mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-07 21:14:44 +08:00
Compare commits
312 Commits
training-g
...
qwenimage-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9b92241cbe | ||
|
|
673d4357ff | ||
|
|
561ab54de3 | ||
|
|
b60faf456b | ||
|
|
3e73dc24a4 | ||
|
|
d03240801f | ||
|
|
e62804ffbd | ||
|
|
bb1d9a8b75 | ||
|
|
a0a4127905 | ||
|
|
603172465f | ||
|
|
91a151b5c6 | ||
|
|
4fcd0bc7eb | ||
|
|
7993be9e7f | ||
|
|
7a2b78bf0f | ||
|
|
f868d4b58b | ||
|
|
cc48b9368f | ||
|
|
dba4e007fe | ||
|
|
8d1de40891 | ||
|
|
8cc528c5e7 | ||
|
|
3c50f0cdad | ||
|
|
555b6cc34f | ||
|
|
5b53f67f06 | ||
|
|
9918d13eba | ||
|
|
e824660436 | ||
|
|
03be15e890 | ||
|
|
85cbe589a7 | ||
|
|
4d9b82297f | ||
|
|
76c809e2ef | ||
|
|
e682af2027 | ||
|
|
a58a4f665b | ||
|
|
8701e8644b | ||
|
|
58bf268261 | ||
|
|
1b48db4c8f | ||
|
|
46a0c6aa82 | ||
|
|
421ee07e33 | ||
|
|
123506ee59 | ||
|
|
8c48ec05ed | ||
|
|
a6d2fc2c1d | ||
|
|
bc2762cce9 | ||
|
|
baa9b582f3 | ||
|
|
da096a4999 | ||
|
|
480fb357a3 | ||
|
|
38740ddbd8 | ||
|
|
72282876b2 | ||
|
|
3552279a23 | ||
|
|
f8ba5cd77a | ||
|
|
c9c8217306 | ||
|
|
135df5be9d | ||
|
|
4a9dbd56f6 | ||
|
|
630d27fe5b | ||
|
|
f442955c6e | ||
|
|
ff9a387618 | ||
|
|
03c3f69aa5 | ||
|
|
f20aba3e87 | ||
|
|
ccf2c31188 | ||
|
|
7b10e4ae65 | ||
|
|
3c0531bc50 | ||
|
|
a8e47978c6 | ||
|
|
50e18ee698 | ||
|
|
4b17fa2a2e | ||
|
|
d45199a2f1 | ||
|
|
061163142d | ||
|
|
5780776c8a | ||
|
|
f19421e27c | ||
|
|
69cdc25746 | ||
|
|
cfd6ec7465 | ||
|
|
1082c46afa | ||
|
|
ba2ba9019f | ||
|
|
fa4c0e5e2e | ||
|
|
b793debd9d | ||
|
|
377057126c | ||
|
|
5937e11d85 | ||
|
|
9c1d4e3be1 | ||
|
|
7ea065c507 | ||
|
|
7a7a487396 | ||
|
|
4efb4db9d0 | ||
|
|
639fd12a20 | ||
|
|
69a9828f4d | ||
|
|
11d22e0e80 | ||
|
|
9a38fab5ae | ||
|
|
cb8e61ed2f | ||
|
|
8e53cd959e | ||
|
|
359b605f4b | ||
|
|
6febc08bfc | ||
|
|
9a2eaed002 | ||
|
|
0c71189abe | ||
|
|
58d2b10a2e | ||
|
|
20e0740b88 | ||
|
|
9d313fc718 | ||
|
|
f83dd5c984 | ||
|
|
c052791b5f | ||
|
|
843e3f9346 | ||
|
|
d8854b8d54 | ||
|
|
327e251b81 | ||
|
|
dfa48831e2 | ||
|
|
94df8ef68a | ||
|
|
203dc520a7 | ||
|
|
56d4387270 | ||
|
|
edcbe8038b | ||
|
|
c02c4a6d27 | ||
|
|
6f3ac3050f | ||
|
|
a6d9f6a1a9 | ||
|
|
284150449d | ||
|
|
3d2f8ae99b | ||
|
|
f36ba9f094 | ||
|
|
1c50a5f7e0 | ||
|
|
7ae6347e33 | ||
|
|
178d32dedd | ||
|
|
ef1e628729 | ||
|
|
173e1b147d | ||
|
|
e46e139f95 | ||
|
|
14725164be | ||
|
|
638cc035e5 | ||
|
|
9db9be65f3 | ||
|
|
d87134ada4 | ||
|
|
67a8ec8bf5 | ||
|
|
cde02b061b | ||
|
|
5dc503aa28 | ||
|
|
c6fbcf717b | ||
|
|
b9e99654e1 | ||
|
|
478df933c3 | ||
|
|
18c8f10f20 | ||
|
|
7298bdd817 | ||
|
|
9c13f86579 | ||
|
|
5c5209720e | ||
|
|
aa14f090f8 | ||
|
|
c5d6e0b537 | ||
|
|
39831599f1 | ||
|
|
b73c738392 | ||
|
|
06fd427797 | ||
|
|
48a551251d | ||
|
|
6398fbc391 | ||
|
|
3c8b67b371 | ||
|
|
9feb946432 | ||
|
|
c90352754a | ||
|
|
7a935a0bbe | ||
|
|
941b7fc084 | ||
|
|
76a62ac9cc | ||
|
|
1c6ab9e900 | ||
|
|
265840a098 | ||
|
|
9f4d997d8f | ||
|
|
b41abb2230 | ||
|
|
f33b89bafb | ||
|
|
48a6d29550 | ||
|
|
2d3d376bc0 | ||
|
|
db715e2c8c | ||
|
|
754fe85cac | ||
|
|
cc1f9a2ce3 | ||
|
|
737d7fc3b0 | ||
|
|
be23f7df00 | ||
|
|
86becea77f | ||
|
|
7e3bf4aff6 | ||
|
|
de043c6044 | ||
|
|
4c20624cc6 | ||
|
|
0454fbb30b | ||
|
|
cbc8ced20f | ||
|
|
01240fecb0 | ||
|
|
ce338d4e4a | ||
|
|
bc55b631fd | ||
|
|
15d50f16f2 | ||
|
|
2c30287958 | ||
|
|
425a715e35 | ||
|
|
2527917528 | ||
|
|
e6639fef70 | ||
|
|
8c938fb410 | ||
|
|
f864a9a352 | ||
|
|
d6fa3298fa | ||
|
|
6f1d6694df | ||
|
|
0e95aa853e | ||
|
|
5ef74fd5f6 | ||
|
|
64a9210315 | ||
|
|
d31b8cea3e | ||
|
|
62e847db5f | ||
|
|
470458623e | ||
|
|
a79c3af6bb | ||
|
|
3f3f0c16a6 | ||
|
|
f3e1310469 | ||
|
|
87f83d3dd9 | ||
|
|
f064b3bf73 | ||
|
|
3b079ec3fa | ||
|
|
bc34fa8386 | ||
|
|
05e7a854d0 | ||
|
|
76ec3d1fee | ||
|
|
cdaf84a708 | ||
|
|
e8e44a510c | ||
|
|
21543de571 | ||
|
|
d7dd924ece | ||
|
|
00f95b9755 | ||
|
|
eea76892e8 | ||
|
|
27bf7fcd0e | ||
|
|
a185e1ab91 | ||
|
|
d93381cd41 | ||
|
|
3649d7b903 | ||
|
|
10c36e0b78 | ||
|
|
8846635873 | ||
|
|
dd285099eb | ||
|
|
80f27d7e8d | ||
|
|
d3e27e05f0 | ||
|
|
5df02fc171 | ||
|
|
7392c8ff5a | ||
|
|
474a248f10 | ||
|
|
7bc0a07b19 | ||
|
|
92542719ed | ||
|
|
6760300202 | ||
|
|
798265f2b6 | ||
|
|
cd813499be | ||
|
|
fbddf02807 | ||
|
|
f20b83a04f | ||
|
|
ee40088fe5 | ||
|
|
7fc53b5d66 | ||
|
|
0874dd04dc | ||
|
|
6184d8a433 | ||
|
|
5a6e386464 | ||
|
|
42077e6c73 | ||
|
|
3d8d8485fc | ||
|
|
195926bbdc | ||
|
|
85a916bb8b | ||
|
|
3287ce2890 | ||
|
|
0c11c8c1ac | ||
|
|
fc51583c8a | ||
|
|
fb57c76aa1 | ||
|
|
7251bb4fd0 | ||
|
|
3fba74e153 | ||
|
|
a4df8dbc40 | ||
|
|
48eae6f420 | ||
|
|
66394bf6c7 | ||
|
|
62cce3045d | ||
|
|
05e867784d | ||
|
|
d72184eba3 | ||
|
|
5ce4814af1 | ||
|
|
1bc6f3dc0f | ||
|
|
79bd7ecc78 | ||
|
|
9b834f8710 | ||
|
|
81426b0f19 | ||
|
|
f0dba33d82 | ||
|
|
d1db4f853a | ||
|
|
8adc6003ba | ||
|
|
9f91305f85 | ||
|
|
368958df6f | ||
|
|
e52ceae375 | ||
|
|
62cbde8d41 | ||
|
|
648e8955cf | ||
|
|
00b179fb1a | ||
|
|
47ef79464f | ||
|
|
b272807bc8 | ||
|
|
447ccd0679 | ||
|
|
f3e09114f2 | ||
|
|
91545666e0 | ||
|
|
b6f7933044 | ||
|
|
33e636cea5 | ||
|
|
e27142ac64 | ||
|
|
8e88495da2 | ||
|
|
b79803fe08 | ||
|
|
b0f7036d9a | ||
|
|
6c7fad7ec8 | ||
|
|
5b0dab1253 | ||
|
|
7c6e9ef425 | ||
|
|
f46abfe4ce | ||
|
|
73a9d5856f | ||
|
|
16c955c5fd | ||
|
|
0f91f2f6fc | ||
|
|
745199a869 | ||
|
|
0142f6f35a | ||
|
|
d04cd95012 | ||
|
|
c934720629 | ||
|
|
9f48394bf7 | ||
|
|
20273e5503 | ||
|
|
d4dc4d7654 | ||
|
|
3a31b291f1 | ||
|
|
b975bceff3 | ||
|
|
8183d0f16e | ||
|
|
6508da6f06 | ||
|
|
d0ec6601df | ||
|
|
a7aa8bf28a | ||
|
|
3651bdb766 | ||
|
|
df55f05358 | ||
|
|
89ddb6c0a4 | ||
|
|
be2fb77dc1 | ||
|
|
54cddc1e12 | ||
|
|
28ef0165b9 | ||
|
|
a4da216125 | ||
|
|
5939ace91b | ||
|
|
cc59505e26 | ||
|
|
5f5d02fbf1 | ||
|
|
53748217e6 | ||
|
|
826f43505d | ||
|
|
4af76d0d7d | ||
|
|
b5c2050a16 | ||
|
|
7ae546f8d1 | ||
|
|
f64fa9492d | ||
|
|
049082e013 | ||
|
|
f161e277d0 | ||
|
|
a5f4cc7f84 | ||
|
|
c36f8487df | ||
|
|
54af3ca7fd | ||
|
|
ba8dc7dc49 | ||
|
|
23a4ff8488 | ||
|
|
8705af0914 | ||
|
|
5d4f723b57 | ||
|
|
05c8b42b75 | ||
|
|
c8bb1ff53e | ||
|
|
799adf4a10 | ||
|
|
00f9273da2 | ||
|
|
ceb7af277c | ||
|
|
6918f6d19a | ||
|
|
915c537891 | ||
|
|
8270fa58e4 | ||
|
|
1a10fa0c82 | ||
|
|
9836f0e000 | ||
|
|
20379d9d13 | ||
|
|
3a6caba8e4 | ||
|
|
4267d8f4eb |
45
.github/workflows/benchmark.yml
vendored
45
.github/workflows/benchmark.yml
vendored
@@ -11,20 +11,21 @@ env:
|
|||||||
HF_HOME: /mnt/cache
|
HF_HOME: /mnt/cache
|
||||||
OMP_NUM_THREADS: 8
|
OMP_NUM_THREADS: 8
|
||||||
MKL_NUM_THREADS: 8
|
MKL_NUM_THREADS: 8
|
||||||
|
BASE_PATH: benchmark_outputs
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
torch_pipelines_cuda_benchmark_tests:
|
torch_models_cuda_benchmark_tests:
|
||||||
env:
|
env:
|
||||||
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }}
|
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }}
|
||||||
name: Torch Core Pipelines CUDA Benchmarking Tests
|
name: Torch Core Models CUDA Benchmarking Tests
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
max-parallel: 1
|
max-parallel: 1
|
||||||
runs-on:
|
runs-on:
|
||||||
group: aws-g6-4xlarge-plus
|
group: aws-g6e-4xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-compile-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -35,27 +36,47 @@ jobs:
|
|||||||
nvidia-smi
|
nvidia-smi
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
run: |
|
run: |
|
||||||
|
apt update
|
||||||
|
apt install -y libpq-dev postgresql-client
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||||
python -m uv pip install -e [quality,test]
|
python -m uv pip install -e [quality,test]
|
||||||
python -m uv pip install pandas peft
|
python -m uv pip install -r benchmarks/requirements.txt
|
||||||
python -m uv pip uninstall transformers && python -m uv pip install transformers==4.48.0
|
|
||||||
- name: Environment
|
- name: Environment
|
||||||
run: |
|
run: |
|
||||||
python utils/print_env.py
|
python utils/print_env.py
|
||||||
- name: Diffusers Benchmarking
|
- name: Diffusers Benchmarking
|
||||||
env:
|
env:
|
||||||
HF_TOKEN: ${{ secrets.DIFFUSERS_BOT_TOKEN }}
|
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||||
BASE_PATH: benchmark_outputs
|
|
||||||
run: |
|
run: |
|
||||||
export TOTAL_GPU_MEMORY=$(python -c "import torch; print(torch.cuda.get_device_properties(0).total_memory / (1024**3))")
|
cd benchmarks && python run_all.py
|
||||||
cd benchmarks && mkdir ${BASE_PATH} && python run_all.py && python push_results.py
|
|
||||||
|
- name: Push results to the Hub
|
||||||
|
env:
