce the visual quality of the
+ ).cuda()
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(image, num_inference_steps=1)
depth = pipe(image)
```
So far, we have optimized the number of diffusion steps and model components. Self-attention operations account for a
significant portion of computations.
Speeding them up can be achieved by using a more efficient attention processor:
As suggested in [Optimizations](../optimization/torch2.0#torch.compile), adding `torch.compile` may squeeze extra performance depending on the target hardware:
```diff
import diffusers
import torch
+ from diffusers.models.attention_processor import AttnProcessor2_0
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-v1-1", variant="fp16", torch_dtype=torch.float16
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to("cuda")
+ pipe.vae.set_attn_processor(AttnProcessor2_0())
+ pipe.unet.set_attn_processor(AttnProcessor2_0())
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(image, num_inference_steps=1)
```
Finally, as suggested in [Optimizations](../optimization/torch2.0#torch.compile), enabling `torch.compile` can further enhance performance depending on
the target hardware.
However, compilation incurs a significant overhead during the first pipeline invocation, making it beneficial only when
the same pipeline instance is called repeatedly, such as within a loop.
```diff
import diffusers
import torch
from diffusers.models.attention_processor import AttnProcessor2_0
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-v1-1", variant="fp16", torch_dtype=torch.float16
).to("cuda")
pipe.vae.set_attn_processor(AttnProcessor2_0())
pipe.unet.set_attn_processor(AttnProcessor2_0())
+ pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(image, num_inference_steps=1)
depth = pipe(image)
```
## Qualitative Comparison with Depth Anything
With the above speed optimizations, Marigold delivers predictions with more details and faster than [Depth Anything](https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything) with the largest checkpoint [LiheYoung/depth-anything-large-hf](https://huggingface.co/LiheYoung/depth-anything-large-hf):
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Marigold LCM fp16 with Tiny AutoEncoder
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/einstein_depthanything_large.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth Anything Large
</figcaption>
</div>
</div>
## Maximizing Precision and Ensembling
Marigold pipelines have a built-in ensembling mechanism combining multiple predictions from different random latents.
This is a brute-force way of improving the precision of predictions, capitalizing on the generative nature of diffusion.
The ensembling path is activated automatically when the `ensemble_size` argument is set greater or equal than `3`.
The ensembling path is activated automatically when the `ensemble_size` argument is set greater than `1`.
When aiming for maximum precision, it makes sense to adjust `num_inference_steps` simultaneously with `ensemble_size`.
The recommended values vary across checkpoints but primarily depend on the scheduler type.
The effect of ensembling is particularly well-seen with surface normals:
```diff
import diffusers
```python
import diffusers
pipe = diffusers.MarigoldNormalsPipeline.from_pretrained("prs-eth/marigold-normals-v1-1").to("cuda")
model_path = "prs-eth/marigold-normals-v1-0"
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
model_paper_kwargs = {
diffusers.schedulers.DDIMScheduler: {
"num_inference_steps": 10,
"ensemble_size": 10,
},
diffusers.schedulers.LCMScheduler: {
"num_inference_steps": 4,
"ensemble_size": 5,
},
}
- depth = pipe(image)
+ depth = pipe(image, num_inference_steps=10, ensemble_size=5)
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
vis = pipe.image_processor.visualize_normals(depth.prediction)
vis[0].save("einstein_normals.png")
pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(model_path).to("cuda")
pipe_kwargs = model_paper_kwargs[type(pipe.scheduler)]
depth = pipe(image, **pipe_kwargs)
vis = pipe.image_processor.visualize_normals(depth.prediction)
vis[0].save("einstein_normals.png")
```
<div class="flex gap-4">
@@ -351,16 +237,93 @@ The effect of ensembling is particularly well-seen with surface normals:
</div>
</div>
As can be seen, all areas with fine-grained structurers, such as hair, got more conservative and on average more
correct predictions.
As can be seen, all areas with fine-grained structurers, such as hair, got more conservative and on average more correct predictions.
Such a result is more suitable for precision-sensitive downstream tasks, such as 3D reconstruction.
## Quantitative Evaluation
To evaluate Marigold quantitatively in standard leaderboards and benchmarks (such as NYU, KITTI, and other datasets), follow the evaluation protocol outlined in the paper: load the full precision fp32 model and use appropriate values for `num_inference_steps` and `ensemble_size`.
Optionally seed randomness to ensure reproducibility. Maximizing `batch_size` will deliver maximum device utilization.
```python
import diffusers
import torch
device = "cuda"
seed = 2024
model_path = "prs-eth/marigold-v1-0"
model_paper_kwargs = {
diffusers.schedulers.DDIMScheduler: {
"num_inference_steps": 50,
"ensemble_size": 10,
},
diffusers.schedulers.LCMScheduler: {
"num_inference_steps": 4,
"ensemble_size": 10,
},
}
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
generator = torch.Generator(device=device).manual_seed(seed)
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(model_path).to(device)
pipe_kwargs = model_paper_kwargs[type(pipe.scheduler)]
depth = pipe(image, generator=generator, **pipe_kwargs)
# evaluate metrics
```
## Using Predictive Uncertainty
The ensembling mechanism built into Marigold pipelines combines multiple predictions obtained from different random latents.
As a side effect, it can be used to quantify epistemic (model) uncertainty; simply specify `ensemble_size` greater than 1 and set `output_uncertainty=True`.
The resulting uncertainty will be available in the `uncertainty` field of the output.
It can be visualized as follows:
```python
import diffusers
import torch
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(
image,
ensemble_size=10, # any number greater than 1; higher values yield higher precision
output_uncertainty=True,
)
uncertainty = pipe.image_processor.visualize_uncertainty(depth.uncertainty)
uncertainty[0].save("einstein_depth_uncertainty.png")
```
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_depth_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth uncertainty
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals uncertainty
</figcaption>
</div>
</div>
The interpretation of uncertainty is easy: higher values (white) correspond to pixels, where the model struggles to make consistent predictions.
Evidently, the depth model is the least confident around edges with discontinuity, where the object depth changes drastically.
The surface normals model is the least confident in fine-grained structures, such as hair, and dark areas, such as the collar.
## Frame-by-frame Video Processing with Temporal Consistency
Due to Marigold's generative nature, each prediction is unique and defined by the random noise sampled for the latent
initialization.
This becomes an obvious drawback compared to traditional end-to-end dense regression networks, as exemplified in the
following videos:
Due to Marigold's generative nature, each prediction is unique and defined by the random noise sampled for the latent initialization.
This becomes an obvious drawback compared to traditional end-to-end dense regression networks, as exemplified in the following videos:
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
@@ -373,32 +336,26 @@ following videos:
</div>
</div>
To address this issue, it is possible to pass `latents` argument to the pipelines, which defines the starting point of
diffusion.
Empirically, we found that a convex combination of the very same starting point noise latent and the latent
corresponding to the previous frame prediction give sufficiently smooth results, as implemented in the snippet below:
To address this issue, it is possible to pass `latents` argument to the pipelines, which defines the starting point of diffusion.
Empirically, we found that a convex combination of the very same starting point noise latent and the latent corresponding to the previous frame prediction give sufficiently smooth results, as implemented in the snippet below:
```python
import imageio
import diffusers
import torch
from diffusers.models.attention_processor import AttnProcessor2_0
from PIL import Image
from tqdm import tqdm
import diffusers
import torch
device = "cuda"
path_in = "https://huggingface.co/spaces/prs-eth/marigold-lcm/resolve/c7adb5427947d2680944f898cd91d386bf0d4924/files/video/obama.mp4"
path_in = "obama.mp4"
path_out = "obama_depth.gif"
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-v1-1", variant="fp16", torch_dtype=torch.float16
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to(device)
pipe.vae = diffusers.AutoencoderTiny.from_pretrained(
"madebyollin/taesd", torch_dtype=torch.float16
).to(device)
pipe.unet.set_attn_processor(AttnProcessor2_0())
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.set_progress_bar_config(disable=True)
with imageio.get_reader(path_in) as reader:
@@ -416,11 +373,7 @@ with imageio.get_reader(path_in) as reader:
latents = 0.9 * latents + 0.1 * last_frame_latent
depth = pipe(
frame,
num_inference_steps=1,
match_input_resolution=False,
latents=latents,
output_latent=True,
frame, match_input_resolution=False, latents=latents, output_latent=True
)
last_frame_latent = depth.latent
out.append(pipe.image_processor.visualize_depth(depth.prediction)[0])
@@ -429,8 +382,7 @@ with imageio.get_reader(path_in) as reader:
```
Here, the diffusion process starts from the given computed latent.
The pipeline sets `output_latent=True` to access `out.latent` and computes its contribution to the next frame's latent
initialization.
The pipeline sets `output_latent=True` to access `out.latent` and computes its contribution to the next frame's latent initialization.
The result is much more stable now:
<div class="flex gap-4">
@@ -462,7 +414,7 @@ image = diffusers.utils.load_image(
)
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-v1-1", torch_dtype=torch.float16, variant="fp16"
"prs-eth/marigold-depth-lcm-v1-0", torch_dtype=torch.float16, variant="fp16"
).to(device)
depth_image = pipe(image, generator=generator).prediction
@@ -511,95 +463,4 @@ controlnet_out[0].save("motorcycle_controlnet_out.png")
</div>
</div>
## Quantitative Evaluation
To evaluate Marigold quantitatively in standard leaderboards and benchmarks (such as NYU, KITTI, and other datasets),
follow the evaluation protocol outlined in the paper: load the full precision fp32 model and use appropriate values
for `num_inference_steps` and `ensemble_size`.
Optionally seed randomness to ensure reproducibility.
Maximizing `batch_size` will deliver maximum device utilization.
```python
import diffusers
import torch
device = "cuda"
seed = 2024
generator = torch.Generator(device=device).manual_seed(seed)
pipe = diffusers.MarigoldDepthPipeline.from_pretrained("prs-eth/marigold-depth-v1-1").to(device)
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(
image,
num_inference_steps=4, # set according to the evaluation protocol from the paper
ensemble_size=10, # set according to the evaluation protocol from the paper
generator=generator,
)
# evaluate metrics
```
## Using Predictive Uncertainty
The ensembling mechanism built into Marigold pipelines combines multiple predictions obtained from different random
latents.
As a side effect, it can be used to quantify epistemic (model) uncertainty; simply specify `ensemble_size` greater
or equal than 3 and set `output_uncertainty=True`.
The resulting uncertainty will be available in the `uncertainty` field of the output.
It can be visualized as follows:
```python
import diffusers
import torch
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-v1-1", variant="fp16", torch_dtype=torch.float16
).to("cuda")
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
depth = pipe(
image,
ensemble_size=10, # any number >= 3
output_uncertainty=True,
)
uncertainty = pipe.image_processor.visualize_uncertainty(depth.uncertainty)
uncertainty[0].save("einstein_depth_uncertainty.png")
```
<div class="flex gap-4">
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_depth_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth uncertainty
</figcaption>
</div>
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals uncertainty
</figcaption>
</div>
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/4f83035d84a24e5ec44fdda129b1d51eba12ce04/marigold/marigold_einstein_albedo_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Albedo uncertainty
</figcaption>
</div>
</div>
The interpretation of uncertainty is easy: higher values (white) correspond to pixels, where the model struggles to
make consistent predictions.
- The depth model exhibits the most uncertainty around discontinuities, where object depth changes abruptly.
- The surface normals model is least confident in fine-grained structures like hair and in dark regions such as the
collar area.
- Albedo uncertainty is represented as an RGB image, as it captures uncertainty independently for each color channel,
unlike depth and surface normals. It is also higher in shaded regions and at discontinuities.
## Conclusion
We hope Marigold proves valuable for your downstream tasks, whether as part of a broader generative workflow or for
perception-based applications like 3D reconstruction.
Hopefully, you will find Marigold useful for solving your downstream tasks, be it a part of a more broad generative workflow, or a perception task, such as 3D reconstruction.