|
||||||
|
HF_TOKEN: ${{ secrets.DIFFUSERS_BOT_TOKEN }}
|
||||||
|
run: |
|
||||||
|
cd benchmarks && python push_results.py
|
||||||
|
mkdir $BASE_PATH && cp *.csv $BASE_PATH
|
||||||
|
|
||||||
- name: Test suite reports artifacts
|
- name: Test suite reports artifacts
|
||||||
if: ${{ always() }}
|
if: ${{ always() }}
|
||||||
uses: actions/upload-artifact@v4
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: benchmark_test_reports
|
name: benchmark_test_reports
|
||||||
path: benchmarks/benchmark_outputs
|
path: benchmarks/${{ env.BASE_PATH }}
|
||||||
|
|
||||||
|
# TODO: enable this once the connection problem has been resolved.
|
||||||
|
- name: Update benchmarking results to DB
|
||||||
|
env:
|
||||||
|
PGDATABASE: metrics
|
||||||
|
PGHOST: ${{ secrets.DIFFUSERS_BENCHMARKS_PGHOST }}
|
||||||
|
PGUSER: transformers_benchmarks
|
||||||
|
PGPASSWORD: ${{ secrets.DIFFUSERS_BENCHMARKS_PGPASSWORD }}
|
||||||
|
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||||
|
run: |
|
||||||
|
git config --global --add safe.directory /__w/diffusers/diffusers
|
||||||
|
commit_id=$GITHUB_SHA
|
||||||
|
commit_msg=$(git show -s --format=%s "$commit_id" | cut -c1-70)
|
||||||
|
cd benchmarks && python populate_into_db.py "$BRANCH_NAME" "$commit_id" "$commit_msg"
|
||||||
|
|
||||||
- name: Report success status
|
- name: Report success status
|
||||||
if: ${{ success() }}
|
if: ${{ success() }}
|
||||||
|
|||||||
17
.github/workflows/build_docker_images.yml
vendored
17
.github/workflows/build_docker_images.yml
vendored
@@ -38,9 +38,16 @@ jobs:
|
|||||||
token: ${{ secrets.GITHUB_TOKEN }}
|
token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|
||||||
- name: Build Changed Docker Images
|
- name: Build Changed Docker Images
|
||||||
|
env:
|
||||||
|
CHANGED_FILES: ${{ steps.file_changes.outputs.all }}
|
||||||
run: |
|
run: |
|
||||||
CHANGED_FILES="${{ steps.file_changes.outputs.all }}"
|
echo "$CHANGED_FILES"
|
||||||
for FILE in $CHANGED_FILES; do
|
for FILE in $CHANGED_FILES; do
|
||||||
|
# skip anything that isn't still on disk
|
||||||
|
if [[ ! -f "$FILE" ]]; then
|
||||||
|
echo "Skipping removed file $FILE"
|
||||||
|
continue
|
||||||
|
fi
|
||||||
if [[ "$FILE" == docker/*Dockerfile ]]; then
|
if [[ "$FILE" == docker/*Dockerfile ]]; then
|
||||||
DOCKER_PATH="${FILE%/Dockerfile}"
|
DOCKER_PATH="${FILE%/Dockerfile}"
|
||||||
DOCKER_TAG=$(basename "$DOCKER_PATH")
|
DOCKER_TAG=$(basename "$DOCKER_PATH")
|
||||||
@@ -65,13 +72,9 @@ jobs:
|
|||||||
image-name:
|
image-name:
|
||||||
- diffusers-pytorch-cpu
|
- diffusers-pytorch-cpu
|
||||||
- diffusers-pytorch-cuda
|
- diffusers-pytorch-cuda
|
||||||
- diffusers-pytorch-compile-cuda
|
- diffusers-pytorch-cuda
|
||||||
- diffusers-pytorch-xformers-cuda
|
- diffusers-pytorch-xformers-cuda
|
||||||
- diffusers-pytorch-minimum-cuda
|
- diffusers-pytorch-minimum-cuda
|
||||||
- diffusers-flax-cpu
|
|
||||||
- diffusers-flax-tpu
|
|
||||||
- diffusers-onnxruntime-cpu
|
|
||||||
- diffusers-onnxruntime-cuda
|
|
||||||
- diffusers-doc-builder
|
- diffusers-doc-builder
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
|
|||||||
@@ -79,14 +79,14 @@ jobs:
|
|||||||
|
|
||||||
# Check secret is set
|
# Check secret is set
|
||||||
- name: whoami
|
- name: whoami
|
||||||
run: huggingface-cli whoami
|
run: hf auth whoami
|
||||||
env:
|
env:
|
||||||
HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
|
HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
|
||||||
|
|
||||||
# Push to HF! (under subfolder based on checkout ref)
|
# Push to HF! (under subfolder based on checkout ref)
|
||||||
# https://huggingface.co/datasets/diffusers/community-pipelines-mirror
|
# https://huggingface.co/datasets/diffusers/community-pipelines-mirror
|
||||||
- name: Mirror community pipeline to HF
|
- name: Mirror community pipeline to HF
|
||||||
run: huggingface-cli upload diffusers/community-pipelines-mirror ./examples/community ${PATH_IN_REPO} --repo-type dataset
|
run: hf upload diffusers/community-pipelines-mirror ./examples/community ${PATH_IN_REPO} --repo-type dataset
|
||||||
env:
|
env:
|
||||||
PATH_IN_REPO: ${{ env.PATH_IN_REPO }}
|
PATH_IN_REPO: ${{ env.PATH_IN_REPO }}
|
||||||
HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
|
HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
|
||||||
|
|||||||
231
.github/workflows/nightly_tests.yml
vendored
231
.github/workflows/nightly_tests.yml
vendored
@@ -13,8 +13,9 @@ env:
|
|||||||
PYTEST_TIMEOUT: 600
|
PYTEST_TIMEOUT: 600
|
||||||
RUN_SLOW: yes
|
RUN_SLOW: yes
|
||||||
RUN_NIGHTLY: yes
|
RUN_NIGHTLY: yes
|
||||||
PIPELINE_USAGE_CUTOFF: 5000
|
PIPELINE_USAGE_CUTOFF: 0
|
||||||
SLACK_API_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
SLACK_API_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||||
|
CONSOLIDATED_REPORT_PATH: consolidated_test_report.md
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
setup_torch_cuda_pipeline_matrix:
|
setup_torch_cuda_pipeline_matrix:
|
||||||
@@ -60,7 +61,7 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -99,11 +100,6 @@ jobs:
|
|||||||
with:
|
with:
|
||||||
name: pipeline_${{ matrix.module }}_test_reports
|
name: pipeline_${{ matrix.module }}_test_reports
|
||||||
path: reports
|
path: reports
|
||||||
- name: Generate Report and Notify Channel
|
|
||||||
if: always()
|
|
||||||
run: |
|
|
||||||
pip install slack_sdk tabulate
|
|
||||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
|
||||||
|
|
||||||
run_nightly_tests_for_other_torch_modules:
|
run_nightly_tests_for_other_torch_modules:
|
||||||
name: Nightly Torch CUDA Tests
|
name: Nightly Torch CUDA Tests
|
||||||
@@ -111,7 +107,7 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
@@ -142,7 +138,6 @@ jobs:
|
|||||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
||||||
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
|
||||||
CUBLAS_WORKSPACE_CONFIG: :16:8
|
CUBLAS_WORKSPACE_CONFIG: :16:8
|
||||||
RUN_COMPILE: yes
|
|
||||||
run: |
|
run: |
|
||||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||||
-s -v -k "not Flax and not Onnx" \
|
-s -v -k "not Flax and not Onnx" \
|
||||||
@@ -175,12 +170,6 @@ jobs:
|
|||||||
name: torch_${{ matrix.module }}_cuda_test_reports
|
name: torch_${{ matrix.module }}_cuda_test_reports
|
||||||
path: reports
|
path: reports
|
||||||
|
|
||||||
- name: Generate Report and Notify Channel
|
|
||||||
if: always()
|
|
||||||
run: |
|
|
||||||
pip install slack_sdk tabulate
|
|
||||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
|
||||||
|
|
||||||
run_torch_compile_tests:
|
run_torch_compile_tests:
|
||||||
name: PyTorch Compile CUDA tests
|
name: PyTorch Compile CUDA tests
|
||||||
|
|
||||||
@@ -188,8 +177,8 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
|
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-compile-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
options: --gpus all --shm-size "16gb" --ipc host
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
@@ -224,12 +213,6 @@ jobs:
|
|||||||
name: torch_compile_test_reports
|
name: torch_compile_test_reports
|
||||||
path: reports
|
path: reports
|
||||||
|
|
||||||
- name: Generate Report and Notify Channel
|
|
||||||
if: always()
|
|
||||||
run: |
|
|
||||||
pip install slack_sdk tabulate
|
|
||||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
|
||||||
|
|
||||||
run_big_gpu_torch_tests:
|
run_big_gpu_torch_tests:
|
||||||
name: Torch tests on big GPU
|
name: Torch tests on big GPU
|
||||||
strategy:
|
strategy:
|
||||||
@@ -239,7 +222,7 @@ jobs:
|
|||||||
group: aws-g6e-xlarge-plus
|
group: aws-g6e-xlarge-plus
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -265,7 +248,7 @@ jobs:
|
|||||||
BIG_GPU_MEMORY: 40
|
BIG_GPU_MEMORY: 40
|
||||||
run: |
|
run: |
|
||||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
||||||
-m "big_gpu_with_torch_cuda" \
|
-m "big_accelerator" \
|
||||||
--make-reports=tests_big_gpu_torch_cuda \
|
--make-reports=tests_big_gpu_torch_cuda \
|
||||||
--report-log=tests_big_gpu_torch_cuda.log \
|
--report-log=tests_big_gpu_torch_cuda.log \
|
||||||
tests/
|
tests/
|
||||||
@@ -280,19 +263,14 @@ jobs:
|
|||||||
with:
|
with:
|
||||||
name: torch_cuda_big_gpu_test_reports
|
name: torch_cuda_big_gpu_test_reports
|
||||||
path: reports
|
path: reports
|
||||||
- name: Generate Report and Notify Channel
|
|
||||||
if: always()
|
|
||||||
run: |
|
|
||||||
pip install slack_sdk tabulate
|
|
||||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
|
||||||
|
|
||||||
torch_minimum_version_cuda_tests:
|
torch_minimum_version_cuda_tests:
|
||||||
name: Torch Minimum Version CUDA Tests
|
name: Torch Minimum Version CUDA Tests
|
||||||
runs-on:
|
runs-on:
|
||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-minimum-cuda
|
image: diffusers/diffusers-pytorch-minimum-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
@@ -342,132 +320,20 @@ jobs:
|
|||||||
with:
|
with:
|
||||||
name: torch_minimum_version_cuda_test_reports
|
name: torch_minimum_version_cuda_test_reports
|
||||||
path: reports
|
path: reports
|
||||||
|
|
||||||
run_flax_tpu_tests:
|
|
||||||
name: Nightly Flax TPU Tests
|
|
||||||
runs-on:
|
|
||||||
group: gcp-ct5lp-hightpu-8t
|
|
||||||
if: github.event_name == 'schedule'
|
|
||||||
|
|
||||||
container:
|
|
||||||
image: diffusers/diffusers-flax-tpu
|
|
||||||
options: --shm-size "16gb" --ipc host --privileged ${{ vars.V5_LITEPOD_8_ENV}} -v /mnt/hf_cache:/mnt/hf_cache
|
|
||||||
defaults:
|
|
||||||
run:
|
|
||||||
shell: bash
|
|
||||||
steps:
|
|
||||||
- name: Checkout diffusers
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
fetch-depth: 2
|
|
||||||
|
|
||||||
- name: Install dependencies
|
|
||||||
run: |
|
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
|
||||||
python -m uv pip install -e [quality,test]
|
|
||||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
|
||||||
python -m uv pip install pytest-reportlog
|
|
||||||
|
|
||||||
- name: Environment
|
|
||||||
run: python utils/print_env.py
|
|
||||||
|
|
||||||
- name: Run nightly Flax TPU tests
|
|
||||||
env:
|
|
||||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
|
||||||
run: |
|
|
||||||
python -m pytest -n 0 \
|
|
||||||
-s -v -k "Flax" \
|
|
||||||
--make-reports=tests_flax_tpu \
|
|
||||||
--report-log=tests_flax_tpu.log \
|
|
||||||
tests/
|
|
||||||
|
|
||||||
- name: Failure short reports
|
|
||||||
if: ${{ failure() }}
|
|
||||||
run: |
|
|
||||||
cat reports/tests_flax_tpu_stats.txt
|
|
||||||
cat reports/tests_flax_tpu_failures_short.txt
|
|
||||||
|
|
||||||
- name: Test suite reports artifacts
|
|
||||||
if: ${{ always() }}
|
|
||||||
uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: flax_tpu_test_reports
|
|
||||||
path: reports
|
|
||||||
|
|
||||||
- name: Generate Report and Notify Channel
|
|
||||||
if: always()
|
|
||||||
run: |
|
|
||||||
pip install slack_sdk tabulate
|
|
||||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
|
||||||
|
|
||||||
run_nightly_onnx_tests:
|
|
||||||
name: Nightly ONNXRuntime CUDA tests on Ubuntu
|
|
||||||
runs-on:
|
|
||||||
group: aws-g4dn-2xlarge
|
|
||||||
container:
|
|
||||||
image: diffusers/diffusers-onnxruntime-cuda
|
|
||||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
|
||||||
|
|
||||||
steps:
|
|
||||||
- name: Checkout diffusers
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
fetch-depth: 2
|
|
||||||
|
|
||||||
- name: NVIDIA-SMI
|
|
||||||
run: nvidia-smi
|
|
||||||
|
|
||||||
- name: Install dependencies
|
|
||||||
run: |
|
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
|
||||||
python -m uv pip install -e [quality,test]
|
|
||||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
|
||||||
python -m uv pip install pytest-reportlog
|
|
||||||
- name: Environment
|
|
||||||
run: python utils/print_env.py
|
|
||||||
|
|
||||||
- name: Run Nightly ONNXRuntime CUDA tests
|
|
||||||
env:
|
|
||||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
|
||||||
run: |
|
|
||||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
|
||||||
-s -v -k "Onnx" \
|
|
||||||
--make-reports=tests_onnx_cuda \
|
|
||||||
--report-log=tests_onnx_cuda.log \
|
|
||||||
tests/
|
|
||||||
|
|
||||||
- name: Failure short reports
|
|
||||||
if: ${{ failure() }}
|
|
||||||
run: |
|
|
||||||
cat reports/tests_onnx_cuda_stats.txt
|
|
||||||
cat reports/tests_onnx_cuda_failures_short.txt
|
|
||||||
|
|
||||||
- name: Test suite reports artifacts
|
|
||||||
if: ${{ always() }}
|
|
||||||
uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: tests_onnx_cuda_reports
|
|
||||||
path: reports
|
|
||||||
|
|
||||||
- name: Generate Report and Notify Channel
|
|
||||||
if: always()
|
|
||||||
run: |
|
|
||||||
pip install slack_sdk tabulate
|
|
||||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
|
||||||
|
|
||||||
run_nightly_quantization_tests:
|
run_nightly_quantization_tests:
|
||||||
name: Torch quantization nightly tests
|
name: Torch quantization nightly tests
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
max-parallel: 2
|
max-parallel: 2
|
||||||
matrix:
|
matrix:
|
||||||
config:
|
config:
|
||||||
- backend: "bitsandbytes"
|
- backend: "bitsandbytes"
|
||||||
test_location: "bnb"
|
test_location: "bnb"
|
||||||
additional_deps: ["peft"]
|
additional_deps: ["peft"]
|
||||||
- backend: "gguf"
|
- backend: "gguf"
|
||||||
test_location: "gguf"
|
test_location: "gguf"
|
||||||
additional_deps: ["peft"]
|
additional_deps: ["peft", "kernels"]
|
||||||
- backend: "torchao"
|
- backend: "torchao"
|
||||||
test_location: "torchao"
|
test_location: "torchao"
|
||||||
additional_deps: []
|
additional_deps: []
|
||||||
@@ -478,7 +344,7 @@ jobs:
|
|||||||
group: aws-g6e-xlarge-plus
|
group: aws-g6e-xlarge-plus
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "20gb" --ipc host --gpus 0
|
options: --shm-size "20gb" --ipc host --gpus all
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -520,12 +386,7 @@ jobs:
|
|||||||
with:
|
with:
|
||||||
name: torch_cuda_${{ matrix.config.backend }}_reports
|
name: torch_cuda_${{ matrix.config.backend }}_reports
|
||||||
path: reports
|
path: reports
|
||||||
- name: Generate Report and Notify Channel
|
|
||||||
if: always()
|
|
||||||
run: |
|
|
||||||
pip install slack_sdk tabulate
|
|
||||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
|
||||||
|
|
||||||
run_nightly_pipeline_level_quantization_tests:
|
run_nightly_pipeline_level_quantization_tests:
|
||||||
name: Torch quantization nightly tests
|
name: Torch quantization nightly tests
|
||||||
strategy:
|
strategy:
|
||||||
@@ -535,7 +396,7 @@ jobs:
|
|||||||
group: aws-g6e-xlarge-plus
|
group: aws-g6e-xlarge-plus
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "20gb" --ipc host --gpus 0
|
options: --shm-size "20gb" --ipc host --gpus all
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -574,12 +435,66 @@ jobs:
|
|||||||
with:
|
with:
|
||||||
name: torch_cuda_pipeline_level_quant_reports
|
name: torch_cuda_pipeline_level_quant_reports
|
||||||
path: reports
|
path: reports
|
||||||
- name: Generate Report and Notify Channel
|
|
||||||
if: always()
|
generate_consolidated_report:
|
||||||
|
name: Generate Consolidated Test Report
|
||||||
|
needs: [
|
||||||
|
run_nightly_tests_for_torch_pipelines,
|
||||||
|
run_nightly_tests_for_other_torch_modules,
|
||||||
|
run_torch_compile_tests,
|
||||||
|
run_big_gpu_torch_tests,
|
||||||
|
run_nightly_quantization_tests,
|
||||||
|
run_nightly_pipeline_level_quantization_tests,
|
||||||
|
# run_nightly_onnx_tests,
|
||||||
|
torch_minimum_version_cuda_tests,
|
||||||
|
# run_flax_tpu_tests
|
||||||
|
]
|
||||||
|
if: always()
|
||||||
|
runs-on:
|
||||||
|
group: aws-general-8-plus
|
||||||
|
container:
|
||||||
|
image: diffusers/diffusers-pytorch-cpu
|
||||||
|
steps:
|
||||||
|
- name: Checkout diffusers
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 2
|
||||||
|
|
||||||
|
- name: Create reports directory
|
||||||
|
run: mkdir -p combined_reports
|
||||||
|
|
||||||
|
- name: Download all test reports
|
||||||
|
uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
path: artifacts
|
||||||
|
|
||||||
|
- name: Prepare reports
|
||||||
run: |
|
run: |
|
||||||
|
# Move all report files to a single directory for processing
|
||||||
|
find artifacts -name "*.txt" -exec cp {} combined_reports/ \;
|
||||||
|
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
pip install -e .[test]
|
||||||
pip install slack_sdk tabulate
|
pip install slack_sdk tabulate
|
||||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
|
||||||
|
- name: Generate consolidated report
|
||||||
|
run: |
|
||||||
|
python utils/consolidated_test_report.py \
|
||||||
|
--reports_dir combined_reports \
|
||||||
|
--output_file $CONSOLIDATED_REPORT_PATH \
|
||||||
|
--slack_channel_name diffusers-ci-nightly
|
||||||
|
|
||||||
|
- name: Show consolidated report
|
||||||
|
run: |
|
||||||
|
cat $CONSOLIDATED_REPORT_PATH >> $GITHUB_STEP_SUMMARY
|
||||||
|
|
||||||
|
- name: Upload consolidated report
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: consolidated_test_report
|
||||||
|
path: ${{ env.CONSOLIDATED_REPORT_PATH }}
|
||||||
|
|
||||||
# M1 runner currently not well supported
|
# M1 runner currently not well supported
|
||||||
# TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
|
# TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
|
||||||
# run_nightly_tests_apple_m1:
|
# run_nightly_tests_apple_m1:
|
||||||
|
|||||||
141
.github/workflows/pr_modular_tests.yml
vendored
Normal file
141
.github/workflows/pr_modular_tests.yml
vendored
Normal file
@@ -0,0 +1,141 @@
|
|||||||
|
name: Fast PR tests for Modular
|
||||||
|
|
||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
branches: [main]
|
||||||
|
paths:
|
||||||
|
- "src/diffusers/modular_pipelines/**.py"
|
||||||
|
- "src/diffusers/models/modeling_utils.py"
|
||||||
|
- "src/diffusers/models/model_loading_utils.py"
|
||||||
|
- "src/diffusers/pipelines/pipeline_utils.py"
|
||||||
|
- "src/diffusers/pipeline_loading_utils.py"
|
||||||
|
- "src/diffusers/loaders/lora_base.py"
|
||||||
|
- "src/diffusers/loaders/lora_pipeline.py"
|
||||||
|
- "src/diffusers/loaders/peft.py"
|
||||||
|
- "tests/modular_pipelines/**.py"
|
||||||
|
- ".github/**.yml"
|
||||||
|
- "utils/**.py"
|
||||||
|
- "setup.py"
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- ci-*
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
env:
|
||||||
|
DIFFUSERS_IS_CI: yes
|
||||||
|
HF_HUB_ENABLE_HF_TRANSFER: 1
|
||||||
|
OMP_NUM_THREADS: 4
|
||||||
|
MKL_NUM_THREADS: 4
|
||||||
|
PYTEST_TIMEOUT: 60
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
check_code_quality:
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: "3.10"
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install .[quality]
|
||||||
|
- name: Check quality
|
||||||
|
run: make quality
|
||||||
|
- name: Check if failure
|
||||||
|
if: ${{ failure() }}
|
||||||
|
run: |
|
||||||
|
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
|
||||||
|
|
||||||
|
check_repository_consistency:
|
||||||
|
needs: check_code_quality
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: "3.10"
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install .[quality]
|
||||||
|
- name: Check repo consistency
|
||||||
|
run: |
|
||||||
|
python utils/check_copies.py
|
||||||
|
python utils/check_dummies.py
|
||||||
|
python utils/check_support_list.py
|
||||||
|
make deps_table_check_updated
|
||||||
|
- name: Check if failure
|
||||||
|
if: ${{ failure() }}
|
||||||
|
run: |
|
||||||
|
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
|
||||||
|
|
||||||
|
run_fast_tests:
|
||||||
|
needs: [check_code_quality, check_repository_consistency]
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- name: Fast PyTorch Modular Pipeline CPU tests
|
||||||
|
framework: pytorch_pipelines
|
||||||
|
runner: aws-highmemory-32-plus
|
||||||
|
image: diffusers/diffusers-pytorch-cpu
|
||||||
|
report: torch_cpu_modular_pipelines
|
||||||
|
|
||||||
|
name: ${{ matrix.config.name }}
|
||||||
|
|
||||||
|
runs-on:
|
||||||
|
group: ${{ matrix.config.runner }}
|
||||||
|
|
||||||
|
container:
|
||||||
|
image: ${{ matrix.config.image }}
|
||||||
|
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Checkout diffusers
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 2
|
||||||
|
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||||
|
python -m uv pip install -e [quality,test]
|
||||||
|
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
|
||||||
|