View File

@@ -215,7 +215,7 @@ image
Prompt weighting provides a way to emphasize or de-emphasize certain parts of a prompt, allowing for more control over the generated image. A prompt can include several concepts, which gets turned into contextualized text embeddings. The embeddings are used by the model to condition its cross-attention layers to generate an image (read the Stable Diffusion [blog post](https://huggingface.co/blog/stable_diffusion) to learn more about how it works).
Prompt weighting works by increasing or decreasing the scale of the text embedding vector that corresponds to its concept in the prompt because you may not necessarily want the model to focus on all concepts equally. The easiest way to prepare the prompt embeddings is to use [Stable Diffusion Long Prompt Weighted Embedding](https://github.com/xhinker/sd_embed) (sd_embed). Once you have the prompt-weighted embeddings, you can pass them to any pipeline that has a [prompt_embeds](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.prompt_embeds) (and optionally [negative_prompt_embeds](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.negative_prompt_embeds)) parameter, such as [`StableDiffusionPipeline`], [`StableDiffusionControlNetPipeline`], and [`StableDiffusionXLPipeline`].
Prompt weighting works by increasing or decreasing the scale of the text embedding vector that corresponds to its concept in the prompt because you may not necessarily want the model to focus on all concepts equally. The easiest way to prepare the prompt-weighted embeddings is to use [Compel](https://github.com/damian0815/compel), a text prompt-weighting and blending library. Once you have the prompt-weighted embeddings, you can pass them to any pipeline that has a [`prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.prompt_embeds) (and optionally [`negative_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.negative_prompt_embeds)) parameter, such as [`StableDiffusionPipeline`], [`StableDiffusionControlNetPipeline`], and [`StableDiffusionXLPipeline`].
<Tip>
@@ -223,99 +223,136 @@ If your favorite pipeline doesn't have a `prompt_embeds` parameter, please open
</Tip>
This guide will show you how to weight your prompts with sd_embed.
This guide will show you how to weight and blend your prompts with Compel in 🤗 Diffusers.
Before you begin, make sure you have the latest version of sd_embed installed:
```bash
pip install git+https://github.com/xhinker/sd_embed.git@main
```
For this example, let's use [`StableDiffusionXLPipeline`].
Before you begin, make sure you have the latest version of Compel installed:
```py
from diffusers import StableDiffusionXLPipeline, UniPCMultistepScheduler
# uncomment to install in Colab
#!pip install compel --upgrade
```
For this guide, let's generate an image with the prompt `"a red cat playing with a ball"` using the [`StableDiffusionPipeline`]:
```py
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
import torch
pipe = StableDiffusionXLPipeline.from_pretrained("Lykon/dreamshaper-xl-1-0", torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_safetensors=True)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
```
To upweight or downweight a concept, surround the text with parentheses. More parentheses applies a heavier weight on the text. You can also append a numerical multiplier to the text to indicate how much you want to increase or decrease its weights by.
prompt = "a red cat playing with a ball"
| format | multiplier |
|---|---|
| `(hippo)` | increase by 1.1x |
| `((hippo))` | increase by 1.21x |
| `(hippo:1.5)` | increase by 1.5x |
| `(hippo:0.5)` | decrease by 4x |
generator = torch.Generator(device="cpu").manual_seed(33)
Create a prompt and use a combination of parentheses and numerical multipliers to upweight various text.
```py
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl
prompt = """A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus.
This imaginative creature features the distinctive, bulky body of a hippo,
but with a texture and appearance resembling a golden-brown, crispy waffle.
The creature might have elements like waffle squares across its skin and a syrup-like sheen.
It's set in a surreal environment that playfully combines a natural water habitat of a hippo with elements of a breakfast table setting,
possibly including oversized utensils or plates in the background.
The image should evoke a sense of playful absurdity and culinary fantasy.
"""
neg_prompt = """\
skin spots,acnes,skin blemishes,age spot,(ugly:1.2),(duplicate:1.2),(morbid:1.21),(mutilated:1.2),\
(tranny:1.2),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.2),(bad proportions:1.3),\
extra limbs,(disfigured:1.2),(missing arms:1.2),(extra legs:1.2),(fused fingers:1.5),\
(too many fingers:1.5),(unclear eyes:1.2),lowers,bad hands,missing fingers,extra digit,\
bad hands,missing fingers,(extra arms and legs),(worst quality:2),(low quality:2),\
(normal quality:2),lowres,((monochrome)),((grayscale))
"""
```
Use the `get_weighted_text_embeddings_sdxl` function to generate the prompt embeddings and the negative prompt embeddings. It'll also generated the pooled and negative pooled prompt embeddings since you're using the SDXL model.
> [!TIP]
> You can safely ignore the error message below about the token index length exceeding the models maximum sequence length. All your tokens will be used in the embedding process.
>
> ```
> Token indices sequence length is longer than the specified maximum sequence length for this model
> ```
```py
(
prompt_embeds,
prompt_neg_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds
) = get_weighted_text_embeddings_sdxl(
pipe,
prompt=prompt,
neg_prompt=neg_prompt
)
image = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=prompt_neg_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
num_inference_steps=30,
height=1024,
width=1024 + 512,
guidance_scale=4.0,
generator=torch.Generator("cuda").manual_seed(2)
).images[0]
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sd_embed_sdxl.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/forest_0.png"/>
</div>
> [!TIP]
> Refer to the [sd_embed](https://github.com/xhinker/sd_embed) repository for additional details about long prompt weighting for FLUX.1, Stable Cascade, and Stable Diffusion 1.5.
### Weighting
You'll notice there is no "ball" in the image! Let's use compel to upweight the concept of "ball" in the prompt. Create a [`Compel`](https://github.com/damian0815/compel/blob/main/doc/compel.md#compel-objects) object, and pass it a tokenizer and text encoder:
```py
from compel import Compel
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
```
compel uses `+` or `-` to increase or decrease the weight of a word in the prompt. To increase the weight of "ball":
<Tip>
`+` corresponds to the value `1.1`, `++` corresponds to `1.1^2`, and so on. Similarly, `-` corresponds to `0.9` and `--` corresponds to `0.9^2`. Feel free to experiment with adding more `+` or `-` in your prompt!
</Tip>
```py
prompt = "a red cat playing with a ball++"
```
Pass the prompt to `compel_proc` to create the new prompt embeddings which are passed to the pipeline:
```py
prompt_embeds = compel_proc(prompt)
generator = torch.manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/forest_1.png"/>
</div>
To downweight parts of the prompt, use the `-` suffix:
```py
prompt = "a red------- cat playing with a ball"
prompt_embeds = compel_proc(prompt)
generator = torch.manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png"/>
</div>
You can even up or downweight multiple concepts in the same prompt:
```py
prompt = "a red cat++ playing with a ball----"
prompt_embeds = compel_proc(prompt)
generator = torch.manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-pos-neg.png"/>
</div>
### Blending
You can also create a weighted *blend* of prompts by adding `.blend()` to a list of prompts and passing it some weights. Your blend may not always produce the result you expect because it breaks some assumptions about how the text encoder functions, so just have fun and experiment with it!
```py
prompt_embeds = compel_proc('("a red cat playing with a ball", "jungle").blend(0.7, 0.8)')
generator = torch.Generator(device="cuda").manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-blend.png"/>
</div>
### Conjunction
A conjunction diffuses each prompt independently and concatenates their results by their weighted sum. Add `.and()` to the end of a list of prompts to create a conjunction:
```py
prompt_embeds = compel_proc('["a red cat", "playing with a", "ball"].and()')
generator = torch.Generator(device="cuda").manual_seed(55)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-conj.png"/>
</div>
### Textual inversion
@@ -326,63 +363,35 @@ Create a pipeline and use the [`~loaders.TextualInversionLoaderMixin.load_textua
```py
import torch
from diffusers import StableDiffusionPipeline
from compel import Compel, DiffusersTextualInversionManager
pipe = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16,
use_safetensors=True, variant="fp16").to("cuda")
pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
```
Add the `<midjourney-style>` text to the prompt to trigger the textual inversion.
Compel provides a `DiffusersTextualInversionManager` class to simplify prompt weighting with textual inversion. Instantiate `DiffusersTextualInversionManager` and pass it to the `Compel` class:
```py
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sd15
prompt = """<midjourney-style> A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus.
This imaginative creature features the distinctive, bulky body of a hippo,
but with a texture and appearance resembling a golden-brown, crispy waffle.
The creature might have elements like waffle squares across its skin and a syrup-like sheen.
It's set in a surreal environment that playfully combines a natural water habitat of a hippo with elements of a breakfast table setting,
possibly including oversized utensils or plates in the background.
The image should evoke a sense of playful absurdity and culinary fantasy.
"""
neg_prompt = """\
skin spots,acnes,skin blemishes,age spot,(ugly:1.2),(duplicate:1.2),(morbid:1.21),(mutilated:1.2),\
(tranny:1.2),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.2),(bad proportions:1.3),\
extra limbs,(disfigured:1.2),(missing arms:1.2),(extra legs:1.2),(fused fingers:1.5),\
(too many fingers:1.5),(unclear eyes:1.2),lowers,bad hands,missing fingers,extra digit,\
bad hands,missing fingers,(extra arms and legs),(worst quality:2),(low quality:2),\
(normal quality:2),lowres,((monochrome)),((grayscale))
"""
textual_inversion_manager = DiffusersTextualInversionManager(pipe)
compel_proc = Compel(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
textual_inversion_manager=textual_inversion_manager)
```
Use the `get_weighted_text_embeddings_sd15` function to generate the prompt embeddings and the negative prompt embeddings.
Incorporate the concept to condition a prompt with using the `<concept>` syntax:
```py
(
prompt_embeds,
prompt_neg_embeds,
) = get_weighted_text_embeddings_sd15(
pipe,
prompt=prompt,
neg_prompt=neg_prompt
)
prompt_embeds = compel_proc('("A red cat++ playing with a ball <midjourney-style>")')
image = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=prompt_neg_embeds,
height=768,
width=896,
guidance_scale=4.0,
generator=torch.Generator("cuda").manual_seed(2)
).images[0]
image = pipe(prompt_embeds=prompt_embeds).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sd_embed_textual_inversion.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-text-inversion.png"/>
</div>
### DreamBooth
@@ -392,44 +401,70 @@ image
```py
import torch
from diffusers import DiffusionPipeline, UniPCMultistepScheduler
from compel import Compel
pipe = DiffusionPipeline.from_pretrained("sd-dreambooth-library/dndcoverart-v1", torch_dtype=torch.float16).to("cuda")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
```
Depending on the model you use, you'll need to incorporate the model's unique identifier into your prompt. For example, the `dndcoverart-v1` model uses the identifier `dndcoverart`:
Create a `Compel` class with a tokenizer and text encoder, and pass your prompt to it. Depending on the model you use, you'll need to incorporate the model's unique identifier into your prompt. For example, the `dndcoverart-v1` model uses the identifier `dndcoverart`:
```py
from sd_embed.embedding_funcs import get_weighted_text_embeddings_sd15
prompt = """dndcoverart of A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus.
This imaginative creature features the distinctive, bulky body of a hippo,
but with a texture and appearance resembling a golden-brown, crispy waffle.
The creature might have elements like waffle squares across its skin and a syrup-like sheen.
It's set in a surreal environment that playfully combines a natural water habitat of a hippo with elements of a breakfast table setting,
possibly including oversized utensils or plates in the background.
The image should evoke a sense of playful absurdity and culinary fantasy.
"""
neg_prompt = """\
skin spots,acnes,skin blemishes,age spot,(ugly:1.2),(duplicate:1.2),(morbid:1.21),(mutilated:1.2),\
(tranny:1.2),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.2),(bad proportions:1.3),\
extra limbs,(disfigured:1.2),(missing arms:1.2),(extra legs:1.2),(fused fingers:1.5),\
(too many fingers:1.5),(unclear eyes:1.2),lowers,bad hands,missing fingers,extra digit,\
bad hands,missing fingers,(extra arms and legs),(worst quality:2),(low quality:2),\
(normal quality:2),lowres,((monochrome)),((grayscale))
"""
(
prompt_embeds
, prompt_neg_embeds
) = get_weighted_text_embeddings_sd15(
pipe
, prompt = prompt
, neg_prompt = neg_prompt
)
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
prompt_embeds = compel_proc('("magazine cover of a dndcoverart dragon, high quality, intricate details, larry elmore art style").and()')
image = pipe(prompt_embeds=prompt_embeds).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sd_embed_dreambooth.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-dreambooth.png"/>
</div>
### Stable Diffusion XL
Stable Diffusion XL (SDXL) has two tokenizers and text encoders so it's usage is a bit different. To address this, you should pass both tokenizers and encoders to the `Compel` class:
```py
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
from diffusers.utils import make_image_grid
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
variant="fp16",
use_safetensors=True,
torch_dtype=torch.float16
).to("cuda")
compel = Compel(
tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
```
This time, let's upweight "ball" by a factor of 1.5 for the first prompt, and downweight "ball" by 0.6 for the second prompt. The [`StableDiffusionXLPipeline`] also requires [`pooled_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLInpaintPipeline.__call__.pooled_prompt_embeds) (and optionally [`negative_pooled_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLInpaintPipeline.__call__.negative_pooled_prompt_embeds)) so you should pass those to the pipeline along with the conditioning tensors:
```py
# apply weights
prompt = ["a red cat playing with a (ball)1.5", "a red cat playing with a (ball)0.6"]
conditioning, pooled = compel(prompt)
# generate image
generator = [torch.Generator().manual_seed(33) for _ in range(len(prompt))]
images = pipeline(prompt_embeds=conditioning, pooled_prompt_embeds=pooled, generator=generator, num_inference_steps=30).images
make_image_grid(images, rows=1, cols=2)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/sdxl_ball1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"a red cat playing with a (ball)1.5"</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/sdxl_ball2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"a red cat playing with a (ball)0.6"</figcaption>
</div>
</div>

View File

@@ -66,6 +66,12 @@ from accelerate.utils import write_basic_config
write_basic_config()
```
## 원을 채우는 데이터셋
원본 데이터셋은 ControlNet [repo](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip)에 올라와있지만, 우리는 [여기](https://huggingface.co/datasets/fusing/fill50k)에 새롭게 다시 올려서 🤗 Datasets 과 호환가능합니다. 그래서 학습 스크립트 상에서 데이터 불러오기를 다룰 수 있습니다.
우리의 학습 예시는 원래 ControlNet의 학습에 쓰였던 [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)을 사용합니다. 그렇지만 ControlNet은 대응되는 어느 Stable Diffusion 모델([`CompVis/stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4)) 혹은 [`stabilityai/stable-diffusion-2-1`](https://huggingface.co/stabilityai/stable-diffusion-2-1)의 증가를 위해 학습될 수 있습니다.
자체 데이터셋을 사용하기 위해서는 [학습을 위한 데이터셋 생성하기](create_dataset) 가이드를 확인하세요.
## 학습

View File

@@ -40,9 +40,9 @@ Training examples show how to pretrain or fine-tune diffusion models for a varie
| [**Text-to-Image fine-tuning**](./text_to_image) | ✅ | ✅ |
| [**Textual Inversion**](./textual_inversion) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb)
| [**Dreambooth**](./dreambooth) | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb)
| [**ControlNet**](./controlnet) | ✅ | ✅ | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb)
| [**InstructPix2Pix**](./instruct_pix2pix) | ✅ | ✅ | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/InstructPix2Pix_using_diffusers.ipynb)
| [**Reinforcement Learning for Control**](./reinforcement_learning) | - | - | [Notebook1](https://github.com/huggingface/notebooks/blob/main/diffusers/reinforcement_learning_for_control.ipynb), [Notebook2](https://github.com/huggingface/notebooks/blob/main/diffusers/reinforcement_learning_with_diffusers.ipynb)
| [**ControlNet**](./controlnet) | ✅ | ✅ | -
| [**InstructPix2Pix**](./instruct_pix2pix) | ✅ | ✅ | -
| [**Reinforcement Learning for Control**](./reinforcement_learning) | - | - | coming soon.
## Community