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||||
|
|
||||||
|
- name: Environment
|
||||||
|
run: |
|
||||||
|
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||||
|
python utils/print_env.py
|
||||||
|
|
||||||
|
- name: Run fast PyTorch Pipeline CPU tests
|
||||||
|
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
|
||||||
|
run: |
|
||||||
|
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||||
|
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile \
|
||||||
|
-s -v -k "not Flax and not Onnx" \
|
||||||
|
--make-reports=tests_${{ matrix.config.report }} \
|
||||||
|
tests/modular_pipelines
|
||||||
|
|
||||||
|
- name: Failure short reports
|
||||||
|
if: ${{ failure() }}
|
||||||
|
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
|
||||||
|
|
||||||
|
- name: Test suite reports artifacts
|
||||||
|
if: ${{ always() }}
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
|
||||||
|
path: reports
|
||||||
|
|
||||||
|
|
||||||
2
.github/workflows/pr_style_bot.yml
vendored
2
.github/workflows/pr_style_bot.yml
vendored
@@ -14,4 +14,4 @@ jobs:
|
|||||||
with:
|
with:
|
||||||
python_quality_dependencies: "[quality]"
|
python_quality_dependencies: "[quality]"
|
||||||
secrets:
|
secrets:
|
||||||
bot_token: ${{ secrets.GITHUB_TOKEN }}
|
bot_token: ${{ secrets.HF_STYLE_BOT_ACTION }}
|
||||||
18
.github/workflows/pr_tests.yml
vendored
18
.github/workflows/pr_tests.yml
vendored
@@ -87,11 +87,6 @@ jobs:
|
|||||||
runner: aws-general-8-plus
|
runner: aws-general-8-plus
|
||||||
image: diffusers/diffusers-pytorch-cpu
|
image: diffusers/diffusers-pytorch-cpu
|
||||||
report: torch_cpu_models_schedulers
|
report: torch_cpu_models_schedulers
|
||||||
- name: Fast Flax CPU tests
|
|
||||||
framework: flax
|
|
||||||
runner: aws-general-8-plus
|
|
||||||
image: diffusers/diffusers-flax-cpu
|
|
||||||
report: flax_cpu
|
|
||||||
- name: PyTorch Example CPU tests
|
- name: PyTorch Example CPU tests
|
||||||
framework: pytorch_examples
|
framework: pytorch_examples
|
||||||
runner: aws-general-8-plus
|
runner: aws-general-8-plus
|
||||||
@@ -147,15 +142,6 @@ jobs:
|
|||||||
--make-reports=tests_${{ matrix.config.report }} \
|
--make-reports=tests_${{ matrix.config.report }} \
|
||||||
tests/models tests/schedulers tests/others
|
tests/models tests/schedulers tests/others
|
||||||
|
|
||||||
- name: Run fast Flax TPU tests
|
|
||||||
if: ${{ matrix.config.framework == 'flax' }}
|
|
||||||
run: |
|
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
|
||||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
|
||||||
-s -v -k "Flax" \
|
|
||||||
--make-reports=tests_${{ matrix.config.report }} \
|
|
||||||
tests
|
|
||||||
|
|
||||||
- name: Run example PyTorch CPU tests
|
- name: Run example PyTorch CPU tests
|
||||||
if: ${{ matrix.config.framework == 'pytorch_examples' }}
|
if: ${{ matrix.config.framework == 'pytorch_examples' }}
|
||||||
run: |
|
run: |
|
||||||
@@ -291,8 +277,8 @@ jobs:
|
|||||||
- name: Failure short reports
|
- name: Failure short reports
|
||||||
if: ${{ failure() }}
|
if: ${{ failure() }}
|
||||||
run: |
|
run: |
|
||||||
cat reports/tests_lora_failures_short.txt
|
cat reports/tests_peft_main_failures_short.txt
|
||||||
cat reports/tests_models_lora_failures_short.txt
|
cat reports/tests_models_lora_peft_main_failures_short.txt
|
||||||
|
|
||||||
- name: Test suite reports artifacts
|
- name: Test suite reports artifacts
|
||||||
if: ${{ always() }}
|
if: ${{ always() }}
|
||||||
|
|||||||
9
.github/workflows/pr_tests_gpu.yml
vendored
9
.github/workflows/pr_tests_gpu.yml
vendored
@@ -13,6 +13,7 @@ on:
|
|||||||
- "src/diffusers/loaders/peft.py"
|
- "src/diffusers/loaders/peft.py"
|
||||||
- "tests/pipelines/test_pipelines_common.py"
|
- "tests/pipelines/test_pipelines_common.py"
|
||||||
- "tests/models/test_modeling_common.py"
|
- "tests/models/test_modeling_common.py"
|
||||||
|
- "examples/**/*.py"
|
||||||
workflow_dispatch:
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
@@ -117,7 +118,7 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -182,13 +183,13 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
max-parallel: 2
|
max-parallel: 4
|
||||||
matrix:
|
matrix:
|
||||||
module: [models, schedulers, lora, others]
|
module: [models, schedulers, lora, others]
|
||||||
steps:
|
steps:
|
||||||
@@ -252,7 +253,7 @@ jobs:
|
|||||||
|
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
options: --gpus all --shm-size "16gb" --ipc host
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
|
|||||||
108
.github/workflows/push_tests.yml
vendored
108
.github/workflows/push_tests.yml
vendored
@@ -64,7 +64,7 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -109,7 +109,7 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
@@ -159,102 +159,6 @@ jobs:
|
|||||||
name: torch_cuda_test_reports_${{ matrix.module }}
|
name: torch_cuda_test_reports_${{ matrix.module }}
|
||||||
path: reports
|
path: reports
|
||||||
|
|
||||||
flax_tpu_tests:
|
|
||||||
name: Flax TPU Tests
|
|
||||||
runs-on:
|
|
||||||
group: gcp-ct5lp-hightpu-8t
|
|
||||||
container:
|
|
||||||
image: diffusers/diffusers-flax-tpu
|
|
||||||
options: --shm-size "16gb" --ipc host --privileged ${{ vars.V5_LITEPOD_8_ENV}} -v /mnt/hf_cache:/mnt/hf_cache
|
|
||||||
defaults:
|
|
||||||
run:
|
|
||||||
shell: bash
|
|
||||||
steps:
|
|
||||||
- name: Checkout diffusers
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
fetch-depth: 2
|
|
||||||
|
|
||||||
- name: Install dependencies
|
|
||||||
run: |
|
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
|
||||||
python -m uv pip install -e [quality,test]
|
|
||||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
|
||||||
|
|
||||||
- name: Environment
|
|
||||||
run: |
|
|
||||||
python utils/print_env.py
|
|
||||||
|
|
||||||
- name: Run Flax TPU tests
|
|
||||||
env:
|
|
||||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
|
||||||
run: |
|
|
||||||
python -m pytest -n 0 \
|
|
||||||
-s -v -k "Flax" \
|
|
||||||
--make-reports=tests_flax_tpu \
|
|
||||||
tests/
|
|
||||||
|
|
||||||
- name: Failure short reports
|
|
||||||
if: ${{ failure() }}
|
|
||||||
run: |
|
|
||||||
cat reports/tests_flax_tpu_stats.txt
|
|
||||||
cat reports/tests_flax_tpu_failures_short.txt
|
|
||||||
|
|
||||||
- name: Test suite reports artifacts
|
|
||||||
if: ${{ always() }}
|
|
||||||
uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: flax_tpu_test_reports
|
|
||||||
path: reports
|
|
||||||
|
|
||||||
onnx_cuda_tests:
|
|
||||||
name: ONNX CUDA Tests
|
|
||||||
runs-on:
|
|
||||||
group: aws-g4dn-2xlarge
|
|
||||||
container:
|
|
||||||
image: diffusers/diffusers-onnxruntime-cuda
|
|
||||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
|
|
||||||
defaults:
|
|
||||||
run:
|
|
||||||
shell: bash
|
|
||||||
steps:
|
|
||||||
- name: Checkout diffusers
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
fetch-depth: 2
|
|
||||||
|
|
||||||
- name: Install dependencies
|
|
||||||
run: |
|
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
|
||||||
python -m uv pip install -e [quality,test]
|
|
||||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
|
||||||
|
|
||||||
- name: Environment
|
|
||||||
run: |
|
|
||||||
python utils/print_env.py
|
|
||||||
|
|
||||||
- name: Run ONNXRuntime CUDA tests
|
|
||||||
env:
|
|
||||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
|
||||||
run: |
|
|
||||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
|
||||||
-s -v -k "Onnx" \
|
|
||||||
--make-reports=tests_onnx_cuda \
|
|
||||||
tests/
|
|
||||||
|
|
||||||
- name: Failure short reports
|
|
||||||
if: ${{ failure() }}
|
|
||||||
run: |
|
|
||||||
cat reports/tests_onnx_cuda_stats.txt
|
|
||||||
cat reports/tests_onnx_cuda_failures_short.txt
|
|
||||||
|
|
||||||
- name: Test suite reports artifacts
|
|
||||||
if: ${{ always() }}
|
|
||||||
uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: onnx_cuda_test_reports
|
|
||||||
path: reports
|
|
||||||
|
|
||||||
run_torch_compile_tests:
|
run_torch_compile_tests:
|
||||||
name: PyTorch Compile CUDA tests
|
name: PyTorch Compile CUDA tests
|
||||||
|
|
||||||
@@ -262,8 +166,8 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
|
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-compile-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
options: --gpus all --shm-size "16gb" --ipc host
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
@@ -306,7 +210,7 @@ jobs:
|
|||||||
|
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-xformers-cuda
|
image: diffusers/diffusers-pytorch-xformers-cuda
|
||||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
options: --gpus all --shm-size "16gb" --ipc host
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
@@ -348,7 +252,7 @@ jobs:
|
|||||||
|
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
options: --gpus all --shm-size "16gb" --ipc host
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
|
|||||||
28
.github/workflows/push_tests_fast.yml
vendored
28
.github/workflows/push_tests_fast.yml
vendored
@@ -33,16 +33,6 @@ jobs:
|
|||||||
runner: aws-general-8-plus
|
runner: aws-general-8-plus
|
||||||
image: diffusers/diffusers-pytorch-cpu
|
image: diffusers/diffusers-pytorch-cpu
|
||||||
report: torch_cpu
|
report: torch_cpu
|
||||||
- name: Fast Flax CPU tests on Ubuntu
|
|
||||||
framework: flax
|
|
||||||
runner: aws-general-8-plus
|
|
||||||
image: diffusers/diffusers-flax-cpu
|
|
||||||
report: flax_cpu
|
|
||||||
- name: Fast ONNXRuntime CPU tests on Ubuntu
|
|
||||||
framework: onnxruntime
|
|
||||||
runner: aws-general-8-plus
|
|
||||||
image: diffusers/diffusers-onnxruntime-cpu
|
|
||||||
report: onnx_cpu
|
|
||||||
- name: PyTorch Example CPU tests on Ubuntu
|
- name: PyTorch Example CPU tests on Ubuntu
|
||||||
framework: pytorch_examples
|
framework: pytorch_examples
|
||||||
runner: aws-general-8-plus
|
runner: aws-general-8-plus
|
||||||
@@ -87,24 +77,6 @@ jobs:
|
|||||||
--make-reports=tests_${{ matrix.config.report }} \
|
--make-reports=tests_${{ matrix.config.report }} \
|
||||||
tests/
|
tests/
|
||||||
|
|
||||||
- name: Run fast Flax TPU tests
|
|
||||||
if: ${{ matrix.config.framework == 'flax' }}
|
|
||||||
run: |
|
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
|
||||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
|
||||||
-s -v -k "Flax" \
|
|
||||||
--make-reports=tests_${{ matrix.config.report }} \
|
|
||||||
tests/
|
|
||||||
|
|
||||||
- name: Run fast ONNXRuntime CPU tests
|
|
||||||
if: ${{ matrix.config.framework == 'onnxruntime' }}
|
|
||||||
run: |
|
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
|
||||||
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
|
|
||||||
-s -v -k "Onnx" \
|
|
||||||
--make-reports=tests_${{ matrix.config.report }} \
|
|
||||||
tests/
|
|
||||||
|
|
||||||
- name: Run example PyTorch CPU tests
|
- name: Run example PyTorch CPU tests
|
||||||
if: ${{ matrix.config.framework == 'pytorch_examples' }}
|
if: ${{ matrix.config.framework == 'pytorch_examples' }}
|
||||||
run: |
|
run: |
|
||||||
|
|||||||
7
.github/workflows/push_tests_mps.yml
vendored
7
.github/workflows/push_tests_mps.yml
vendored
@@ -1,12 +1,7 @@
|
|||||||
name: Fast mps tests on main
|
name: Fast mps tests on main
|
||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
workflow_dispatch:
|
||||||
branches:
|
|
||||||
- main
|
|
||||||
paths:
|
|
||||||
- "src/diffusers/**.py"
|
|
||||||
- "tests/**.py"
|
|
||||||
|
|
||||||
env:
|
env:
|
||||||
DIFFUSERS_IS_CI: yes
|
DIFFUSERS_IS_CI: yes
|
||||||
|
|||||||
109
.github/workflows/release_tests_fast.yml
vendored
109
.github/workflows/release_tests_fast.yml
vendored
@@ -62,7 +62,7 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@@ -107,7 +107,7 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
@@ -163,7 +163,7 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-minimum-cuda
|
image: diffusers/diffusers-pytorch-minimum-cuda
|
||||||
options: --shm-size "16gb" --ipc host --gpus 0
|
options: --shm-size "16gb" --ipc host --gpus all
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
@@ -213,101 +213,6 @@ jobs:
|
|||||||
with:
|
with:
|
||||||
name: torch_minimum_version_cuda_test_reports
|
name: torch_minimum_version_cuda_test_reports
|
||||||
path: reports
|
path: reports
|
||||||
|
|
||||||
flax_tpu_tests:
|
|
||||||
name: Flax TPU Tests
|
|
||||||
runs-on: docker-tpu
|
|
||||||
container:
|
|
||||||
image: diffusers/diffusers-flax-tpu
|
|
||||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
|
|
||||||
defaults:
|
|
||||||
run:
|
|
||||||
shell: bash
|
|
||||||
steps:
|
|
||||||
- name: Checkout diffusers
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
fetch-depth: 2
|
|
||||||
|
|
||||||
- name: Install dependencies
|
|
||||||
run: |
|
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
|
||||||
python -m uv pip install -e [quality,test]
|
|
||||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
|
||||||
|
|
||||||
- name: Environment
|
|
||||||
run: |
|
|
||||||
python utils/print_env.py
|
|
||||||
|
|
||||||
- name: Run slow Flax TPU tests
|
|
||||||
env:
|
|
||||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
|
||||||
run: |
|
|
||||||
python -m pytest -n 0 \
|
|
||||||
-s -v -k "Flax" \
|
|
||||||
--make-reports=tests_flax_tpu \
|
|
||||||
tests/
|
|
||||||
|
|
||||||
- name: Failure short reports
|
|
||||||
if: ${{ failure() }}
|
|
||||||
run: |
|
|
||||||
cat reports/tests_flax_tpu_stats.txt
|
|
||||||
cat reports/tests_flax_tpu_failures_short.txt
|
|
||||||
|
|
||||||
- name: Test suite reports artifacts
|
|
||||||
if: ${{ always() }}
|
|
||||||
uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: flax_tpu_test_reports
|
|
||||||
path: reports
|
|
||||||
|
|
||||||
onnx_cuda_tests:
|
|
||||||
name: ONNX CUDA Tests
|
|
||||||
runs-on:
|
|
||||||
group: aws-g4dn-2xlarge
|
|
||||||
container:
|
|
||||||
image: diffusers/diffusers-onnxruntime-cuda
|
|
||||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
|
|
||||||
defaults:
|
|
||||||
run:
|
|
||||||
shell: bash
|
|
||||||
steps:
|
|
||||||
- name: Checkout diffusers
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
fetch-depth: 2
|
|
||||||
|
|
||||||
- name: Install dependencies
|
|
||||||
run: |
|
|
||||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
|
||||||
python -m uv pip install -e [quality,test]
|
|
||||||
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
|
||||||
|
|
||||||
- name: Environment
|
|
||||||
run: |
|
|
||||||
python utils/print_env.py
|
|
||||||
|
|
||||||
- name: Run slow ONNXRuntime CUDA tests
|
|
||||||
env:
|
|
||||||
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
|
|
||||||
run: |
|
|
||||||
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
|
|
||||||
-s -v -k "Onnx" \
|
|
||||||
--make-reports=tests_onnx_cuda \
|
|
||||||
tests/
|
|
||||||
|
|
||||||
- name: Failure short reports
|
|
||||||
if: ${{ failure() }}
|
|
||||||
run: |
|
|
||||||
cat reports/tests_onnx_cuda_stats.txt
|
|
||||||
cat reports/tests_onnx_cuda_failures_short.txt
|
|
||||||
|
|
||||||
- name: Test suite reports artifacts
|
|
||||||
if: ${{ always() }}
|
|
||||||
uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: onnx_cuda_test_reports
|
|
||||||
path: reports
|
|
||||||
|
|
||||||
run_torch_compile_tests:
|
run_torch_compile_tests:
|
||||||
name: PyTorch Compile CUDA tests
|
name: PyTorch Compile CUDA tests
|
||||||
@@ -316,8 +221,8 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
|
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-compile-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
options: --gpus all --shm-size "16gb" --ipc host
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
@@ -360,7 +265,7 @@ jobs:
|
|||||||
|
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-xformers-cuda
|
image: diffusers/diffusers-pytorch-xformers-cuda
|
||||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
options: --gpus all --shm-size "16gb" --ipc host
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
@@ -402,7 +307,7 @@ jobs:
|
|||||||
|
|
||||||
container:
|
container:
|
||||||
image: diffusers/diffusers-pytorch-cuda
|
image: diffusers/diffusers-pytorch-cuda
|
||||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
options: --gpus all --shm-size "16gb" --ipc host
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
|
|||||||
2
.github/workflows/run_tests_from_a_pr.yml
vendored
2
.github/workflows/run_tests_from_a_pr.yml
vendored
@@ -30,7 +30,7 @@ jobs:
|
|||||||
group: aws-g4dn-2xlarge
|
group: aws-g4dn-2xlarge
|
||||||
container:
|
container:
|
||||||
image: ${{ github.event.inputs.docker_image }}
|
image: ${{ github.event.inputs.docker_image }}
|
||||||
options: --gpus 0 --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Validate test files input
|
- name: Validate test files input
|
||||||
|
|||||||
2
.github/workflows/ssh-runner.yml
vendored
2
.github/workflows/ssh-runner.yml
vendored
@@ -31,7 +31,7 @@ jobs:
|
|||||||
group: "${{ github.event.inputs.runner_type }}"
|
group: "${{ github.event.inputs.runner_type }}"
|
||||||
container:
|
container:
|
||||||
image: ${{ github.event.inputs.docker_image }}
|
image: ${{ github.event.inputs.docker_image }}
|
||||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
|
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus all --privileged
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout diffusers
|
- name: Checkout diffusers
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
69
benchmarks/README.md
Normal file
69
benchmarks/README.md
Normal file
@@ -0,0 +1,69 @@
|
|||||||
|
# Diffusers Benchmarks
|
||||||
|
|
||||||
|
Welcome to Diffusers Benchmarks. These benchmarks are use to obtain latency and memory information of the most popular models across different scenarios such as:
|
||||||
|
|
||||||
|
* Base case i.e., when using `torch.bfloat16` and `torch.nn.functional.scaled_dot_product_attention`.
|
||||||
|
* Base + `torch.compile()`
|
||||||
|
* NF4 quantization
|
||||||
|
* Layerwise upcasting
|
||||||
|
|
||||||
|
Instead of full diffusion pipelines, only the forward pass of the respective model classes (such as `FluxTransformer2DModel`) is tested with the real checkpoints (such as `"black-forest-labs/FLUX.1-dev"`).
|
||||||
|
|
||||||
|
The entrypoint to running all the currently available benchmarks is in `run_all.py`. However, one can run the individual benchmarks, too, e.g., `python benchmarking_flux.py`. It should produce a CSV file containing various information about the benchmarks run.
|
||||||
|
|
||||||
|
The benchmarks are run on a weekly basis and the CI is defined in [benchmark.yml](../.github/workflows/benchmark.yml).
|
||||||
|
|
||||||
|
## Running the benchmarks manually
|
||||||
|
|
||||||
|
First set up `torch` and install `diffusers` from the root of the directory:
|
||||||
|
|
||||||
|
```py
|
||||||
|
pip install -e ".[quality,test]"
|
||||||
|
```
|
||||||
|
|
||||||
|
Then make sure the other dependencies are installed:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
cd benchmarks/
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
We need to be authenticated to access some of the checkpoints used during benchmarking:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
hf auth login
|
||||||
|
```
|
||||||
|
|
||||||
|
We use an L40 GPU with 128GB RAM to run the benchmark CI. As such, the benchmarks are configured to run on NVIDIA GPUs. So, make sure you have access to a similar machine (or modify the benchmarking scripts accordingly).
|
||||||
|
|
||||||
|
Then you can either launch the entire benchmarking suite by running:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
python run_all.py
|
||||||
|
```
|
||||||
|
|
||||||
|
Or, you can run the individual benchmarks.
|
||||||
|
|
||||||
|
## Customizing the benchmarks
|
||||||
|
|
||||||
|
We define "scenarios" to cover the most common ways in which these models are used. You can
|
||||||
|
define a new scenario, modifying an existing benchmark file:
|
||||||
|
|
||||||
|
```py
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-bnb-8bit",
|
||||||
|
model_cls=FluxTransformer2DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
"quantization_config": BitsAndBytesConfig(load_in_8bit=True),
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=model_init_fn,
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also configure a new model-level benchmark and add it to the existing suite. To do so, just defining a valid benchmarking file like `benchmarking_flux.py` should be enough.