View File

@@ -79,13 +79,13 @@ This command will prompt you for a token. Copy-paste yours from your [settings/t
### Target Modules
When LoRA was first adapted from language models to diffusion models, it was applied to the cross-attention layers in the Unet that relate the image representations with the prompts that describe them.
More recently, SOTA text-to-image diffusion models replaced the Unet with a diffusion Transformer(DiT). With this change, we may also want to explore
applying LoRA training onto different types of layers and blocks. To allow more flexibility and control over the targeted modules we added `--lora_layers`- in which you can specify in a comma separated string
applying LoRA training onto different types of layers and blocks. To allow more flexibility and control over the targeted modules we added `--lora_layers`- in which you can specify in a comma seperated string
the exact modules for LoRA training. Here are some examples of target modules you can provide:
- for attention only layers: `--lora_layers="attn.to_k,attn.to_q,attn.to_v,attn.to_out.0"`
- to train the same modules as in the fal trainer: `--lora_layers="attn.to_k,attn.to_q,attn.to_v,attn.to_out.0,attn.add_k_proj,attn.add_q_proj,attn.add_v_proj,attn.to_add_out,ff.net.0.proj,ff.net.2,ff_context.net.0.proj,ff_context.net.2"`
- to train the same modules as in ostris ai-toolkit / replicate trainer: `--lora_blocks="attn.to_k,attn.to_q,attn.to_v,attn.to_out.0,attn.add_k_proj,attn.add_q_proj,attn.add_v_proj,attn.to_add_out,ff.net.0.proj,ff.net.2,ff_context.net.0.proj,ff_context.net.2,norm1_context.linear, norm1.linear,norm.linear,proj_mlp,proj_out"`
> [!NOTE]
> `--lora_layers` can also be used to specify which **blocks** to apply LoRA training to. To do so, simply add a block prefix to each layer in the comma separated string:
> `--lora_layers` can also be used to specify which **blocks** to apply LoRA training to. To do so, simply add a block prefix to each layer in the comma seperated string:
> **single DiT blocks**: to target the ith single transformer block, add the prefix `single_transformer_blocks.i`, e.g. - `single_transformer_blocks.i.attn.to_k`
> **MMDiT blocks**: to target the ith MMDiT block, add the prefix `transformer_blocks.i`, e.g. - `transformer_blocks.i.attn.to_k`
> [!NOTE]

View File

@@ -227,7 +227,7 @@ def log_validation(
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed is not None else None
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
autocast_ctx = nullcontext()
with autocast_ctx:
@@ -378,7 +378,7 @@ def parse_args(input_args=None):
default=None,
help="the concept to use to initialize the new inserted tokens when training with "
"--train_text_encoder_ti = True. By default, new tokens (<si><si+1>) are initialized with random value. "
"Alternatively, you could specify a different word/words whose value will be used as the starting point for the new inserted tokens. "
"Alternatively, you could specify a different word/words whos value will be used as the starting point for the new inserted tokens. "
"--num_new_tokens_per_abstraction is ignored when initializer_concept is provided",
)
parser.add_argument(
@@ -662,7 +662,7 @@ def parse_args(input_args=None):
type=str,
default=None,
help=(
"The transformer modules to apply LoRA training on. Please specify the layers in a comma separated. "
"The transformer modules to apply LoRA training on. Please specify the layers in a comma seperated. "
'E.g. - "to_k,to_q,to_v,to_out.0" will result in lora training of attention layers only. For more examples refer to https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/README_flux.md'
),
)
@@ -880,7 +880,9 @@ class TokenEmbeddingsHandler:
idx_to_text_encoder_name = {0: "clip_l", 1: "t5"}
for idx, text_encoder in enumerate(self.text_encoders):
train_ids = self.train_ids if idx == 0 else self.train_ids_t5
embeds = text_encoder.text_model.embeddings.token_embedding if idx == 0 else text_encoder.shared
embeds = (
text_encoder.text_model.embeddings.token_embedding if idx == 0 else text_encoder.encoder.embed_tokens
)
assert embeds.weight.data.shape[0] == len(self.tokenizers[idx]), "Tokenizers should be the same."
new_token_embeddings = embeds.weight.data[train_ids]
@@ -902,7 +904,9 @@ class TokenEmbeddingsHandler:
@torch.no_grad()
def retract_embeddings(self):
for idx, text_encoder in enumerate(self.text_encoders):
embeds = text_encoder.text_model.embeddings.token_embedding if idx == 0 else text_encoder.shared
embeds = (
text_encoder.text_model.embeddings.token_embedding if idx == 0 else text_encoder.encoder.embed_tokens
)
index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"]
embeds.weight.data[index_no_updates] = (
self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates]
@@ -1745,7 +1749,7 @@ def main(args):
if args.enable_t5_ti: # whether to do pivotal tuning/textual inversion for T5 as well
text_lora_parameters_two = []
for name, param in text_encoder_two.named_parameters():
if "shared" in name:
if "token_embedding" in name:
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
param.data = param.to(dtype=torch.float32)
param.requires_grad = True

View File

@@ -662,7 +662,7 @@ def parse_args(input_args=None):
action="store_true",
default=False,
help=(
"Whether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
"Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
"Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`"
),
)
@@ -1883,11 +1883,7 @@ def main(args):
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = (
torch.Generator(device=accelerator.device).manual_seed(args.seed)
if args.seed is not None
else None
)
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
pipeline_args = {"prompt": args.validation_prompt}
if torch.backends.mps.is_available():
@@ -1991,9 +1987,7 @@ def main(args):
)
# run inference
pipeline = pipeline.to(accelerator.device)
generator = (
torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed is not None else None
)
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
images = [
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
for _ in range(args.num_validation_images)

View File

@@ -71,7 +71,6 @@ from diffusers.utils import (
convert_unet_state_dict_to_peft,
is_wandb_available,
)
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
@@ -102,7 +101,7 @@ def determine_scheduler_type(pretrained_model_name_or_path, revision):
def save_model_card(
repo_id: str,
use_dora: bool,
images: list = None,
images=None,
base_model: str = None,
train_text_encoder=False,
train_text_encoder_ti=False,
@@ -112,17 +111,20 @@ def save_model_card(
repo_folder=None,
vae_path=None,
):
img_str = "widget:\n"
lora = "lora" if not use_dora else "dora"
widget_dict = []
if images is not None:
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
widget_dict.append(
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}}
)
else:
widget_dict.append({"text": instance_prompt})
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
img_str += f"""
- text: '{validation_prompt if validation_prompt else ' ' }'
output:
url:
"image_{i}.png"
"""
if not images:
img_str += f"""
- text: '{instance_prompt}'
"""
embeddings_filename = f"{repo_folder}_emb"
instance_prompt_webui = re.sub(r"<s\d+>", "", re.sub(r"<s\d+>", embeddings_filename, instance_prompt, count=1))
ti_keys = ", ".join(f'"{match}"' for match in re.findall(r"<s\d+>", instance_prompt))
@@ -167,7 +169,23 @@ pipeline.load_textual_inversion(state_dict["clip_g"], token=[{ti_keys}], text_en
to trigger concept `{key}` → use `{tokens}` in your prompt \n
"""
model_description = f"""
yaml = f"""---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- diffusers-training
- text-to-image
- diffusers
- {lora}
- template:sd-lora
{img_str}
base_model: {base_model}
instance_prompt: {instance_prompt}
license: openrail++
---
"""
model_card = f"""
# SDXL LoRA DreamBooth - {repo_id}
<Gallery />
@@ -216,25 +234,8 @@ Special VAE used for training: {vae_path}.
{license}
"""
model_card = load_or_create_model_card(
repo_id_or_path=repo_id,
from_training=True,
license="openrail++",
base_model=base_model,
prompt=instance_prompt,
model_description=model_description,
widget=widget_dict,
)
tags = [
"text-to-image",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"diffusers",
lora,
"template:sd-lora",
]
model_card = populate_model_card(model_card, tags=tags)
with open(os.path.join(repo_folder, "README.md"), "w") as f:
f.write(yaml + model_card)
def log_validation(
@@ -268,7 +269,7 @@ def log_validation(
pipeline.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed is not None else None
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
# Currently the context determination is a bit hand-wavy. We can improve it in the future if there's a better
# way to condition it. Reference: https://github.com/huggingface/diffusers/pull/7126#issuecomment-1968523051
if torch.backends.mps.is_available() or "playground" in args.pretrained_model_name_or_path:
@@ -772,7 +773,7 @@ def parse_args(input_args=None):
action="store_true",
default=False,
help=(
"Whether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
"Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. "
"Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`"
),
)
@@ -1874,7 +1875,7 @@ def main(args):
# pack the statically computed variables appropriately here. This is so that we don't
# have to pass them to the dataloader.
# if --train_text_encoder_ti we need add_special_tokens to be True for textual inversion
# if --train_text_encoder_ti we need add_special_tokens to be True fo textual inversion
add_special_tokens = True if args.train_text_encoder_ti else False
if not train_dataset.custom_instance_prompts:

View File

@@ -722,7 +722,7 @@ def log_validation(
# pipe.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed is not None else None
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
videos = []
for _ in range(args.num_validation_videos):

View File

@@ -739,7 +739,7 @@ def log_validation(
# pipe.set_progress_bar_config(disable=True)
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed is not None else None
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
videos = []
for _ in range(args.num_validation_videos):

View File

@@ -1,201 +0,0 @@
# Training CogView4 Control
This (experimental) example shows how to train Control LoRAs with [CogView4](https://huggingface.co/THUDM/CogView4-6B) by conditioning it with additional structural controls (like depth maps, poses, etc.). We provide a script for full fine-tuning, too, refer to [this section](#full-fine-tuning). To know more about CogView4 Control family, refer to the following resources:
To incorporate additional condition latents, we expand the input features of CogView-4 from 64 to 128. The first 64 channels correspond to the original input latents to be denoised, while the latter 64 channels correspond to control latents. This expansion happens on the `patch_embed` layer, where the combined latents are projected to the expected feature dimension of rest of the network. Inference is performed using the `CogView4ControlPipeline`.
> [!NOTE]
> **Gated model**
>
> As the model is gated, before using it with diffusers you first need to go to the [CogView4 Hugging Face page](https://huggingface.co/THUDM/CogView4-6B), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows youve accepted the gate. Use the command below to log in:
```bash
huggingface-cli login
```
The example command below shows how to launch fine-tuning for pose conditions. The dataset ([`raulc0399/open_pose_controlnet`](https://huggingface.co/datasets/raulc0399/open_pose_controlnet)) being used here already has the pose conditions of the original images, so we don't have to compute them.
```bash
accelerate launch train_control_lora_cogview4.py \
--pretrained_model_name_or_path="THUDM/CogView4-6B" \
--dataset_name="raulc0399/open_pose_controlnet" \
--output_dir="pose-control-lora" \
--mixed_precision="bf16" \
--train_batch_size=1 \
--rank=64 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--use_8bit_adam \
--learning_rate=1e-4 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=5000 \
--validation_image="openpose.png" \
--validation_prompt="A couple, 4k photo, highly detailed" \
--offload \
--seed="0" \
--push_to_hub
```
`openpose.png` comes from [here](https://huggingface.co/Adapter/t2iadapter/resolve/main/openpose.png).
You need to install `diffusers` from the branch of [this PR](https://github.com/huggingface/diffusers/pull/9999). When it's merged, you should install `diffusers` from the `main`.
The training script exposes additional CLI args that might be useful to experiment with:
* `use_lora_bias`: When set, additionally trains the biases of the `lora_B` layer.
* `train_norm_layers`: When set, additionally trains the normalization scales. Takes care of saving and loading.
* `lora_layers`: Specify the layers you want to apply LoRA to. If you specify "all-linear", all the linear layers will be LoRA-attached.
### Training with DeepSpeed
It's possible to train with [DeepSpeed](https://github.com/microsoft/DeepSpeed), specifically leveraging the Zero2 system optimization. To use it, save the following config to an YAML file (feel free to modify as needed):
```yaml
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
gradient_accumulation_steps: 1
gradient_clipping: 1.0
offload_optimizer_device: cpu
offload_param_device: cpu
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 1
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
And then while launching training, pass the config file:
```bash
accelerate launch --config_file=CONFIG_FILE.yaml ...
```
### Inference
The pose images in our dataset were computed using the [`controlnet_aux`](https://github.com/huggingface/controlnet_aux) library. Let's install it first:
```bash
pip install controlnet_aux
```
And then we are ready:
```py
from controlnet_aux import OpenposeDetector
from diffusers import CogView4ControlPipeline
from diffusers.utils import load_image
from PIL import Image
import numpy as np
import torch
pipe = CogView4ControlPipeline.from_pretrained("THUDM/CogView4-6B", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("...") # change this.
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
# prepare pose condition.
url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/people.jpg"
image = load_image(url)
image = open_pose(image, detect_resolution=512, image_resolution=1024)
image = np.array(image)[:, :, ::-1]
image = Image.fromarray(np.uint8(image))
prompt = "A couple, 4k photo, highly detailed"
gen_images = pipe(
prompt=prompt,
control_image=image,
num_inference_steps=50,
joint_attention_kwargs={"scale": 0.9},
guidance_scale=25.,
).images[0]
gen_images.save("output.png")
```
## Full fine-tuning
We provide a non-LoRA version of the training script `train_control_cogview4.py`. Here is an example command:
```bash
accelerate launch --config_file=accelerate_ds2.yaml train_control_cogview4.py \
--pretrained_model_name_or_path="THUDM/CogView4-6B" \
--dataset_name="raulc0399/open_pose_controlnet" \
--output_dir="pose-control" \
--mixed_precision="bf16" \
--train_batch_size=2 \
--dataloader_num_workers=4 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--use_8bit_adam \
--proportion_empty_prompts=0.2 \
--learning_rate=5e-5 \
--adam_weight_decay=1e-4 \
--report_to="wandb" \
--lr_scheduler="cosine" \
--lr_warmup_steps=1000 \
--checkpointing_steps=1000 \
--max_train_steps=10000 \
--validation_steps=200 \
--validation_image "2_pose_1024.jpg" "3_pose_1024.jpg" \
--validation_prompt "two friends sitting by each other enjoying a day at the park, full hd, cinematic" "person enjoying a day at the park, full hd, cinematic" \
--offload \
--seed="0" \
--push_to_hub
```
Change the `validation_image` and `validation_prompt` as needed.
For inference, this time, we will run:
```py
from controlnet_aux import OpenposeDetector
from diffusers import CogView4ControlPipeline, CogView4Transformer2DModel
from diffusers.utils import load_image
from PIL import Image
import numpy as np
import torch
transformer = CogView4Transformer2DModel.from_pretrained("...") # change this.
pipe = CogView4ControlPipeline.from_pretrained(
"THUDM/CogView4-6B", transformer=transformer, torch_dtype=torch.bfloat16
).to("cuda")
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
# prepare pose condition.
url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/people.jpg"
image = load_image(url)
image = open_pose(image, detect_resolution=512, image_resolution=1024)
image = np.array(image)[:, :, ::-1]
image = Image.fromarray(np.uint8(image))
prompt = "A couple, 4k photo, highly detailed"
gen_images = pipe(
prompt=prompt,
control_image=image,
num_inference_steps=50,
guidance_scale=25.,
).images[0]
gen_images.save("output.png")
```
## Things to note
* The scripts provided in this directory are experimental and educational. This means we may have to tweak things around to get good results on a given condition. We believe this is best done with the community 🤗
* The scripts are not memory-optimized but we offload the VAE and the text encoders to CPU when they are not used if `--offload` is specified.
* We can extract LoRAs from the fully fine-tuned model. While we currently don't provide any utilities for that, users are welcome to refer to [this script](https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/master/control_lora_create.py) that provides a similar functionality.

View File

@@ -1,6 +0,0 @@
transformers==4.47.0
wandb
torch
torchvision
accelerate==1.2.0
peft>=0.14.0

File diff suppressed because it is too large Load Diff

View File

@@ -10,7 +10,6 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
| Example | Description | Code Example | Colab | Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
|Spatiotemporal Skip Guidance (STG)|[Spatiotemporal Skip Guidance for Enhanced Video Diffusion Sampling](https://arxiv.org/abs/2411.18664) (CVPR 2025) enhances video diffusion models by generating a weaker model through layer skipping and using it as guidance, improving fidelity in models like HunyuanVideo, LTXVideo, and Mochi.|[Spatiotemporal Skip Guidance](#spatiotemporal-skip-guidance)|-|[Junha Hyung](https://junhahyung.github.io/), [Kinam Kim](https://kinam0252.github.io/)|
|Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
|Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
|Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/exx8/differential-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
@@ -24,29 +23,29 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
| Long Prompt Weighting Stable Diffusion | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt. | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/long_prompt_weighting_stable_diffusion.ipynb) | [SkyTNT](https://github.com/SkyTNT) |
| Speech to Image | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images | [Speech to Image](#speech-to-image) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/speech_to_image.ipynb) | [Mikail Duzenli](https://github.com/MikailINTech)
| Wild Card Stable Diffusion | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values | [Wildcard Stable Diffusion](#wildcard-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/wildcard_stable_diffusion.ipynb) | [Shyam Sudhakaran](https://github.com/shyamsn97) |
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts. | [Composable Stable Diffusion](#composable-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/composable_stable_diffusion.ipynb) | [Mark Rich](https://github.com/MarkRich) |
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts. | [Composable Stable Diffusion](#composable-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| Seed Resizing Stable Diffusion | Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation. | [Seed Resizing](#seed-resizing) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/seed_resizing.ipynb) | [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image | [Imagic Stable Diffusion](#imagic-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/imagic_stable_diffusion.ipynb) | [Mark Rich](https://github.com/MarkRich) |
| Multilingual Stable Diffusion | Stable Diffusion Pipeline that supports prompts in 50 different languages. | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/multilingual_stable_diffusion.ipynb) | [Juan Carlos Piñeros](https://github.com/juancopi81) |
| GlueGen Stable Diffusion | Stable Diffusion Pipeline that supports prompts in different languages using GlueGen adapter. | [GlueGen Stable Diffusion](#gluegen-stable-diffusion-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/gluegen_stable_diffusion.ipynb) | [Phạm Hồng Vinh](https://github.com/rootonchair) |
| Image to Image Inpainting Stable Diffusion | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting | [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/image_to_image_inpainting_stable_diffusion.ipynb) | [Alex McKinney](https://github.com/vvvm23) |
| Text Based Inpainting Stable Diffusion | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting | [Text Based Inpainting Stable Diffusion](#text-based-inpainting-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/text_based_inpainting_stable_dffusion.ipynb) | [Dhruv Karan](https://github.com/unography) |
| GlueGen Stable Diffusion | Stable Diffusion Pipeline that supports prompts in different languages using GlueGen adapter. | [GlueGen Stable Diffusion](#gluegen-stable-diffusion-pipeline) | - | [Phạm Hồng Vinh](https://github.com/rootonchair) |
| Image to Image Inpainting Stable Diffusion | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting | [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Alex McKinney](https://github.com/vvvm23) |
| Text Based Inpainting Stable Diffusion | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting | [Text Based Inpainting Stable Diffusion](#text-based-inpainting-stable-diffusion) | - | [Dhruv Karan](https://github.com/unography) |
| Bit Diffusion | Diffusion on discrete data | [Bit Diffusion](#bit-diffusion) | - | [Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py) | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Checkpoint Merger Pipeline | Diffusion Pipeline that enables merging of saved model checkpoints | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Diffusion and compare their results together | [Stable Diffusion Comparison](#stable-diffusion-comparisons) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_comparison.ipynb) | [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
| MagicMix | Diffusion Pipeline for semantic mixing of an image and a text prompt | [MagicMix](#magic-mix) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/magic_mix.ipynb) | [Partho Das](https://github.com/daspartho) |
| MagicMix | Diffusion Pipeline for semantic mixing of an image and a text prompt | [MagicMix](#magic-mix) | - | [Partho Das](https://github.com/daspartho) |
| Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_unclip.ipynb) | [Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_text_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| UnCLIP Image Interpolation Pipeline | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_image_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227)) | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ddim_noise_comparative_analysis.ipynb)| [Aengus (Duc-Anh)](https://github.com/aengusng8) |
| CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_img2img_stable_diffusion.ipynb) | [Nipun Jindal](https://github.com/nipunjindal/) |
| TensorRT Stable Diffusion Text to Image Pipeline | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/tensorrt_text2image_stable_diffusion_pipeline.ipynb) | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | - | [Nipun Jindal](https://github.com/nipunjindal/) |
| TensorRT Stable Diffusion Text to Image Pipeline | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| EDICT Image Editing Pipeline | Diffusion pipeline for text-guided image editing | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) | [Joqsan Azocar](https://github.com/Joqsan) |
| Stable Diffusion RePaint | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.09865) for inpainting. | [Stable Diffusion RePaint](#stable-diffusion-repaint )|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_repaint.ipynb)| [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
| TensorRT Stable Diffusion Image to Image Pipeline | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_images_mixing_with_stable_diffusion.ipynb) | [Karachev Denis](https://github.com/TheDenk) |
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | - | [Karachev Denis](https://github.com/TheDenk) |
| TensorRT Stable Diffusion Inpainting Pipeline | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| IADB Pipeline | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) | [IADB Pipeline](#iadb-pipeline) | - | [Thomas Chambon](https://github.com/tchambon)
| Zero1to3 Pipeline | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) | [Zero1to3 Pipeline](#zero1to3-pipeline) | - | [Xin Kong](https://github.com/kxhit) |
@@ -54,11 +53,10 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
| Stable Diffusion Mixture Tiling Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SD 1.5](#stable-diffusion-mixture-tiling-pipeline-sd-15) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
| Stable Diffusion Mixture Canvas Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending. Works by defining a list of Text2Image region objects that detail the region of influence of each diffuser. | [Stable Diffusion Mixture Canvas Pipeline SD 1.5](#stable-diffusion-mixture-canvas-pipeline-sd-15) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
| Stable Diffusion Mixture Tiling Pipeline SDXL | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SDXL](#stable-diffusion-mixture-tiling-pipeline-sdxl) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/elismasilva/mixture-of-diffusers-sdxl-tiling) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
| Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL | This is an advanced pipeline that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the latent space denoising process. Designed to overcome the limitations of conventional pixel-space tile processing, this pipeline delivers Super Resolution (SR) upscaling for higher-quality images, reduced processing time, and greater adaptability. | [Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL](#stable-diffusion-mod-controlnet-tile-sr-pipeline-sdxl) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/elismasilva/mod-control-tile-upscaler-sdxl) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
| prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/prompt_2_prompt_pipeline.ipynb) | [Umer H. Adil](https://twitter.com/UmerHAdil) |
| prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | - | [Umer H. Adil](https://twitter.com/UmerHAdil) |
| Latent Consistency Pipeline | Implementation of [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378) | [Latent Consistency Pipeline](#latent-consistency-pipeline) | - | [Simian Luo](https://github.com/luosiallen) |
| Latent Consistency Img2img Pipeline | Img2img pipeline for Latent Consistency Models | [Latent Consistency Img2Img Pipeline](#latent-consistency-img2img-pipeline) | - | [Logan Zoellner](https://github.com/nagolinc) |
| Latent Consistency Interpolation Pipeline | Interpolate the latent space of Latent Consistency Models with multiple prompts | [Latent Consistency Interpolation Pipeline](#latent-consistency-interpolation-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pK3NrLWJSiJsBynLns1K1-IDTW9zbPvl?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
@@ -83,9 +81,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
| FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://arxiv.org/abs/2411.18824) - FaithDiff is a faithful image super-resolution method that leverages latent diffusion models by actively adapting the diffusion prior and jointly fine-tuning its components (encoder and diffusion model) with an alignment module to ensure high fidelity and structural consistency. | [FaithDiff Stable Diffusion XL Pipeline](#faithdiff-stable-diffusion-xl-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/jychen9811/FaithDiff) | [Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab, (Adapted by Eliseu Silva)](https://github.com/JyChen9811/FaithDiff) |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
```py
@@ -94,55 +90,6 @@ pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion
## Example usages
### Spatiotemporal Skip Guidance
**Junha Hyung\*, Kinam Kim\*, Susung Hong, Min-Jung Kim, Jaegul Choo**
**KAIST AI, University of Washington**
[*Spatiotemporal Skip Guidance (STG) for Enhanced Video Diffusion Sampling*](https://arxiv.org/abs/2411.18664) (CVPR 2025) is a simple training-free sampling guidance method for enhancing transformer-based video diffusion models. STG employs an implicit weak model via self-perturbation, avoiding the need for external models or additional training. By selectively skipping spatiotemporal layers, STG produces an aligned, degraded version of the original model to boost sample quality without compromising diversity or dynamic degree.
Following is the example video of STG applied to Mochi.
https://github.com/user-attachments/assets/148adb59-da61-4c50-9dfa-425dcb5c23b3
More examples and information can be found on the [GitHub repository](https://github.com/junhahyung/STGuidance) and the [Project website](https://junhahyung.github.io/STGuidance/).
#### Usage example
```python
import torch
from pipeline_stg_mochi import MochiSTGPipeline
from diffusers.utils import export_to_video
# Load the pipeline
pipe = MochiSTGPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)
# Enable memory savings
pipe = pipe.to("cuda")