|
||||||
|
|
||||||
|
Happy benchmarking 🧨
|
||||||
@@ -1,346 +0,0 @@
|
|||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from diffusers import (
|
|
||||||
AutoPipelineForImage2Image,
|
|
||||||
AutoPipelineForInpainting,
|
|
||||||
AutoPipelineForText2Image,
|
|
||||||
ControlNetModel,
|
|
||||||
LCMScheduler,
|
|
||||||
StableDiffusionAdapterPipeline,
|
|
||||||
StableDiffusionControlNetPipeline,
|
|
||||||
StableDiffusionXLAdapterPipeline,
|
|
||||||
StableDiffusionXLControlNetPipeline,
|
|
||||||
T2IAdapter,
|
|
||||||
WuerstchenCombinedPipeline,
|
|
||||||
)
|
|
||||||
from diffusers.utils import load_image
|
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
|
||||||
|
|
||||||
from utils import ( # noqa: E402
|
|
||||||
BASE_PATH,
|
|
||||||
PROMPT,
|
|
||||||
BenchmarkInfo,
|
|
||||||
benchmark_fn,
|
|
||||||
bytes_to_giga_bytes,
|
|
||||||
flush,
|
|
||||||
generate_csv_dict,
|
|
||||||
write_to_csv,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
RESOLUTION_MAPPING = {
|
|
||||||
"Lykon/DreamShaper": (512, 512),
|
|
||||||
"lllyasviel/sd-controlnet-canny": (512, 512),
|
|
||||||
"diffusers/controlnet-canny-sdxl-1.0": (1024, 1024),
|
|
||||||
"TencentARC/t2iadapter_canny_sd14v1": (512, 512),
|
|
||||||
"TencentARC/t2i-adapter-canny-sdxl-1.0": (1024, 1024),
|
|
||||||
"stabilityai/stable-diffusion-2-1": (768, 768),
|
|
||||||
"stabilityai/stable-diffusion-xl-base-1.0": (1024, 1024),
|
|
||||||
"stabilityai/stable-diffusion-xl-refiner-1.0": (1024, 1024),
|
|
||||||
"stabilityai/sdxl-turbo": (512, 512),
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
class BaseBenchmak:
|
|
||||||
pipeline_class = None
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
def run_inference(self, args):
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
def benchmark(self, args):
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
def get_result_filepath(self, args):
|
|
||||||
pipeline_class_name = str(self.pipe.__class__.__name__)
|
|
||||||
name = (
|
|
||||||
args.ckpt.replace("/", "_")
|
|
||||||
+ "_"
|
|
||||||
+ pipeline_class_name
|
|
||||||
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
|
|
||||||
)
|
|
||||||
filepath = os.path.join(BASE_PATH, name)
|
|
||||||
return filepath
|
|
||||||
|
|
||||||
|
|
||||||
class TextToImageBenchmark(BaseBenchmak):
|
|
||||||
pipeline_class = AutoPipelineForText2Image
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
|
|
||||||
pipe = pipe.to("cuda")
|
|
||||||
|
|
||||||
if args.run_compile:
|
|
||||||
if not isinstance(pipe, WuerstchenCombinedPipeline):
|
|
||||||
pipe.unet.to(memory_format=torch.channels_last)
|
|
||||||
print("Run torch compile")
|
|
||||||
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
||||||
|
|
||||||
if hasattr(pipe, "movq") and getattr(pipe, "movq", None) is not None:
|
|
||||||
pipe.movq.to(memory_format=torch.channels_last)
|
|
||||||
pipe.movq = torch.compile(pipe.movq, mode="reduce-overhead", fullgraph=True)
|
|
||||||
else:
|
|
||||||
print("Run torch compile")
|
|
||||||
pipe.decoder = torch.compile(pipe.decoder, mode="reduce-overhead", fullgraph=True)
|
|
||||||
pipe.vqgan = torch.compile(pipe.vqgan, mode="reduce-overhead", fullgraph=True)
|
|
||||||
|
|
||||||
pipe.set_progress_bar_config(disable=True)
|
|
||||||
self.pipe = pipe
|
|
||||||
|
|
||||||
def run_inference(self, pipe, args):
|
|
||||||
_ = pipe(
|
|
||||||
prompt=PROMPT,
|
|
||||||
num_inference_steps=args.num_inference_steps,
|
|
||||||
num_images_per_prompt=args.batch_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
def benchmark(self, args):
|
|
||||||
flush()
|
|
||||||
|
|
||||||
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")
|
|
||||||
|
|
||||||
time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds.
|
|
||||||
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs.
|
|
||||||
benchmark_info = BenchmarkInfo(time=time, memory=memory)
|
|
||||||
|
|
||||||
pipeline_class_name = str(self.pipe.__class__.__name__)
|
|
||||||
flush()
|
|
||||||
csv_dict = generate_csv_dict(
|
|
||||||
pipeline_cls=pipeline_class_name, ckpt=args.ckpt, args=args, benchmark_info=benchmark_info
|
|
||||||
)
|
|
||||||
filepath = self.get_result_filepath(args)
|
|
||||||
write_to_csv(filepath, csv_dict)
|
|
||||||
print(f"Logs written to: {filepath}")
|
|
||||||
flush()
|
|
||||||
|
|
||||||
|
|
||||||
class TurboTextToImageBenchmark(TextToImageBenchmark):
|
|
||||||
def __init__(self, args):
|
|
||||||
super().__init__(args)
|
|
||||||
|
|
||||||
def run_inference(self, pipe, args):
|
|
||||||
_ = pipe(
|
|
||||||
prompt=PROMPT,
|
|
||||||
num_inference_steps=args.num_inference_steps,
|
|
||||||
num_images_per_prompt=args.batch_size,
|
|
||||||
guidance_scale=0.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class LCMLoRATextToImageBenchmark(TextToImageBenchmark):
|
|
||||||
lora_id = "latent-consistency/lcm-lora-sdxl"
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
super().__init__(args)
|
|
||||||
self.pipe.load_lora_weights(self.lora_id)
|
|
||||||
self.pipe.fuse_lora()
|
|
||||||
self.pipe.unload_lora_weights()
|
|
||||||
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
|
||||||
|
|
||||||
def get_result_filepath(self, args):
|
|
||||||
pipeline_class_name = str(self.pipe.__class__.__name__)
|
|
||||||
name = (
|
|
||||||
self.lora_id.replace("/", "_")
|
|
||||||
+ "_"
|
|
||||||
+ pipeline_class_name
|
|
||||||
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
|
|
||||||
)
|
|
||||||
filepath = os.path.join(BASE_PATH, name)
|
|
||||||
return filepath
|
|
||||||
|
|
||||||
def run_inference(self, pipe, args):
|
|
||||||
_ = pipe(
|
|
||||||
prompt=PROMPT,
|
|
||||||
num_inference_steps=args.num_inference_steps,
|
|
||||||
num_images_per_prompt=args.batch_size,
|
|
||||||
guidance_scale=1.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
def benchmark(self, args):
|
|
||||||
flush()
|
|
||||||
|
|
||||||
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")
|
|
||||||
|
|
||||||
time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds.
|
|
||||||
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs.
|
|
||||||
benchmark_info = BenchmarkInfo(time=time, memory=memory)
|
|
||||||
|
|
||||||
pipeline_class_name = str(self.pipe.__class__.__name__)
|
|
||||||
flush()
|
|
||||||
csv_dict = generate_csv_dict(
|
|
||||||
pipeline_cls=pipeline_class_name, ckpt=self.lora_id, args=args, benchmark_info=benchmark_info
|
|
||||||
)
|
|
||||||
filepath = self.get_result_filepath(args)
|
|
||||||
write_to_csv(filepath, csv_dict)
|
|
||||||
print(f"Logs written to: {filepath}")
|
|
||||||
flush()
|
|
||||||
|
|
||||||
|
|
||||||
class ImageToImageBenchmark(TextToImageBenchmark):
|
|
||||||
pipeline_class = AutoPipelineForImage2Image
|
|
||||||
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/1665_Girl_with_a_Pearl_Earring.jpg"
|
|
||||||
image = load_image(url).convert("RGB")
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
super().__init__(args)
|
|
||||||
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
|
|
||||||
|
|
||||||
def run_inference(self, pipe, args):
|
|
||||||
_ = pipe(
|
|
||||||
prompt=PROMPT,
|
|
||||||
image=self.image,
|
|
||||||
num_inference_steps=args.num_inference_steps,
|
|
||||||
num_images_per_prompt=args.batch_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class TurboImageToImageBenchmark(ImageToImageBenchmark):
|
|
||||||
def __init__(self, args):
|
|
||||||
super().__init__(args)
|
|
||||||
|
|
||||||
def run_inference(self, pipe, args):
|
|
||||||
_ = pipe(
|
|
||||||
prompt=PROMPT,
|
|
||||||
image=self.image,
|
|
||||||
num_inference_steps=args.num_inference_steps,
|
|
||||||
num_images_per_prompt=args.batch_size,
|
|
||||||
guidance_scale=0.0,
|
|
||||||
strength=0.5,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class InpaintingBenchmark(ImageToImageBenchmark):
|
|
||||||
pipeline_class = AutoPipelineForInpainting
|
|
||||||
mask_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/overture-creations-5sI6fQgYIuo_mask.png"
|
|
||||||
mask = load_image(mask_url).convert("RGB")
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
super().__init__(args)
|
|
||||||
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
|
|
||||||
self.mask = self.mask.resize(RESOLUTION_MAPPING[args.ckpt])
|
|
||||||
|
|
||||||
def run_inference(self, pipe, args):
|
|
||||||
_ = pipe(
|
|
||||||
prompt=PROMPT,
|
|
||||||
image=self.image,
|
|
||||||
mask_image=self.mask,
|
|
||||||
num_inference_steps=args.num_inference_steps,
|
|
||||||
num_images_per_prompt=args.batch_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class IPAdapterTextToImageBenchmark(TextToImageBenchmark):
|
|
||||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png"
|
|
||||||
image = load_image(url)
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16).to("cuda")
|
|
||||||
pipe.load_ip_adapter(
|
|
||||||
args.ip_adapter_id[0],
|
|
||||||
subfolder="models" if "sdxl" not in args.ip_adapter_id[1] else "sdxl_models",
|
|
||||||
weight_name=args.ip_adapter_id[1],
|
|
||||||
)
|
|
||||||
|
|
||||||
if args.run_compile:
|
|
||||||
pipe.unet.to(memory_format=torch.channels_last)
|
|
||||||
print("Run torch compile")
|
|
||||||
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
||||||
|
|
||||||
pipe.set_progress_bar_config(disable=True)
|
|
||||||
self.pipe = pipe
|
|
||||||
|
|
||||||
def run_inference(self, pipe, args):
|
|
||||||
_ = pipe(
|
|
||||||
prompt=PROMPT,
|
|
||||||
ip_adapter_image=self.image,
|
|
||||||
num_inference_steps=args.num_inference_steps,
|
|
||||||
num_images_per_prompt=args.batch_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class ControlNetBenchmark(TextToImageBenchmark):
|
|
||||||
pipeline_class = StableDiffusionControlNetPipeline
|
|
||||||
aux_network_class = ControlNetModel
|
|
||||||
root_ckpt = "Lykon/DreamShaper"
|
|
||||||
|
|
||||||
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png"
|
|
||||||
image = load_image(url).convert("RGB")
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
|
|
||||||
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, controlnet=aux_network, torch_dtype=torch.float16)
|
|
||||||
pipe = pipe.to("cuda")
|
|
||||||
|
|
||||||
pipe.set_progress_bar_config(disable=True)
|
|
||||||
self.pipe = pipe
|
|
||||||
|
|
||||||
if args.run_compile:
|
|
||||||
pipe.unet.to(memory_format=torch.channels_last)
|
|
||||||
pipe.controlnet.to(memory_format=torch.channels_last)
|
|
||||||
|
|
||||||
print("Run torch compile")
|
|
||||||
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
||||||
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
|
|
||||||
|
|
||||||
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
|
|
||||||
|
|
||||||
def run_inference(self, pipe, args):
|
|
||||||
_ = pipe(
|
|
||||||
prompt=PROMPT,
|
|
||||||
image=self.image,
|
|
||||||
num_inference_steps=args.num_inference_steps,
|
|
||||||
num_images_per_prompt=args.batch_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class ControlNetSDXLBenchmark(ControlNetBenchmark):
|
|
||||||
pipeline_class = StableDiffusionXLControlNetPipeline
|
|
||||||
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
super().__init__(args)
|
|
||||||
|
|
||||||
|
|
||||||
class T2IAdapterBenchmark(ControlNetBenchmark):
|
|
||||||
pipeline_class = StableDiffusionAdapterPipeline
|
|
||||||
aux_network_class = T2IAdapter
|
|
||||||
root_ckpt = "Lykon/DreamShaper"
|
|
||||||
|
|
||||||
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png"
|
|
||||||
image = load_image(url).convert("L")
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
|
|
||||||
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, adapter=aux_network, torch_dtype=torch.float16)
|
|
||||||
pipe = pipe.to("cuda")
|
|
||||||
|
|
||||||
pipe.set_progress_bar_config(disable=True)
|
|
||||||
self.pipe = pipe
|
|
||||||
|
|
||||||
if args.run_compile:
|
|
||||||
pipe.unet.to(memory_format=torch.channels_last)
|
|
||||||
pipe.adapter.to(memory_format=torch.channels_last)
|
|
||||||
|
|
||||||
print("Run torch compile")
|
|
||||||
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
||||||
pipe.adapter = torch.compile(pipe.adapter, mode="reduce-overhead", fullgraph=True)
|
|
||||||
|
|
||||||
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
|
|
||||||
|
|
||||||
|
|
||||||
class T2IAdapterSDXLBenchmark(T2IAdapterBenchmark):
|
|
||||||
pipeline_class = StableDiffusionXLAdapterPipeline
|
|
||||||
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
||||||
|
|
||||||
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter_sdxl.png"
|
|
||||||
image = load_image(url)
|
|
||||||
|
|
||||||
def __init__(self, args):
|
|
||||||
super().__init__(args)
|
|
||||||
@@ -1,26 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import sys
|
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
|
||||||
from base_classes import ControlNetBenchmark, ControlNetSDXLBenchmark # noqa: E402
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--ckpt",
|
|
||||||
type=str,
|
|
||||||
default="lllyasviel/sd-controlnet-canny",
|
|
||||||
choices=["lllyasviel/sd-controlnet-canny", "diffusers/controlnet-canny-sdxl-1.0"],
|
|
||||||
)
|
|
||||||
parser.add_argument("--batch_size", type=int, default=1)
|
|
||||||
parser.add_argument("--num_inference_steps", type=int, default=50)
|
|
||||||
parser.add_argument("--model_cpu_offload", action="store_true")
|
|
||||||
parser.add_argument("--run_compile", action="store_true")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
benchmark_pipe = (
|
|
||||||
ControlNetBenchmark(args) if args.ckpt == "lllyasviel/sd-controlnet-canny" else ControlNetSDXLBenchmark(args)
|
|
||||||
)
|
|
||||||
benchmark_pipe.benchmark(args)
|
|
||||||
@@ -1,33 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import sys
|
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
|
||||||
from base_classes import IPAdapterTextToImageBenchmark # noqa: E402
|
|
||||||
|
|
||||||
|
|
||||||
IP_ADAPTER_CKPTS = {
|
|
||||||
# because original SD v1.5 has been taken down.
|
|
||||||
"Lykon/DreamShaper": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
|
|
||||||
"stabilityai/stable-diffusion-xl-base-1.0": ("h94/IP-Adapter", "ip-adapter_sdxl.bin"),
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--ckpt",
|
|
||||||
type=str,
|
|
||||||
default="rstabilityai/stable-diffusion-xl-base-1.0",
|
|
||||||
choices=list(IP_ADAPTER_CKPTS.keys()),
|
|
||||||
)
|
|
||||||
parser.add_argument("--batch_size", type=int, default=1)
|
|
||||||
parser.add_argument("--num_inference_steps", type=int, default=50)
|
|
||||||
parser.add_argument("--model_cpu_offload", action="store_true")
|
|
||||||
parser.add_argument("--run_compile", action="store_true")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
args.ip_adapter_id = IP_ADAPTER_CKPTS[args.ckpt]
|
|
||||||
benchmark_pipe = IPAdapterTextToImageBenchmark(args)
|
|
||||||
args.ckpt = f"{args.ckpt} (IP-Adapter)"
|
|
||||||
benchmark_pipe.benchmark(args)
|
|
||||||
@@ -1,29 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import sys
|
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
|
||||||
from base_classes import ImageToImageBenchmark, TurboImageToImageBenchmark # noqa: E402
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--ckpt",
|
|
||||||
type=str,
|
|
||||||
default="Lykon/DreamShaper",
|
|
||||||
choices=[
|
|
||||||
"Lykon/DreamShaper",
|
|
||||||
"stabilityai/stable-diffusion-2-1",
|
|
||||||
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
|
||||||
"stabilityai/sdxl-turbo",
|
|
||||||
],
|
|
||||||
)
|
|
||||||
parser.add_argument("--batch_size", type=int, default=1)
|
|
||||||
parser.add_argument("--num_inference_steps", type=int, default=50)
|
|
||||||
parser.add_argument("--model_cpu_offload", action="store_true")
|
|
||||||
parser.add_argument("--run_compile", action="store_true")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
benchmark_pipe = ImageToImageBenchmark(args) if "turbo" not in args.ckpt else TurboImageToImageBenchmark(args)
|
|
||||||
benchmark_pipe.benchmark(args)
|
|
||||||
@@ -1,28 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import sys
|
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
|
||||||
from base_classes import InpaintingBenchmark # noqa: E402
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--ckpt",
|
|
||||||
type=str,
|
|
||||||
default="Lykon/DreamShaper",
|
|
||||||
choices=[
|
|
||||||
"Lykon/DreamShaper",
|
|
||||||
"stabilityai/stable-diffusion-2-1",
|
|
||||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
||||||
],
|
|
||||||
)
|
|
||||||
parser.add_argument("--batch_size", type=int, default=1)
|
|
||||||
parser.add_argument("--num_inference_steps", type=int, default=50)
|
|
||||||
parser.add_argument("--model_cpu_offload", action="store_true")
|
|
||||||
parser.add_argument("--run_compile", action="store_true")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
benchmark_pipe = InpaintingBenchmark(args)
|
|
||||||
benchmark_pipe.benchmark(args)
|
|
||||||
@@ -1,28 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import sys
|
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
|
||||||
from base_classes import T2IAdapterBenchmark, T2IAdapterSDXLBenchmark # noqa: E402
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--ckpt",
|
|
||||||
type=str,
|
|
||||||
default="TencentARC/t2iadapter_canny_sd14v1",
|
|
||||||
choices=["TencentARC/t2iadapter_canny_sd14v1", "TencentARC/t2i-adapter-canny-sdxl-1.0"],
|
|
||||||
)
|
|
||||||
parser.add_argument("--batch_size", type=int, default=1)
|
|
||||||
parser.add_argument("--num_inference_steps", type=int, default=50)
|
|
||||||
parser.add_argument("--model_cpu_offload", action="store_true")
|
|
||||||
parser.add_argument("--run_compile", action="store_true")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
benchmark_pipe = (
|
|
||||||
T2IAdapterBenchmark(args)
|
|
||||||
if args.ckpt == "TencentARC/t2iadapter_canny_sd14v1"
|
|
||||||
else T2IAdapterSDXLBenchmark(args)
|
|
||||||
)
|
|
||||||
benchmark_pipe.benchmark(args)
|
|
||||||
@@ -1,23 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import sys
|
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
|
||||||
from base_classes import LCMLoRATextToImageBenchmark # noqa: E402
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--ckpt",
|
|
||||||
type=str,
|
|
||||||
default="stabilityai/stable-diffusion-xl-base-1.0",
|
|
||||||
)
|
|
||||||
parser.add_argument("--batch_size", type=int, default=1)
|
|
||||||
parser.add_argument("--num_inference_steps", type=int, default=4)
|
|
||||||
parser.add_argument("--model_cpu_offload", action="store_true")
|
|
||||||
parser.add_argument("--run_compile", action="store_true")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
benchmark_pipe = LCMLoRATextToImageBenchmark(args)
|
|
||||||
benchmark_pipe.benchmark(args)
|
|
||||||
@@ -1,40 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import sys
|
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
|
||||||
from base_classes import TextToImageBenchmark, TurboTextToImageBenchmark # noqa: E402
|
|
||||||
|
|
||||||
|
|
||||||
ALL_T2I_CKPTS = [
|
|
||||||
"Lykon/DreamShaper",
|
|
||||||
"segmind/SSD-1B",
|
|
||||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
||||||
"kandinsky-community/kandinsky-2-2-decoder",
|
|
||||||
"warp-ai/wuerstchen",
|
|
||||||
"stabilityai/sdxl-turbo",
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--ckpt",
|
|
||||||
type=str,
|
|
||||||
default="Lykon/DreamShaper",
|
|
||||||
choices=ALL_T2I_CKPTS,
|
|
||||||
)
|
|
||||||
parser.add_argument("--batch_size", type=int, default=1)
|
|
||||||
parser.add_argument("--num_inference_steps", type=int, default=50)
|
|
||||||
parser.add_argument("--model_cpu_offload", action="store_true")
|
|
||||||
parser.add_argument("--run_compile", action="store_true")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
benchmark_cls = None
|
|
||||||
if "turbo" in args.ckpt:
|
|
||||||
benchmark_cls = TurboTextToImageBenchmark
|
|
||||||
else:
|
|
||||||
benchmark_cls = TextToImageBenchmark
|
|
||||||
|
|
||||||
benchmark_pipe = benchmark_cls(args)
|
|
||||||
benchmark_pipe.benchmark(args)
|
|
||||||
98
benchmarks/benchmarking_flux.py
Normal file
98
benchmarks/benchmarking_flux.py
Normal file
@@ -0,0 +1,98 @@
|
|||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn
|
||||||
|
|
||||||
|
from diffusers import BitsAndBytesConfig, FluxTransformer2DModel
|
||||||
|
from diffusers.utils.testing_utils import torch_device
|
||||||
|
|
||||||
|
|
||||||
|
CKPT_ID = "black-forest-labs/FLUX.1-dev"
|
||||||
|
RESULT_FILENAME = "flux.csv"
|
||||||
|
|
||||||
|
|
||||||
|
def get_input_dict(**device_dtype_kwargs):
|
||||||
|
# resolution: 1024x1024
|
||||||
|
# maximum sequence length 512
|
||||||
|
hidden_states = torch.randn(1, 4096, 64, **device_dtype_kwargs)
|
||||||
|
encoder_hidden_states = torch.randn(1, 512, 4096, **device_dtype_kwargs)
|
||||||
|
pooled_prompt_embeds = torch.randn(1, 768, **device_dtype_kwargs)
|
||||||
|
image_ids = torch.ones(512, 3, **device_dtype_kwargs)
|
||||||
|
text_ids = torch.ones(4096, 3, **device_dtype_kwargs)
|
||||||
|
timestep = torch.tensor([1.0], **device_dtype_kwargs)
|
||||||
|
guidance = torch.tensor([1.0], **device_dtype_kwargs)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"hidden_states": hidden_states,
|
||||||
|
"encoder_hidden_states": encoder_hidden_states,
|
||||||
|
"img_ids": image_ids,
|
||||||
|
"txt_ids": text_ids,
|
||||||
|
"pooled_projections": pooled_prompt_embeds,
|
||||||
|
"timestep": timestep,
|
||||||
|
"guidance": guidance,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
scenarios = [
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-bf16",
|
||||||
|
model_cls=FluxTransformer2DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=model_init_fn,
|
||||||
|
compile_kwargs={"fullgraph": True},
|
||||||
|
),
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-bnb-nf4",
|
||||||
|
model_cls=FluxTransformer2DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
"quantization_config": BitsAndBytesConfig(
|
||||||
|
load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4"
|
||||||
|
),
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=model_init_fn,
|
||||||
|
),
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-layerwise-upcasting",
|
||||||
|
model_cls=FluxTransformer2DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=partial(model_init_fn, layerwise_upcasting=True),
|
||||||
|
),
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-group-offload-leaf",
|
||||||
|
model_cls=FluxTransformer2DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=partial(
|
||||||
|
model_init_fn,
|
||||||
|
group_offload_kwargs={
|
||||||
|
"onload_device": torch_device,
|
||||||
|
"offload_device": torch.device("cpu"),
|
||||||
|
"offload_type": "leaf_level",
|
||||||
|
"use_stream": True,
|
||||||
|
"non_blocking": True,
|
||||||
|
},
|
||||||
|
),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
runner = BenchmarkMixin()
|
||||||
|
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME)
|
||||||
80
benchmarks/benchmarking_ltx.py
Normal file
80
benchmarks/benchmarking_ltx.py
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn
|
||||||
|
|
||||||
|
from diffusers import LTXVideoTransformer3DModel
|
||||||
|
from diffusers.utils.testing_utils import torch_device
|
||||||
|
|
||||||
|
|
||||||
|
CKPT_ID = "Lightricks/LTX-Video-0.9.7-dev"
|
||||||
|
RESULT_FILENAME = "ltx.csv"
|
||||||
|
|
||||||
|
|
||||||
|
def get_input_dict(**device_dtype_kwargs):
|
||||||
|
# 512x704 (161 frames)
|
||||||
|
# `max_sequence_length`: 256
|
||||||
|
hidden_states = torch.randn(1, 7392, 128, **device_dtype_kwargs)
|
||||||
|
encoder_hidden_states = torch.randn(1, 256, 4096, **device_dtype_kwargs)
|
||||||
|
encoder_attention_mask = torch.ones(1, 256, **device_dtype_kwargs)
|
||||||
|
timestep = torch.tensor([1.0], **device_dtype_kwargs)
|
||||||
|
video_coords = torch.randn(1, 3, 7392, **device_dtype_kwargs)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"hidden_states": hidden_states,
|
||||||
|