#--------Option--------#
prompt = "A close-up of a beautiful woman's face with colored powder exploding around her, creating an abstract splash of vibrant hues, realistic style."
stg_applied_layers_idx = [34]
stg_mode = "STG"
stg_scale = 1.0 # 0.0 for CFG
#----------------------#
# Generate video frames
frames = pipe(
prompt,
height=480,
width=480,
num_frames=81,
stg_applied_layers_idx=stg_applied_layers_idx,
stg_scale=stg_scale,
generator = torch.Generator().manual_seed(42),
do_rescaling=do_rescaling,
).frames[0]
export_to_video(frames, "output.mp4", fps=30)
```
### Adaptive Mask Inpainting
**Hyeonwoo Kim\*, Sookwan Han\*, Patrick Kwon, Hanbyul Joo**
@@ -954,7 +901,6 @@ for i in range(args.num_images):
images.append(th.from_numpy(np.array(image)).permute(2, 0, 1) / 255.)
grid = tvu.make_grid(th.stack(images, dim=0), nrow=4, padding=0)
tvu.save_image(grid, f'{prompt}_{args.weights}' + '.png')
print("Image saved successfully!")
```
### Imagic Stable Diffusion
@@ -1160,100 +1106,38 @@ GlueGen is a minimal adapter that allows alignment between any encoder (Text Enc
Make sure you downloaded `gluenet_French_clip_overnorm_over3_noln.ckpt` for French (there are also pre-trained weights for Chinese, Italian, Japanese, Spanish or train your own) at [GlueGen's official repo](https://github.com/salesforce/GlueGen/tree/main).
```python
import os
import gc
import urllib.request
from PIL import Image
import torch
from transformers import XLMRobertaTokenizer, XLMRobertaForMaskedLM, CLIPTokenizer, CLIPTextModel
from transformers import AutoModel, AutoTokenizer
from diffusers import DiffusionPipeline
# Download checkpoints
CHECKPOINTS = [
"https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Chinese_clip_overnorm_over3_noln.ckpt",
"https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_French_clip_overnorm_over3_noln.ckpt",
"https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Italian_clip_overnorm_over3_noln.ckpt",
"https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Japanese_clip_overnorm_over3_noln.ckpt",
"https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Spanish_clip_overnorm_over3_noln.ckpt",
"https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_sound2img_audioclip_us8k.ckpt"
]
if __name__ == "__main__":
device = "cuda"
LANGUAGE_PROMPTS = {
"French": "une voiture sur la plage",
#"Chinese": "海滩上的一辆车",
#"Italian": "una macchina sulla spiaggia",
#"Japanese": "浜辺の車",
#"Spanish": "un coche en la playa"
}
lm_model_id = "xlm-roberta-large"
token_max_length = 77
def download_checkpoints(checkpoint_dir):
os.makedirs(checkpoint_dir, exist_ok=True)
for url in CHECKPOINTS:
filename = os.path.join(checkpoint_dir, os.path.basename(url))
if not os.path.exists(filename):
print(f"Downloading {filename}...")
urllib.request.urlretrieve(url, filename)
print(f"Downloaded {filename}")
else:
print(f"Checkpoint {filename} already exists, skipping download.")
return checkpoint_dir
text_encoder = AutoModel.from_pretrained(lm_model_id)
tokenizer = AutoTokenizer.from_pretrained(lm_model_id, model_max_length=token_max_length, use_fast=False)
def load_checkpoint(pipeline, checkpoint_path, device):
state_dict = torch.load(checkpoint_path, map_location=device)
state_dict = state_dict.get("state_dict", state_dict)
missing_keys, unexpected_keys = pipeline.unet.load_state_dict(state_dict, strict=False)
return pipeline
tensor_norm = torch.Tensor([[43.8203],[28.3668],[27.9345],[28.0084],[28.2958],[28.2576],[28.3373],[28.2695],[28.4097],[28.2790],[28.2825],[28.2807],[28.2775],[28.2708],[28.2682],[28.2624],[28.2589],[28.2611],[28.2616],[28.2639],[28.2613],[28.2566],[28.2615],[28.2665],[28.2799],[28.2885],[28.2852],[28.2863],[28.2780],[28.2818],[28.2764],[28.2532],[28.2412],[28.2336],[28.2514],[28.2734],[28.2763],[28.2977],[28.2971],[28.2948],[28.2818],[28.2676],[28.2831],[28.2890],[28.2979],[28.2999],[28.3117],[28.3363],[28.3554],[28.3626],[28.3589],[28.3597],[28.3543],[28.3660],[28.3731],[28.3717],[28.3812],[28.3753],[28.3810],[28.3777],[28.3693],[28.3713],[28.3670],[28.3691],[28.3679],[28.3624],[28.3703],[28.3703],[28.3720],[28.3594],[28.3576],[28.3562],[28.3438],[28.3376],[28.3389],[28.3433],[28.3191]])
def generate_image(pipeline, prompt, device, output_path):
with torch.inference_mode():
image = pipeline(
prompt,
generator=torch.Generator(device=device).manual_seed(42),
num_inference_steps=50
).images[0]
image.save(output_path)
print(f"Image saved to {output_path}")
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
text_encoder=text_encoder,
tokenizer=tokenizer,
custom_pipeline="gluegen"
).to(device)
pipeline.load_language_adapter("gluenet_French_clip_overnorm_over3_noln.ckpt", num_token=token_max_length, dim=1024, dim_out=768, tensor_norm=tensor_norm)
checkpoint_dir = download_checkpoints("./checkpoints_all/gluenet_checkpoint")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
prompt = "une voiture sur la plage"
tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base", use_fast=False)
model = XLMRobertaForMaskedLM.from_pretrained("xlm-roberta-base").to(device)
inputs = tokenizer("Ceci est une phrase incomplète avec un [MASK].", return_tensors="pt").to(device)
with torch.inference_mode():
_ = model(**inputs)
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
clip_text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
# Initialize pipeline
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
text_encoder=clip_text_encoder,
tokenizer=clip_tokenizer,
custom_pipeline="gluegen",
safety_checker=None
).to(device)
os.makedirs("outputs", exist_ok=True)
# Generate images
for language, prompt in LANGUAGE_PROMPTS.items():
checkpoint_file = f"gluenet_{language}_clip_overnorm_over3_noln.ckpt"
checkpoint_path = os.path.join(checkpoint_dir, checkpoint_file)
try:
pipeline = load_checkpoint(pipeline, checkpoint_path, device)
output_path = f"outputs/gluegen_output_{language.lower()}.png"
generate_image(pipeline, prompt, device, output_path)
except Exception as e:
print(f"Error processing {language} model: {e}")
continue
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
generator = torch.Generator(device=device).manual_seed(42)
image = pipeline(prompt, generator=generator).images[0]
image.save("gluegen_output_fr.png")
```
Which will produce:
@@ -1270,39 +1154,28 @@ The aim is to overlay two images, then mask out the boundary between `image` and
For example, this could be used to place a logo on a shirt and make it blend seamlessly.
```python
import PIL
import torch
import requests
from PIL import Image
from io import BytesIO
from diffusers import DiffusionPipeline
image_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
inner_image_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
image_path = "./path-to-image.png"
inner_image_path = "./path-to-inner-image.png"
mask_path = "./path-to-mask.png"
def load_image(url, mode="RGB"):
response = requests.get(url)
if response.status_code == 200:
return Image.open(BytesIO(response.content)).convert(mode).resize((512, 512))
else:
raise FileNotFoundError(f"Could not retrieve image from {url}")
init_image = load_image(image_url, mode="RGB")
inner_image = load_image(inner_image_url, mode="RGBA")
mask_image = load_image(mask_url, mode="RGB")
init_image = PIL.Image.open(image_path).convert("RGB").resize((512, 512))
inner_image = PIL.Image.open(inner_image_path).convert("RGBA").resize((512, 512))
mask_image = PIL.Image.open(mask_path).convert("RGB").resize((512, 512))
pipe = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-inpainting",
"runwayml/stable-diffusion-inpainting",
custom_pipeline="img2img_inpainting",
torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
prompt = "a mecha robot sitting on a bench"
prompt = "Your prompt here!"
image = pipe(prompt=prompt, image=init_image, inner_image=inner_image, mask_image=mask_image).images[0]
image.save("output.png")
```
![2 by 2 grid demonstrating image to image inpainting.](https://user-images.githubusercontent.com/44398246/203506577-ec303be4-887e-4ebd-a773-c83fcb3dd01a.png)
@@ -1315,49 +1188,28 @@ Currently uses the CLIPSeg model for mask generation, then calls the standard St
```python
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import DiffusionPipeline
from PIL import Image
import requests
import torch
# Load CLIPSeg model and processor
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to("cuda")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
# Load Stable Diffusion Inpainting Pipeline with custom pipeline
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
custom_pipeline="text_inpainting",
segmentation_model=model,
segmentation_processor=processor
).to("cuda")
)
pipe = pipe.to("cuda")
# Load input image
url = "https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image = Image.open(requests.get(url, stream=True).raw).resize((512, 512))
text = "a glass" # will mask out this text
prompt = "a cup" # the masked out region will be replaced with this
# Step 1: Resize input image for CLIPSeg (224x224)
segmentation_input = image.resize((224, 224))
# Step 2: Generate segmentation mask
text = "a glass" # Object to mask
inputs = processor(text=text, images=segmentation_input, return_tensors="pt").to("cuda")
with torch.no_grad():
mask = model(**inputs).logits.sigmoid() # Get segmentation mask
# Resize mask back to 512x512 for SD inpainting
mask = torch.nn.functional.interpolate(mask.unsqueeze(0), size=(512, 512), mode="bilinear").squeeze(0)
# Step 3: Resize input image for Stable Diffusion
image = image.resize((512, 512))
# Step 4: Run inpainting with Stable Diffusion
prompt = "a cup" # The masked-out region will be replaced with this
result = pipe(image=image, mask=mask, prompt=prompt,text=text).images[0]
# Save output
result.save("inpainting_output.png")
print("Inpainting completed. Image saved as 'inpainting_output.png'.")
image = pipe(image=image, text=text, prompt=prompt).images[0]
```
### Bit Diffusion
@@ -1533,10 +1385,8 @@ There are 3 parameters for the method-
Here is an example usage-
```python
import requests
from diffusers import DiffusionPipeline, DDIMScheduler
from PIL import Image
from io import BytesIO
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
@@ -1544,11 +1394,9 @@ pipe = DiffusionPipeline.from_pretrained(
scheduler=DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler"),
).to('cuda')
url = "https://user-images.githubusercontent.com/59410571/209578593-141467c7-d831-4792-8b9a-b17dc5e47816.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB") # Convert to RGB to avoid issues
img = Image.open('phone.jpg')
mix_img = pipe(
image,
img,
prompt='bed',
kmin=0.3,
kmax=0.5,
@@ -1809,51 +1657,37 @@ from diffusers import DiffusionPipeline
from PIL import Image
from transformers import CLIPImageProcessor, CLIPModel
# Load CLIP model and feature extractor
feature_extractor = CLIPImageProcessor.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
# Load guided pipeline
guided_pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="clip_guided_stable_diffusion_img2img",
# custom_pipeline="clip_guided_stable_diffusion",
custom_pipeline="/home/njindal/diffusers/examples/community/clip_guided_stable_diffusion.py",
clip_model=clip_model,
feature_extractor=feature_extractor,
torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")
# Define prompt and fetch image
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
edit_image = Image.open(BytesIO(response.content)).convert("RGB")
# Run the pipeline
init_image = Image.open(BytesIO(response.content)).convert("RGB")
image = guided_pipeline(
prompt=prompt,
height=512, # Height of the output image
width=512, # Width of the output image
image=edit_image, # Input image to guide the diffusion
strength=0.75, # How much to transform the input image
num_inference_steps=30, # Number of diffusion steps
guidance_scale=7.5, # Scale of the classifier-free guidance
clip_guidance_scale=100, # Scale of the CLIP guidance
num_images_per_prompt=1, # Generate one image per prompt
eta=0.0, # Noise scheduling parameter
num_cutouts=4, # Number of cutouts for CLIP guidance
use_cutouts=False, # Whether to use cutouts
output_type="pil", # Output as PIL image
num_inference_steps=30,
image=init_image,
strength=0.75,
guidance_scale=7.5,
clip_guidance_scale=100,
num_cutouts=4,
use_cutouts=False,
).images[0]
# Display the generated image
image.show()
display(image)
```
Init Image
@@ -2430,85 +2264,6 @@ CLIP guided stable diffusion images mixing pipeline allows to combine two images
This approach is using (optional) CoCa model to avoid writing image description.
[More code examples](https://github.com/TheDenk/images_mixing)
### Example Images Mixing (with CoCa)
```python
import PIL
import torch
import requests
import open_clip
from open_clip import SimpleTokenizer
from io import BytesIO
from diffusers import DiffusionPipeline
from transformers import CLIPImageProcessor, CLIPModel
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
# Loading additional models
feature_extractor = CLIPImageProcessor.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
coca_model = open_clip.create_model('coca_ViT-L-14', pretrained='laion2B-s13B-b90k').to('cuda')
coca_model.dtype = torch.float16
coca_transform = open_clip.image_transform(
coca_model.visual.image_size,
is_train=False,
mean=getattr(coca_model.visual, 'image_mean', None),
std=getattr(coca_model.visual, 'image_std', None),
)
coca_tokenizer = SimpleTokenizer()
# Pipeline creating
mixing_pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="clip_guided_images_mixing_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
coca_model=coca_model,
coca_tokenizer=coca_tokenizer,
coca_transform=coca_transform,
torch_dtype=torch.float16,
)
mixing_pipeline.enable_attention_slicing()
mixing_pipeline = mixing_pipeline.to("cuda")
# Pipeline running
generator = torch.Generator(device="cuda").manual_seed(17)
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
content_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir.jpg")
style_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/gigachad.jpg")
pipe_images = mixing_pipeline(
num_inference_steps=50,
content_image=content_image,
style_image=style_image,
noise_strength=0.65,
slerp_latent_style_strength=0.9,
slerp_prompt_style_strength=0.1,
slerp_clip_image_style_strength=0.1,
guidance_scale=9.0,
batch_size=1,
clip_guidance_scale=100,
generator=generator,
).images
output_path = "mixed_output.jpg"
pipe_images[0].save(output_path)
print(f"Image saved successfully at {output_path}")
```
![image_mixing_result](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir_gigachad.png)
### Stable Diffusion XL Long Weighted Prompt Pipeline
This SDXL pipeline supports unlimited length prompt and negative prompt, compatible with A1111 prompt weighted style.
@@ -2574,6 +2329,82 @@ In the above code, the `prompt2` is appended to the `prompt`, which is more than
For more results, checkout [PR #6114](https://github.com/huggingface/diffusers/pull/6114).
### Example Images Mixing (with CoCa)
```python
import requests
from io import BytesIO
import PIL
import torch
import open_clip
from open_clip import SimpleTokenizer
from diffusers import DiffusionPipeline
from transformers import CLIPImageProcessor, CLIPModel
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
# Loading additional models
feature_extractor = CLIPImageProcessor.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
coca_model = open_clip.create_model('coca_ViT-L-14', pretrained='laion2B-s13B-b90k').to('cuda')
coca_model.dtype = torch.float16
coca_transform = open_clip.image_transform(
coca_model.visual.image_size,
is_train=False,
mean=getattr(coca_model.visual, 'image_mean', None),
std=getattr(coca_model.visual, 'image_std', None),
)
coca_tokenizer = SimpleTokenizer()
# Pipeline creating
mixing_pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="clip_guided_images_mixing_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
coca_model=coca_model,
coca_tokenizer=coca_tokenizer,
coca_transform=coca_transform,
torch_dtype=torch.float16,
)
mixing_pipeline.enable_attention_slicing()
mixing_pipeline = mixing_pipeline.to("cuda")
# Pipeline running
generator = torch.Generator(device="cuda").manual_seed(17)
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
content_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir.jpg")
style_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/gigachad.jpg")
pipe_images = mixing_pipeline(
num_inference_steps=50,
content_image=content_image,
style_image=style_image,
noise_strength=0.65,
slerp_latent_style_strength=0.9,
slerp_prompt_style_strength=0.1,
slerp_clip_image_style_strength=0.1,
guidance_scale=9.0,
batch_size=1,
clip_guidance_scale=100,
generator=generator,
).images
```
![image_mixing_result](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir_gigachad.png)
### Stable Diffusion Mixture Tiling Pipeline SD 1.5
This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.
@@ -2694,103 +2525,6 @@ image = pipe(
![mixture_tiling_results](https://huggingface.co/datasets/elismasilva/results/resolve/main/mixture_of_diffusers_sdxl_1.png)
### Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL
This pipeline implements the [MoD (Mixture-of-Diffusers)]("https://arxiv.org/pdf/2408.06072") tiled diffusion technique and combines it with SDXL's ControlNet Tile process to generate SR images.
This works better with 4x scales, but you can try adjusts parameters to higher scales.
````python
import torch
from diffusers import DiffusionPipeline, ControlNetUnionModel, AutoencoderKL, UniPCMultistepScheduler, UNet2DConditionModel
from diffusers.utils import load_image
from PIL import Image
device = "cuda"
# Initialize the models and pipeline
controlnet = ControlNetUnionModel.from_pretrained(
"brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
).to(device=device)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)
model_id = "SG161222/RealVisXL_V5.0"
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
vae=vae,
controlnet=controlnet,
custom_pipeline="mod_controlnet_tile_sr_sdxl",
use_safetensors=True,
variant="fp16",
).to(device)
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)
#pipe.enable_model_cpu_offload() # << Enable this if you have limited VRAM
pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
pipe.enable_vae_slicing() # << Enable this if you have limited VRAM
# Set selected scheduler
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# Load image
control_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1.jpg")
original_height = control_image.height
original_width = control_image.width
print(f"Current resolution: H:{original_height} x W:{original_width}")
# Pre-upscale image for tiling
resolution = 4096
tile_gaussian_sigma = 0.3
max_tile_size = 1024 # or 1280
current_size = max(control_image.size)
scale_factor = max(2, resolution / current_size)
new_size = (int(control_image.width * scale_factor), int(control_image.height * scale_factor))
image = control_image.resize(new_size, Image.LANCZOS)
# Update target height and width
target_height = image.height
target_width = image.width
print(f"Target resolution: H:{target_height} x W:{target_width}")
# Calculate overlap size
normal_tile_overlap, border_tile_overlap = pipe.calculate_overlap(target_width, target_height)
# Set other params
tile_weighting_method = pipe.TileWeightingMethod.COSINE.value
guidance_scale = 4
num_inference_steps = 35
denoising_strenght = 0.65
controlnet_strength = 1.0
prompt = "high-quality, noise-free edges, high quality, 4k, hd, 8k"
negative_prompt = "blurry, pixelated, noisy, low resolution, artifacts, poor details"
# Image generation
generated_image = pipe(
image=image,
control_image=control_image,
control_mode=[6],
controlnet_conditioning_scale=float(controlnet_strength),
prompt=prompt,
negative_prompt=negative_prompt,
normal_tile_overlap=normal_tile_overlap,
border_tile_overlap=border_tile_overlap,
height=target_height,
width=target_width,
original_size=(original_width, original_height),
target_size=(target_width, target_height),
guidance_scale=guidance_scale,
strength=float(denoising_strenght),
tile_weighting_method=tile_weighting_method,
max_tile_size=max_tile_size,
tile_gaussian_sigma=float(tile_gaussian_sigma),
num_inference_steps=num_inference_steps,
)["images"][0]
````
![Upscaled](https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1_input_4x.png)
### TensorRT Inpainting Stable Diffusion Pipeline
The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.
@@ -3264,19 +2998,14 @@ Here's a full example for `ReplaceEdit``:
```python
import torch
from diffusers import DiffusionPipeline
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="pipeline_prompt2prompt"
).to("cuda")
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="pipeline_prompt2prompt").to("cuda")
prompts = [
"A turtle playing with a ball",
"A monkey playing with a ball"
]
prompts = ["A turtle playing with a ball",
"A monkey playing with a ball"]
cross_attention_kwargs = {
"edit_type": "replace",
@@ -3284,15 +3013,7 @@ cross_attention_kwargs = {
"self_replace_steps": 0.4
}
outputs = pipe(
prompt=prompts,
height=512,
width=512,
num_inference_steps=50,
cross_attention_kwargs=cross_attention_kwargs
)
outputs.images[0].save("output_image_0.png")
outputs = pipe(prompt=prompts, height=512, width=512, num_inference_steps=50, cross_attention_kwargs=cross_attention_kwargs)
```
And abbreviated examples for the other edits:
@@ -5298,139 +5019,3 @@ with torch.no_grad():
In the folder examples/pixart there is also a script that can be used to train new models.
Please check the script `train_controlnet_hf_diffusers.sh` on how to start the training.
# CogVideoX DDIM Inversion Pipeline
This implementation performs DDIM inversion on the video based on CogVideoX and uses guided attention to reconstruct or edit the inversion latents.
## Example Usage
```python
import torch
from examples.community.cogvideox_ddim_inversion import CogVideoXPipelineForDDIMInversion
# Load pretrained pipeline
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained(
"THUDM/CogVideoX1.5-5B",
torch_dtype=torch.bfloat16,
).to("cuda")
# Run DDIM inversion, and the videos will be generated in the output_path
output = pipeline_for_inversion(
prompt="prompt that describes the edited video",
video_path="path/to/input.mp4",
guidance_scale=6.0,
num_inference_steps=50,
skip_frames_start=0,
skip_frames_end=0,
frame_sample_step=None,
max_num_frames=81,
width=720,
height=480,
seed=42,
)
pipeline.export_latents_to_video(output.inverse_latents[-1], "path/to/inverse_video.mp4", fps=8)
pipeline.export_latents_to_video(output.recon_latents[-1], "path/to/recon_video.mp4", fps=8)
```
# FaithDiff Stable Diffusion XL Pipeline
[Project](https://jychen9811.github.io/FaithDiff_page/) / [GitHub](https://github.com/JyChen9811/FaithDiff/)
This the implementation of the FaithDiff pipeline for SDXL, adapted to use the HuggingFace Diffusers.
For more details see the project links above.
## Example Usage
This example upscale and restores a low-quality image. The input image has a resolution of 512x512 and will be upscaled at a scale of 2x, to a final resolution of 1024x1024. It is possible to upscale to a larger scale, but it is recommended that the input image be at least 1024x1024 in these cases. To upscale this image by 4x, for example, it would be recommended to re-input the result into a new 2x processing, thus performing progressive scaling.
````py
import random
import numpy as np
import torch
from diffusers import DiffusionPipeline, AutoencoderKL, UniPCMultistepScheduler
from huggingface_hub import hf_hub_download
from diffusers.utils import load_image
from PIL import Image
device = "cuda"
dtype = torch.float16
MAX_SEED = np.iinfo(np.int32).max
# Download weights for additional unet layers
model_file = hf_hub_download(
"jychen9811/FaithDiff",
filename="FaithDiff.bin", local_dir="./proc_data/faithdiff", local_dir_use_symlinks=False
)
# Initialize the models and pipeline
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
model_id = "SG161222/RealVisXL_V4.0"
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=dtype,
vae=vae,
unet=None, #<- Do not load with original model.
custom_pipeline="pipeline_faithdiff_stable_diffusion_xl",
use_safetensors=True,
variant="fp16",
).to(device)
# Here we need use pipeline internal unet model
pipe.unet = pipe.unet_model.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)
# Load aditional layers to the model
pipe.unet.load_additional_layers(weight_path="proc_data/faithdiff/FaithDiff.bin", dtype=dtype)
# Enable vae tiling
pipe.set_encoder_tile_settings()
pipe.enable_vae_tiling()
# Optimization
pipe.enable_model_cpu_offload()
# Set selected scheduler
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
#input params
prompt = "The image features a woman in her 55s with blonde hair and a white shirt, smiling at the camera. She appears to be in a good mood and is wearing a white scarf around her neck. "
upscale = 2 # scale here
start_point = "lr" # or "noise"
latent_tiled_overlap = 0.5
latent_tiled_size = 1024
# Load image
lq_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/woman.png")
original_height = lq_image.height
original_width = lq_image.width
print(f"Current resolution: H:{original_height} x W:{original_width}")
width = original_width * int(upscale)
height = original_height * int(upscale)
print(f"Final resolution: H:{height} x W:{width}")
# Restoration
image = lq_image.resize((width, height), Image.LANCZOS)
input_image, width_init, height_init, width_now, height_now = pipe.check_image_size(image)
generator = torch.Generator(device=device).manual_seed(random.randint(0, MAX_SEED))
gen_image = pipe(lr_img=input_image,
prompt = prompt,
num_inference_steps=20,
guidance_scale=5,
generator=generator,
start_point=start_point,
height = height_now,
width=width_now,
overlap=latent_tiled_overlap,
target_size=(latent_tiled_size, latent_tiled_size)
).images[0]
cropped_image = gen_image.crop((0, 0, width_init, height_init))
cropped_image.save("data/result.png")
````
### Result
[<img src="https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/faithdiff_restored.PNG" width="512px" height="512px"/>](https://imgsli.com/MzY1NzE2)

View File

@@ -92,13 +92,9 @@ class CheckpointMergerPipeline(DiffusionPipeline):
token = kwargs.pop("token", None)
variant = kwargs.pop("variant", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", torch.float32)
torch_dtype = kwargs.pop("torch_dtype", None)
device_map = kwargs.pop("device_map", None)
if not isinstance(torch_dtype, torch.dtype):
torch_dtype = torch.float32
print(f"Passed `torch_dtype` {torch_dtype} is not a `torch.dtype`. Defaulting to `torch.float32`.")
alpha = kwargs.pop("alpha", 0.5)
interp = kwargs.pop("interp", None)

View File

@@ -1,645 +0,0 @@
"""
This script performs DDIM inversion for video frames using a pre-trained model and generates
a video reconstruction based on a provided prompt. It utilizes the CogVideoX pipeline to
process video frames, apply the DDIM inverse scheduler, and produce an output video.
**Please notice that this script is based on the CogVideoX 5B model, and would not generate
a good result for 2B variants.**
Usage:
python cogvideox_ddim_inversion.py
--model-path /path/to/model
--prompt "a prompt"
--video-path /path/to/video.mp4
--output-path /path/to/output
For more details about the cli arguments, please run `python cogvideox_ddim_inversion.py --help`.
Author:
LittleNyima <littlenyima[at]163[dot]com>
"""
import argparse
import math
import os
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from transformers import T5EncoderModel, T5Tokenizer
from diffusers.models.attention_processor import Attention, CogVideoXAttnProcessor2_0
from diffusers.models.autoencoders import AutoencoderKLCogVideoX
from diffusers.models.embeddings import apply_rotary_emb
from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock, CogVideoXTransformer3DModel
from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipeline, retrieve_timesteps
from diffusers.schedulers import CogVideoXDDIMScheduler, DDIMInverseScheduler
from diffusers.utils import export_to_video
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error.
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort: skip
class DDIMInversionArguments(TypedDict):
model_path: str
prompt: str
video_path: str
output_path: str
guidance_scale: float
num_inference_steps: int
skip_frames_start: int
skip_frames_end: int
frame_sample_step: Optional[int]
max_num_frames: int
width: int
height: int
fps: int
dtype: torch.dtype
seed: int
device: torch.device
def get_args() -> DDIMInversionArguments:
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, required=True, help="Path of the pretrained model")
parser.add_argument("--prompt", type=str, required=True, help="Prompt for the direct sample procedure")
parser.add_argument("--video_path", type=str, required=True, help="Path of the video for inversion")
parser.add_argument("--output_path", type=str, default="output", help="Path of the output videos")
parser.add_argument("--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale")
parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps")
parser.add_argument("--skip_frames_start", type=int, default=0, help="Number of skipped frames from the start")
parser.add_argument("--skip_frames_end", type=int, default=0, help="Number of skipped frames from the end")
parser.add_argument("--frame_sample_step", type=int, default=None, help="Temporal stride of the sampled frames")
parser.add_argument("--max_num_frames", type=int, default=81, help="Max number of sampled frames")
parser.add_argument("--width", type=int, default=720, help="Resized width of the video frames")
parser.add_argument("--height", type=int, default=480, help="Resized height of the video frames")
parser.add_argument("--fps", type=int, default=8, help="Frame rate of the output videos")
parser.add_argument("--dtype", type=str, default="bf16", choices=["bf16", "fp16"], help="Dtype of the model")
parser.add_argument("--seed", type=int, default=42, help="Seed for the random number generator")
parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device for inference")
args = parser.parse_args()
args.dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float16
args.device = torch.device(args.device)
return DDIMInversionArguments(**vars(args))
class CogVideoXAttnProcessor2_0ForDDIMInversion(CogVideoXAttnProcessor2_0):
def __init__(self):
super().__init__()
def calculate_attention(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn: Attention,
batch_size: int,
image_seq_length: int,
text_seq_length: int,
attention_mask: Optional[torch.Tensor],
image_rotary_emb: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Core attention computation with inversion-guided RoPE integration.
Args:
query (`torch.Tensor`): `[batch_size, seq_len, dim]` query tensor
key (`torch.Tensor`): `[batch_size, seq_len, dim]` key tensor
value (`torch.Tensor`): `[batch_size, seq_len, dim]` value tensor
attn (`Attention`): Parent attention module with projection layers
batch_size (`int`): Effective batch size (after chunk splitting)
image_seq_length (`int`): Length of image feature sequence
text_seq_length (`int`): Length of text feature sequence
attention_mask (`Optional[torch.Tensor]`): Attention mask tensor
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image positions
Returns:
`Tuple[torch.Tensor, torch.Tensor]`:
(1) hidden_states: [batch_size, image_seq_length, dim] processed image features
(2) encoder_hidden_states: [batch_size, text_seq_length, dim] processed text features
"""
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
if not attn.is_cross_attention:
if key.size(2) == query.size(2): # Attention for reference hidden states
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
else: # RoPE should be applied to each group of image tokens
key[:, :, text_seq_length : text_seq_length + image_seq_length] = apply_rotary_emb(
key[:, :, text_seq_length : text_seq_length + image_seq_length], image_rotary_emb
)
key[:, :, text_seq_length * 2 + image_seq_length :] = apply_rotary_emb(
key[:, :, text_seq_length * 2 + image_seq_length :], image_rotary_emb
)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states, hidden_states = hidden_states.split(
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
)
return hidden_states, encoder_hidden_states
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Process the dual-path attention for the inversion-guided denoising procedure.
Args:
attn (`Attention`): Parent attention module
hidden_states (`torch.Tensor`): `[batch_size, image_seq_len, dim]` Image tokens
encoder_hidden_states (`torch.Tensor`): `[batch_size, text_seq_len, dim]` Text tokens
attention_mask (`Optional[torch.Tensor]`): Optional attention mask
image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image tokens
Returns:
`Tuple[torch.Tensor, torch.Tensor]`:
(1) Final hidden states: `[batch_size, image_seq_length, dim]` Resulting image tokens
(2) Final encoder states: `[batch_size, text_seq_length, dim]` Resulting text tokens
"""
image_seq_length = hidden_states.size(1)
text_seq_length = encoder_hidden_states.size(1)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query, query_reference = query.chunk(2)
key, key_reference = key.chunk(2)
value, value_reference = value.chunk(2)
batch_size = batch_size // 2
hidden_states, encoder_hidden_states = self.calculate_attention(
query=query,
key=torch.cat((key, key_reference), dim=1),
value=torch.cat((value, value_reference), dim=1),
attn=attn,
batch_size=batch_size,
image_seq_length=image_seq_length,
text_seq_length=text_seq_length,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
hidden_states_reference, encoder_hidden_states_reference = self.calculate_attention(
query=query_reference,
key=key_reference,
value=value_reference,
attn=attn,
batch_size=batch_size,
image_seq_length=image_seq_length,
text_seq_length=text_seq_length,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
return (
torch.cat((hidden_states, hidden_states_reference)),
torch.cat((encoder_hidden_states, encoder_hidden_states_reference)),
)
class OverrideAttnProcessors:
r"""
Context manager for temporarily overriding attention processors in CogVideo transformer blocks.
Designed for DDIM inversion process, replaces original attention processors with
`CogVideoXAttnProcessor2_0ForDDIMInversion` and restores them upon exit. Uses Python context manager
pattern to safely manage processor replacement.
Typical usage:
```python
with OverrideAttnProcessors(transformer):
# Perform DDIM inversion operations
```
Args:
transformer (`CogVideoXTransformer3DModel`):
The transformer model containing attention blocks to be modified. Should have
`transformer_blocks` attribute containing `CogVideoXBlock` instances.
"""
def __init__(self, transformer: CogVideoXTransformer3DModel):
self.transformer = transformer
self.original_processors = {}
def __enter__(self):
for block in self.transformer.transformer_blocks:
block = cast(CogVideoXBlock, block)
self.original_processors[id(block)] = block.attn1.get_processor()
block.attn1.set_processor(CogVideoXAttnProcessor2_0ForDDIMInversion())
def __exit__(self, _0, _1, _2):
for block in self.transformer.transformer_blocks:
block = cast(CogVideoXBlock, block)
block.attn1.set_processor(self.original_processors[id(block)])
def get_video_frames(
video_path: str,
width: int,
height: int,
skip_frames_start: int,
skip_frames_end: int,
max_num_frames: int,
frame_sample_step: Optional[int],
) -> torch.FloatTensor:
"""
Extract and preprocess video frames from a video file for VAE processing.
Args:
video_path (`str`): Path to input video file
width (`int`): Target frame width for decoding
height (`int`): Target frame height for decoding
skip_frames_start (`int`): Number of frames to skip at video start
skip_frames_end (`int`): Number of frames to skip at video end
max_num_frames (`int`): Maximum allowed number of output frames
frame_sample_step (`Optional[int]`):
Frame sampling step size. If None, automatically calculated as:
(total_frames - skipped_frames) // max_num_frames
Returns:
`torch.FloatTensor`: Preprocessed frames in `[F, C, H, W]` format where:
- `F`: Number of frames (adjusted to 4k + 1 for VAE compatibility)
- `C`: Channels (3 for RGB)
- `H`: Frame height
- `W`: Frame width
"""
with decord.bridge.use_torch():
video_reader = decord.VideoReader(uri=video_path, width=width, height=height)
video_num_frames = len(video_reader)
start_frame = min(skip_frames_start, video_num_frames)
end_frame = max(0, video_num_frames - skip_frames_end)
if end_frame <= start_frame:
indices = [start_frame]
elif end_frame - start_frame <= max_num_frames:
indices = list(range(start_frame, end_frame))
else:
step = frame_sample_step or (end_frame - start_frame) // max_num_frames
indices = list(range(start_frame, end_frame, step))
frames = video_reader.get_batch(indices=indices)
frames = frames[:max_num_frames].float() # ensure that we don't go over the limit
# Choose first (4k + 1) frames as this is how many is required by the VAE
selected_num_frames = frames.size(0)
remainder = (3 + selected_num_frames) % 4
if remainder != 0:
frames = frames[:-remainder]
assert frames.size(0) % 4 == 1
# Normalize the frames
transform = T.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)
frames = torch.stack(tuple(map(transform, frames)), dim=0)
return frames.permute(0, 3, 1, 2).contiguous() # [F, C, H, W]
class CogVideoXDDIMInversionOutput:
inverse_latents: torch.FloatTensor
recon_latents: torch.FloatTensor
def __init__(self, inverse_latents: torch.FloatTensor, recon_latents: torch.FloatTensor):
self.inverse_latents = inverse_latents
self.recon_latents = recon_latents
class CogVideoXPipelineForDDIMInversion(CogVideoXPipeline):
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKLCogVideoX,
transformer: CogVideoXTransformer3DModel,
scheduler: CogVideoXDDIMScheduler,
):
super().__init__(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
)
self.inverse_scheduler = DDIMInverseScheduler(**scheduler.config)
def encode_video_frames(self, video_frames: torch.FloatTensor) -> torch.FloatTensor:
"""
Encode video frames into latent space using Variational Autoencoder.
Args:
video_frames (`torch.FloatTensor`):
Input frames tensor in `[F, C, H, W]` format from `get_video_frames()`
Returns:
`torch.FloatTensor`: Encoded latents in `[1, F, D, H_latent, W_latent]` format where:
- `F`: Number of frames (same as input)
- `D`: Latent channel dimension
- `H_latent`: Latent space height (H // 2^vae.downscale_factor)
- `W_latent`: Latent space width (W // 2^vae.downscale_factor)
"""
vae: AutoencoderKLCogVideoX = self.vae
video_frames = video_frames.to(device=vae.device, dtype=vae.dtype)
video_frames = video_frames.unsqueeze(0).permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
latent_dist = vae.encode(x=video_frames).latent_dist.sample().transpose(1, 2)
return latent_dist * vae.config.scaling_factor
@torch.no_grad()
def export_latents_to_video(self, latents: torch.FloatTensor, video_path: str, fps: int):
r"""
Decode latent vectors into video and export as video file.
Args:
latents (`torch.FloatTensor`): Encoded latents in `[B, F, D, H_latent, W_latent]` format from
`encode_video_frames()`
video_path (`str`): Output path for video file
fps (`int`): Target frames per second for output video
"""
video = self.decode_latents(latents)
frames = self.video_processor.postprocess_video(video=video, output_type="pil")
os.makedirs(os.path.dirname(video_path), exist_ok=True)
export_to_video(video_frames=frames[0], output_video_path=video_path, fps=fps)
# Modified from CogVideoXPipeline.__call__
@torch.no_grad()
def sample(
self,
latents: torch.FloatTensor,
scheduler: Union[DDIMInverseScheduler, CogVideoXDDIMScheduler],
prompt: Optional[Union[str, List[str]]] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_inference_steps: int = 50,
guidance_scale: float = 6,
use_dynamic_cfg: bool = False,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
reference_latents: torch.FloatTensor = None,
) -> torch.FloatTensor:
r"""
Execute the core sampling loop for video generation/inversion using CogVideoX.
Implements the full denoising trajectory recording for both DDIM inversion and
generation processes. Supports dynamic classifier-free guidance and reference
latent conditioning.
Args:
latents (`torch.FloatTensor`):
Initial noise tensor of shape `[B, F, C, H, W]`.
scheduler (`Union[DDIMInverseScheduler, CogVideoXDDIMScheduler]`):
Scheduling strategy for diffusion process. Use:
(1) `DDIMInverseScheduler` for inversion
(2) `CogVideoXDDIMScheduler` for generation
prompt (`Optional[Union[str, List[str]]]`):
Text prompt(s) for conditional generation. Defaults to unconditional.
negative_prompt (`Optional[Union[str, List[str]]]`):
Negative prompt(s) for guidance. Requires `guidance_scale > 1`.
num_inference_steps (`int`):
Number of denoising steps. Affects quality/compute trade-off.
guidance_scale (`float`):
Classifier-free guidance weight. 1.0 = no guidance.
use_dynamic_cfg (`bool`):
Enable time-varying guidance scale (cosine schedule)
eta (`float`):
DDIM variance parameter (0 = deterministic process)
generator (`Optional[Union[torch.Generator, List[torch.Generator]]]`):
Random number generator(s) for reproducibility
attention_kwargs (`Optional[Dict[str, Any]]`):
Custom parameters for attention modules
reference_latents (`torch.FloatTensor`):
Reference latent trajectory for conditional sampling. Shape should match
`[T, B, F, C, H, W]` where `T` is number of timesteps
Returns:
`torch.FloatTensor`:
Full denoising trajectory tensor of shape `[T, B, F, C, H, W]`.
"""
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._interrupt = False
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
negative_prompt,
do_classifier_free_guidance,
device=device,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
if reference_latents is not None:
prompt_embeds = torch.cat([prompt_embeds] * 2, dim=0)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device)
self._num_timesteps = len(timesteps)
# 5. Prepare latents.
latents = latents.to(device=device) * scheduler.init_noise_sigma
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
if isinstance(scheduler, DDIMInverseScheduler): # Inverse scheduler does not accept extra kwargs
extra_step_kwargs = {}
# 7. Create rotary embeds if required
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(
height=latents.size(3) * self.vae_scale_factor_spatial,
width=latents.size(4) * self.vae_scale_factor_spatial,
num_frames=latents.size(1),
device=device,
)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * scheduler.order, 0)
trajectory = torch.zeros_like(latents).unsqueeze(0).repeat(len(timesteps), 1, 1, 1, 1, 1)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
if reference_latents is not None:
reference = reference_latents[i]
reference = torch.cat([reference] * 2) if do_classifier_free_guidance else reference
latent_model_input = torch.cat([latent_model_input, reference], dim=0)
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred.float()
if reference_latents is not None: # Recover the original batch size
noise_pred, _ = noise_pred.chunk(2)
# perform guidance
if use_dynamic_cfg:
self._guidance_scale = 1 + guidance_scale * (
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
)
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the noisy sample x_t-1 -> x_t
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
latents = latents.to(prompt_embeds.dtype)
trajectory[i] = latents
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
progress_bar.update()
# Offload all models
self.maybe_free_model_hooks()
return trajectory
@torch.no_grad()
def __call__(
self,
prompt: str,
video_path: str,
guidance_scale: float,
num_inference_steps: int,
skip_frames_start: int,
skip_frames_end: int,
frame_sample_step: Optional[int],
max_num_frames: int,
width: int,
height: int,
seed: int,
):
"""
Performs DDIM inversion on a video to reconstruct it with a new prompt.
Args:
prompt (`str`): The text prompt to guide the reconstruction.
video_path (`str`): Path to the input video file.
guidance_scale (`float`): Scale for classifier-free guidance.
num_inference_steps (`int`): Number of denoising steps.
skip_frames_start (`int`): Number of frames to skip from the beginning of the video.
skip_frames_end (`int`): Number of frames to skip from the end of the video.
frame_sample_step (`Optional[int]`): Step size for sampling frames. If None, all frames are used.
max_num_frames (`int`): Maximum number of frames to process.
width (`int`): Width of the output video frames.
height (`int`): Height of the output video frames.
seed (`int`): Random seed for reproducibility.
Returns:
`CogVideoXDDIMInversionOutput`: Contains the inverse latents and reconstructed latents.
"""
if not self.transformer.config.use_rotary_positional_embeddings:
raise NotImplementedError("This script supports CogVideoX 5B model only.")
video_frames = get_video_frames(
video_path=video_path,
width=width,
height=height,
skip_frames_start=skip_frames_start,
skip_frames_end=skip_frames_end,
max_num_frames=max_num_frames,
frame_sample_step=frame_sample_step,
).to(device=self.device)
video_latents = self.encode_video_frames(video_frames=video_frames)
inverse_latents = self.sample(
latents=video_latents,
scheduler=self.inverse_scheduler,
prompt="",
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator(device=self.device).manual_seed(seed),
)
with OverrideAttnProcessors(transformer=self.transformer):
recon_latents = self.sample(
latents=torch.randn_like(video_latents),
scheduler=self.scheduler,
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator(device=self.device).manual_seed(seed),
reference_latents=reversed(inverse_latents),
)
return CogVideoXDDIMInversionOutput(
inverse_latents=inverse_latents,
recon_latents=recon_latents,
)
if __name__ == "__main__":
arguments = get_args()
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained(
arguments.pop("model_path"),
torch_dtype=arguments.pop("dtype"),
).to(device=arguments.pop("device"))
output_path = arguments.pop("output_path")
fps = arguments.pop("fps")
inverse_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_inversion.mp4")
recon_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_reconstruction.mp4")
# Run DDIM inversion
output = pipeline(**arguments)
pipeline.export_latents_to_video(output.inverse_latents[-1], inverse_video_path, fps)
pipeline.export_latents_to_video(output.recon_latents[-1], recon_video_path, fps)

View File

@@ -1773,7 +1773,7 @@ class SDXLLongPromptWeightingPipeline(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.unet` or your `mask_image` or `image` input."
)
elif num_channels_unet != 4:
@@ -1924,22 +1924,7 @@ class SDXLLongPromptWeightingPipeline(
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
# unscale/denormalize the latents
# denormalize with the mean and std if available and not None
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents_std = (
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
else:
latents = latents / self.vae.config.scaling_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:

View File

@@ -1,4 +1,4 @@
# Copyright 2025 The DEVAIEXP Team and The HuggingFace Team. All rights reserved.
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -1070,32 +1070,32 @@ class StableDiffusionXLTilingPipeline(
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left[row][col],
target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left[row][col],
negative_target_size,
add_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left[row][col],
target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
else:
negative_add_time_ids = add_time_ids
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left[row][col],
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
else:
negative_add_time_ids = add_time_ids
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids))
embeddings_and_added_time.append(addition_embed_type_row)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,876 +0,0 @@
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
import types
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from transformers import T5EncoderModel, T5Tokenizer
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.loaders import CogVideoXLoraLoaderMixin
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```python
>>> import torch
>>> from diffusers.utils import export_to_video
>>> from examples.community.pipeline_stg_cogvideox import CogVideoXSTGPipeline
>>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
>>> pipe = CogVideoXSTGPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.float16).to("cuda")
>>> prompt = (
... "A father and son building a treehouse together, their hands covered in sawdust and smiles on their faces, realistic style."
... )
>>> pipe.transformer.to(memory_format=torch.channels_last)
>>> # Configure STG mode options
>>> stg_applied_layers_idx = [11] # Layer indices from 0 to 41
>>> stg_scale = 1.0 # Set to 0.0 for CFG
>>> do_rescaling = False
>>> # Generate video frames with STG parameters
>>> frames = pipe(
... prompt=prompt,
... stg_applied_layers_idx=stg_applied_layers_idx,
... stg_scale=stg_scale,
... do_rescaling=do_rescaling,
>>> ).frames[0]
>>> export_to_video(frames, "output.mp4", fps=8)
```
"""
def forward_with_stg(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
hidden_states_ptb = hidden_states[2:]
encoder_hidden_states_ptb = encoder_hidden_states[2:]
text_seq_length = encoder_hidden_states.size(1)
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
hidden_states, encoder_hidden_states, temb
)
# attention
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
hidden_states, encoder_hidden_states, temb
)
# feed-forward
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
hidden_states[2:] = hidden_states_ptb
encoder_hidden_states[2:] = encoder_hidden_states_ptb
return hidden_states, encoder_hidden_states
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
tw = tgt_width
th = tgt_height
h, w = src
r = h / w
if r > (th / tw):
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class CogVideoXSTGPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
r"""
Pipeline for text-to-video generation using CogVideoX.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. CogVideoX uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`CogVideoXTransformer3DModel`]):
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
"""
_optional_components = []
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = [
"latents",
"prompt_embeds",
"negative_prompt_embeds",
]
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKLCogVideoX,
transformer: CogVideoXTransformer3DModel,
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
):
super().__init__()
self.register_modules(
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
)
self.vae_scale_factor_spatial = (
2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
)
self.vae_scale_factor_temporal = (
self.vae.config.temporal_compression_ratio if getattr(self, "vae", None) else 4
)
self.vae_scaling_factor_image = self.vae.config.scaling_factor if getattr(self, "vae", None) else 0.7
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_videos_per_prompt: int = 1,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
return prompt_embeds
def encode_prompt(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
do_classifier_free_guidance: bool = True,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
Whether to use classifier free guidance or not.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
device: (`torch.device`, *optional*):
torch device
dtype: (`torch.dtype`, *optional*):
torch dtype
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = self._get_t5_prompt_embeds(
prompt=negative_prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
return prompt_embeds, negative_prompt_embeds
def prepare_latents(
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
shape = (
batch_size,
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
num_channels_latents,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
latents = 1 / self.vae_scaling_factor_image * latents
frames = self.vae.decode(latents).sample
return frames
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt,
callback_on_step_end_tensor_inputs,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def fuse_qkv_projections(self) -> None:
r"""Enables fused QKV projections."""
self.fusing_transformer = True
self.transformer.fuse_qkv_projections()
def unfuse_qkv_projections(self) -> None:
r"""Disable QKV projection fusion if enabled."""
if not self.fusing_transformer:
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
else:
self.transformer.unfuse_qkv_projections()
self.fusing_transformer = False
def _prepare_rotary_positional_embeddings(
self,
height: int,
width: int,
num_frames: int,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
p = self.transformer.config.patch_size
p_t = self.transformer.config.patch_size_t
base_size_width = self.transformer.config.sample_width // p
base_size_height = self.transformer.config.sample_height // p
if p_t is None:
# CogVideoX 1.0
grid_crops_coords = get_resize_crop_region_for_grid(
(grid_height, grid_width), base_size_width, base_size_height
)
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=self.transformer.config.attention_head_dim,
crops_coords=grid_crops_coords,
grid_size=(grid_height, grid_width),
temporal_size=num_frames,
device=device,
)
else:
# CogVideoX 1.5
base_num_frames = (num_frames + p_t - 1) // p_t
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=self.transformer.config.attention_head_dim,
crops_coords=None,
grid_size=(grid_height, grid_width),
temporal_size=base_num_frames,
grid_type="slice",
max_size=(base_size_height, base_size_width),
device=device,
)
return freqs_cos, freqs_sin
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_spatio_temporal_guidance(self):
return self._stg_scale > 0.0
@property
def num_timesteps(self):
return self._num_timesteps
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: Optional[int] = None,
num_inference_steps: int = 50,
timesteps: Optional[List[int]] = None,
guidance_scale: float = 6,
use_dynamic_cfg: bool = False,
num_videos_per_prompt: int = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: str = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 226,
stg_applied_layers_idx: Optional[List[int]] = [11],
stg_scale: Optional[float] = 0.0,
do_rescaling: Optional[bool] = False,
) -> Union[CogVideoXPipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
The height in pixels of the generated image. This is set to 480 by default for the best results.
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
The width in pixels of the generated image. This is set to 720 by default for the best results.
num_frames (`int`, defaults to `48`):
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that
needs to be satisfied is that of divisibility mentioned above.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of videos to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int`, defaults to `226`):
Maximum sequence length in encoded prompt. Must be consistent with
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
Examples:
Returns:
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`:
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is a list with the generated images.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial
width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial
num_frames = num_frames or self.transformer.config.sample_frames
num_videos_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
negative_prompt,
callback_on_step_end_tensor_inputs,
prompt_embeds,
negative_prompt_embeds,
)
self._stg_scale = stg_scale
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
if self.do_spatio_temporal_guidance:
for i in stg_applied_layers_idx:
self.transformer.transformer_blocks[i].forward = types.MethodType(
forward_with_stg, self.transformer.transformer_blocks[i]
)
# 2. Default call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
negative_prompt,
do_classifier_free_guidance,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
)
if do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
elif do_classifier_free_guidance and self.do_spatio_temporal_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0)
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
self._num_timesteps = len(timesteps)
# 5. Prepare latents
latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
# For CogVideoX 1.5, the latent frames should be padded to make it divisible by patch_size_t
patch_size_t = self.transformer.config.patch_size_t
additional_frames = 0
if patch_size_t is not None and latent_frames % patch_size_t != 0:
additional_frames = patch_size_t - latent_frames % patch_size_t
num_frames += additional_frames * self.vae_scale_factor_temporal
latent_channels = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
latent_channels,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Create rotary embeds if required
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
# for DPM-solver++
old_pred_original_sample = None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
if do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
latent_model_input = torch.cat([latents] * 2)
elif do_classifier_free_guidance and self.do_spatio_temporal_guidance:
latent_model_input = torch.cat([latents] * 3)
else:
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=timestep,
image_rotary_emb=image_rotary_emb,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred.float()
# perform guidance
if use_dynamic_cfg:
self._guidance_scale = 1 + guidance_scale * (
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
)
if do_classifier_free_guidance and not self.do_spatio_temporal_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
elif do_classifier_free_guidance and self.do_spatio_temporal_guidance:
noise_pred_uncond, noise_pred_text, noise_pred_perturb = noise_pred.chunk(3)
noise_pred = (
noise_pred_uncond
+ self.guidance_scale * (noise_pred_text - noise_pred_uncond)
+ self._stg_scale * (noise_pred_text - noise_pred_perturb)
)
if do_rescaling:
rescaling_scale = 0.7
factor = noise_pred_text.std() / noise_pred.std()
factor = rescaling_scale * factor + (1 - rescaling_scale)
noise_pred = noise_pred * factor
# compute the previous noisy sample x_t -> x_t-1
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
else:
latents, old_pred_original_sample = self.scheduler.step(
noise_pred,
old_pred_original_sample,
t,
timesteps[i - 1] if i > 0 else None,
latents,
**extra_step_kwargs,
return_dict=False,
)
latents = latents.to(prompt_embeds.dtype)
# call the callback, if provided
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if not output_type == "latent":
# Discard any padding frames that were added for CogVideoX 1.5
latents = latents[:, additional_frames:]
video = self.decode_latents(latents)
video = self.video_processor.postprocess_video(video=video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return CogVideoXPipelineOutput(frames=video)

View File

@@ -1,794 +0,0 @@
# Copyright 2024 The HunyuanVideo Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import types
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.loaders import HunyuanVideoLoraLoaderMixin
from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```python
>>> import torch
>>> from diffusers.utils import export_to_video
>>> from diffusers import HunyuanVideoTransformer3DModel
>>> from examples.community.pipeline_stg_hunyuan_video import HunyuanVideoSTGPipeline
>>> model_id = "hunyuanvideo-community/HunyuanVideo"
>>> transformer = HunyuanVideoTransformer3DModel.from_pretrained(
... model_id, subfolder="transformer", torch_dtype=torch.bfloat16
... )
>>> pipe = HunyuanVideoSTGPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16)
>>> pipe.vae.enable_tiling()
>>> pipe.to("cuda")
>>> # Configure STG mode options
>>> stg_applied_layers_idx = [2] # Layer indices from 0 to 41
>>> stg_scale = 1.0 # Set 0.0 for CFG
>>> output = pipe(
... prompt="A wolf howling at the moon, with the moon subtly resembling a giant clock face, realistic style.",
... height=320,
... width=512,
... num_frames=61,
... num_inference_steps=30,
... stg_applied_layers_idx=stg_applied_layers_idx,
... stg_scale=stg_scale,
>>> ).frames[0]
>>> export_to_video(output, "output.mp4", fps=15)
```
"""
DEFAULT_PROMPT_TEMPLATE = {
"template": (
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
"1. The main content and theme of the video."
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
"4. background environment, light, style and atmosphere."
"5. camera angles, movements, and transitions used in the video:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
),
"crop_start": 95,
}
def forward_with_stg(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
return hidden_states, encoder_hidden_states
def forward_without_stg(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Input normalization
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# 2. Joint attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=freqs_cis,
)
# 3. Modulation and residual connection
hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1)
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)
norm_hidden_states = self.norm2(hidden_states)
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
# 4. Feed-forward
ff_output = self.ff(norm_hidden_states)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return hidden_states, encoder_hidden_states
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class HunyuanVideoSTGPipeline(DiffusionPipeline, HunyuanVideoLoraLoaderMixin):
r"""
Pipeline for text-to-video generation using HunyuanVideo.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
text_encoder ([`LlamaModel`]):
[Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
tokenizer (`LlamaTokenizer`):
Tokenizer from [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
transformer ([`HunyuanVideoTransformer3DModel`]):
Conditional Transformer to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKLHunyuanVideo`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
text_encoder_2 ([`CLIPTextModel`]):
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer_2 (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds"]
def __init__(
self,
text_encoder: LlamaModel,
tokenizer: LlamaTokenizerFast,
transformer: HunyuanVideoTransformer3DModel,
vae: AutoencoderKLHunyuanVideo,
scheduler: FlowMatchEulerDiscreteScheduler,
text_encoder_2: CLIPTextModel,
tokenizer_2: CLIPTokenizer,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
)
self.vae_scale_factor_temporal = self.vae.temporal_compression_ratio if getattr(self, "vae", None) else 4
self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio if getattr(self, "vae", None) else 8
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
def _get_llama_prompt_embeds(
self,
prompt: Union[str, List[str]],
prompt_template: Dict[str, Any],
num_videos_per_prompt: int = 1,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
max_sequence_length: int = 256,
num_hidden_layers_to_skip: int = 2,
) -> Tuple[torch.Tensor, torch.Tensor]:
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
prompt = [prompt_template["template"].format(p) for p in prompt]
crop_start = prompt_template.get("crop_start", None)
if crop_start is None:
prompt_template_input = self.tokenizer(
prompt_template["template"],
padding="max_length",
return_tensors="pt",
return_length=False,
return_overflowing_tokens=False,
return_attention_mask=False,
)
crop_start = prompt_template_input["input_ids"].shape[-1]
# Remove <|eot_id|> token and placeholder {}
crop_start -= 2
max_sequence_length += crop_start
text_inputs = self.tokenizer(
prompt,
max_length=max_sequence_length,
padding="max_length",
truncation=True,
return_tensors="pt",
return_length=False,
return_overflowing_tokens=False,
return_attention_mask=True,
)
text_input_ids = text_inputs.input_ids.to(device=device)
prompt_attention_mask = text_inputs.attention_mask.to(device=device)
prompt_embeds = self.text_encoder(
input_ids=text_input_ids,
attention_mask=prompt_attention_mask,
output_hidden_states=True,
).hidden_states[-(num_hidden_layers_to_skip + 1)]
prompt_embeds = prompt_embeds.to(dtype=dtype)
if crop_start is not None and crop_start > 0:
prompt_embeds = prompt_embeds[:, crop_start:]
prompt_attention_mask = prompt_attention_mask[:, crop_start:]
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
prompt_attention_mask = prompt_attention_mask.repeat(1, num_videos_per_prompt)
prompt_attention_mask = prompt_attention_mask.view(batch_size * num_videos_per_prompt, seq_len)
return prompt_embeds, prompt_attention_mask
def _get_clip_prompt_embeds(
self,
prompt: Union[str, List[str]],
num_videos_per_prompt: int = 1,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
max_sequence_length: int = 77,
) -> torch.Tensor:
device = device or self._execution_device
dtype = dtype or self.text_encoder_2.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer_2(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False).pooler_output
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, -1)
return prompt_embeds
def encode_prompt(
self,
prompt: Union[str, List[str]],
prompt_2: Union[str, List[str]] = None,
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
max_sequence_length: int = 256,
):
if prompt_embeds is None:
prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
prompt,
prompt_template,
num_videos_per_prompt,
device=device,
dtype=dtype,
max_sequence_length=max_sequence_length,
)
if pooled_prompt_embeds is None:
if prompt_2 is None and pooled_prompt_embeds is None:
prompt_2 = prompt
pooled_prompt_embeds = self._get_clip_prompt_embeds(
prompt,
num_videos_per_prompt,
device=device,
dtype=dtype,
max_sequence_length=77,
)
return prompt_embeds, pooled_prompt_embeds, prompt_attention_mask
def check_inputs(
self,
prompt,
prompt_2,
height,
width,
prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
prompt_template=None,
):
if height % 16 != 0 or width % 16 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if prompt_template is not None:
if not isinstance(prompt_template, dict):
raise ValueError(f"`prompt_template` has to be of type `dict` but is {type(prompt_template)}")
if "template" not in prompt_template:
raise ValueError(
f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}"
)
def prepare_latents(
self,
batch_size: int,
num_channels_latents: 32,
height: int = 720,
width: int = 1280,
num_frames: int = 129,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if latents is not None:
return latents.to(device=device, dtype=dtype)
shape = (
batch_size,
num_channels_latents,
num_frames,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_spatio_temporal_guidance(self):
return self._stg_scale > 0.0
@property
def num_timesteps(self):
return self._num_timesteps
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Union[str, List[str]] = None,
height: int = 720,
width: int = 1280,
num_frames: int = 129,
num_inference_steps: int = 50,
sigmas: List[float] = None,
guidance_scale: float = 6.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
max_sequence_length: int = 256,
stg_applied_layers_idx: Optional[List[int]] = [2],
stg_scale: Optional[float] = 0.0,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead.
height (`int`, defaults to `720`):
The height in pixels of the generated image.
width (`int`, defaults to `1280`):
The width in pixels of the generated image.
num_frames (`int`, defaults to `129`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, defaults to `6.0`):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality. Note that the only available HunyuanVideo model is
CFG-distilled, which means that traditional guidance between unconditional and conditional latent is
not applied.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~HunyuanVideoPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned
where the first element is a list with the generated images and the second element is a list of `bool`s
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds,
callback_on_step_end_tensor_inputs,
prompt_template,
)
self._stg_scale = stg_scale
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_template=prompt_template,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
device=device,
max_sequence_length=max_sequence_length,
)
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
if pooled_prompt_embeds is not None:
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
# 4. Prepare timesteps
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_latent_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Prepare guidance condition
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = latents.to(transformer_dtype)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
if self.do_spatio_temporal_guidance:
for i in stg_applied_layers_idx:
self.transformer.transformer_blocks[i].forward = types.MethodType(
forward_without_stg, self.transformer.transformer_blocks[i]
)
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
guidance=guidance,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
if self.do_spatio_temporal_guidance:
for i in stg_applied_layers_idx:
self.transformer.transformer_blocks[i].forward = types.MethodType(
forward_with_stg, self.transformer.transformer_blocks[i]
)
noise_pred_perturb = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
guidance=guidance,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred + self._stg_scale * (noise_pred - noise_pred_perturb)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if not output_type == "latent":
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return HunyuanVideoPipelineOutput(frames=video)

Some files were not shown because too many files have changed in this diff Show More