"encoder_hidden_states": encoder_hidden_states,
|
||||||
|
"encoder_attention_mask": encoder_attention_mask,
|
||||||
|
"timestep": timestep,
|
||||||
|
"video_coords": video_coords,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
scenarios = [
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-bf16",
|
||||||
|
model_cls=LTXVideoTransformer3DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=model_init_fn,
|
||||||
|
compile_kwargs={"fullgraph": True},
|
||||||
|
),
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-layerwise-upcasting",
|
||||||
|
model_cls=LTXVideoTransformer3DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=partial(model_init_fn, layerwise_upcasting=True),
|
||||||
|
),
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-group-offload-leaf",
|
||||||
|
model_cls=LTXVideoTransformer3DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=partial(
|
||||||
|
model_init_fn,
|
||||||
|
group_offload_kwargs={
|
||||||
|
"onload_device": torch_device,
|
||||||
|
"offload_device": torch.device("cpu"),
|
||||||
|
"offload_type": "leaf_level",
|
||||||
|
"use_stream": True,
|
||||||
|
"non_blocking": True,
|
||||||
|
},
|
||||||
|
),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
runner = BenchmarkMixin()
|
||||||
|
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME)
|
||||||
82
benchmarks/benchmarking_sdxl.py
Normal file
82
benchmarks/benchmarking_sdxl.py
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn
|
||||||
|
|
||||||
|
from diffusers import UNet2DConditionModel
|
||||||
|
from diffusers.utils.testing_utils import torch_device
|
||||||
|
|
||||||
|
|
||||||
|
CKPT_ID = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||||
|
RESULT_FILENAME = "sdxl.csv"
|
||||||
|
|
||||||
|
|
||||||
|
def get_input_dict(**device_dtype_kwargs):
|
||||||
|
# height: 1024
|
||||||
|
# width: 1024
|
||||||
|
# max_sequence_length: 77
|
||||||
|
hidden_states = torch.randn(1, 4, 128, 128, **device_dtype_kwargs)
|
||||||
|
encoder_hidden_states = torch.randn(1, 77, 2048, **device_dtype_kwargs)
|
||||||
|
timestep = torch.tensor([1.0], **device_dtype_kwargs)
|
||||||
|
added_cond_kwargs = {
|
||||||
|
"text_embeds": torch.randn(1, 1280, **device_dtype_kwargs),
|
||||||
|
"time_ids": torch.ones(1, 6, **device_dtype_kwargs),
|
||||||
|
}
|
||||||
|
|
||||||
|
return {
|
||||||
|
"sample": hidden_states,
|
||||||
|
"encoder_hidden_states": encoder_hidden_states,
|
||||||
|
"timestep": timestep,
|
||||||
|
"added_cond_kwargs": added_cond_kwargs,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
scenarios = [
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-bf16",
|
||||||
|
model_cls=UNet2DConditionModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "unet",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=model_init_fn,
|
||||||
|
compile_kwargs={"fullgraph": True},
|
||||||
|
),
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-layerwise-upcasting",
|
||||||
|
model_cls=UNet2DConditionModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "unet",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=partial(model_init_fn, layerwise_upcasting=True),
|
||||||
|
),
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-group-offload-leaf",
|
||||||
|
model_cls=UNet2DConditionModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "unet",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=partial(
|
||||||
|
model_init_fn,
|
||||||
|
group_offload_kwargs={
|
||||||
|
"onload_device": torch_device,
|
||||||
|
"offload_device": torch.device("cpu"),
|
||||||
|
"offload_type": "leaf_level",
|
||||||
|
"use_stream": True,
|
||||||
|
"non_blocking": True,
|
||||||
|
},
|
||||||
|
),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
runner = BenchmarkMixin()
|
||||||
|
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME)
|
||||||
244
benchmarks/benchmarking_utils.py
Normal file
244
benchmarks/benchmarking_utils.py
Normal file
@@ -0,0 +1,244 @@
|
|||||||
|
import gc
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import queue
|
||||||
|
import threading
|
||||||
|
from contextlib import nullcontext
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Any, Callable, Dict, Optional, Union
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import torch
|
||||||
|
import torch.utils.benchmark as benchmark
|
||||||
|
|
||||||
|
from diffusers.models.modeling_utils import ModelMixin
|
||||||
|
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
|
||||||
|
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(name)s: %(message)s")
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
NUM_WARMUP_ROUNDS = 5
|
||||||
|
|
||||||
|
|
||||||
|
def benchmark_fn(f, *args, **kwargs):
|
||||||
|
t0 = benchmark.Timer(
|
||||||
|
stmt="f(*args, **kwargs)",
|
||||||
|
globals={"args": args, "kwargs": kwargs, "f": f},
|
||||||
|
num_threads=1,
|
||||||
|
)
|
||||||
|
return float(f"{(t0.blocked_autorange().mean):.3f}")
|
||||||
|
|
||||||
|
|
||||||
|
def flush():
|
||||||
|
gc.collect()
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.reset_max_memory_allocated()
|
||||||
|
torch.cuda.reset_peak_memory_stats()
|
||||||
|
|
||||||
|
|
||||||
|
# Adapted from https://github.com/lucasb-eyer/cnn_vit_benchmarks/blob/15b665ff758e8062131353076153905cae00a71f/main.py
|
||||||
|
def calculate_flops(model, input_dict):
|
||||||
|
try:
|
||||||
|
from torchprofile import profile_macs
|
||||||
|
except ModuleNotFoundError:
|
||||||
|
raise
|
||||||
|
|
||||||
|
# This is a hacky way to convert the kwargs to args as `profile_macs` cries about kwargs.
|
||||||
|
sig = inspect.signature(model.forward)
|
||||||
|
param_names = [
|
||||||
|
p.name
|
||||||
|
for p in sig.parameters.values()
|
||||||
|
if p.kind
|
||||||
|
in (
|
||||||
|
inspect.Parameter.POSITIONAL_ONLY,
|
||||||
|
inspect.Parameter.POSITIONAL_OR_KEYWORD,
|
||||||
|
)
|
||||||
|
and p.name != "self"
|
||||||
|
]
|
||||||
|
bound = sig.bind_partial(**input_dict)
|
||||||
|
bound.apply_defaults()
|
||||||
|
args = tuple(bound.arguments[name] for name in param_names)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
with torch.no_grad():
|
||||||
|
macs = profile_macs(model, args)
|
||||||
|
flops = 2 * macs # 1 MAC operation = 2 FLOPs (1 multiplication + 1 addition)
|
||||||
|
return flops
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_params(model):
|
||||||
|
return sum(p.numel() for p in model.parameters())
|
||||||
|
|
||||||
|
|
||||||
|
# Users can define their own in case this doesn't suffice. For most cases,
|
||||||
|
# it should be sufficient.
|
||||||
|
def model_init_fn(model_cls, group_offload_kwargs=None, layerwise_upcasting=False, **init_kwargs):
|
||||||
|
model = model_cls.from_pretrained(**init_kwargs).eval()
|
||||||
|
if group_offload_kwargs and isinstance(group_offload_kwargs, dict):
|
||||||
|
model.enable_group_offload(**group_offload_kwargs)
|
||||||
|
else:
|
||||||
|
model.to(torch_device)
|
||||||
|
if layerwise_upcasting:
|
||||||
|
model.enable_layerwise_casting(
|
||||||
|
storage_dtype=torch.float8_e4m3fn, compute_dtype=init_kwargs.get("torch_dtype", torch.bfloat16)
|
||||||
|
)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class BenchmarkScenario:
|
||||||
|
name: str
|
||||||
|
model_cls: ModelMixin
|
||||||
|
model_init_kwargs: Dict[str, Any]
|
||||||
|
model_init_fn: Callable
|
||||||
|
get_model_input_dict: Callable
|
||||||
|
compile_kwargs: Optional[Dict[str, Any]] = None
|
||||||
|
|
||||||
|
|
||||||
|
@require_torch_gpu
|
||||||
|
class BenchmarkMixin:
|
||||||
|
def pre_benchmark(self):
|
||||||
|
flush()
|
||||||
|
torch.compiler.reset()
|
||||||
|
|
||||||
|
def post_benchmark(self, model):
|
||||||
|
model.cpu()
|
||||||
|
flush()
|
||||||
|
torch.compiler.reset()
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def run_benchmark(self, scenario: BenchmarkScenario):
|
||||||
|
# 0) Basic stats
|
||||||
|
logger.info(f"Running scenario: {scenario.name}.")
|
||||||
|
try:
|
||||||
|
model = model_init_fn(scenario.model_cls, **scenario.model_init_kwargs)
|
||||||
|
num_params = round(calculate_params(model) / 1e9, 2)
|
||||||
|
try:
|
||||||
|
flops = round(calculate_flops(model, input_dict=scenario.get_model_input_dict()) / 1e9, 2)
|
||||||
|
except Exception as e:
|
||||||
|
logger.info(f"Problem in calculating FLOPs:\n{e}")
|
||||||
|
flops = None
|
||||||
|
model.cpu()
|
||||||
|
del model
|
||||||
|
except Exception as e:
|
||||||
|
logger.info(f"Error while initializing the model and calculating FLOPs:\n{e}")
|
||||||
|
return {}
|
||||||
|
self.pre_benchmark()
|
||||||
|
|
||||||
|
# 1) plain stats
|
||||||
|
results = {}
|
||||||
|
plain = None
|
||||||
|
try:
|
||||||
|
plain = self._run_phase(
|
||||||
|
model_cls=scenario.model_cls,
|
||||||
|
init_fn=scenario.model_init_fn,
|
||||||
|
init_kwargs=scenario.model_init_kwargs,
|
||||||
|
get_input_fn=scenario.get_model_input_dict,
|
||||||
|
compile_kwargs=None,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.info(f"Benchmark could not be run with the following error:\n{e}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
# 2) compiled stats (if any)
|
||||||
|
compiled = {"time": None, "memory": None}
|
||||||
|
if scenario.compile_kwargs:
|
||||||
|
try:
|
||||||
|
compiled = self._run_phase(
|
||||||
|
model_cls=scenario.model_cls,
|
||||||
|
init_fn=scenario.model_init_fn,
|
||||||
|
init_kwargs=scenario.model_init_kwargs,
|
||||||
|
get_input_fn=scenario.get_model_input_dict,
|
||||||
|
compile_kwargs=scenario.compile_kwargs,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.info(f"Compilation benchmark could not be run with the following error\n: {e}")
|
||||||
|
if plain is None:
|
||||||
|
return results
|
||||||
|
|
||||||
|
# 3) merge
|
||||||
|
result = {
|
||||||
|
"scenario": scenario.name,
|
||||||
|
"model_cls": scenario.model_cls.__name__,
|
||||||
|
"num_params_B": num_params,
|
||||||
|
"flops_G": flops,
|
||||||
|
"time_plain_s": plain["time"],
|
||||||
|
"mem_plain_GB": plain["memory"],
|
||||||
|
"time_compile_s": compiled["time"],
|
||||||
|
"mem_compile_GB": compiled["memory"],
|
||||||
|
}
|
||||||
|
if scenario.compile_kwargs:
|
||||||
|
result["fullgraph"] = scenario.compile_kwargs.get("fullgraph", False)
|
||||||
|
result["mode"] = scenario.compile_kwargs.get("mode", "default")
|
||||||
|
else:
|
||||||
|
result["fullgraph"], result["mode"] = None, None
|
||||||
|
return result
|
||||||
|
|
||||||
|
def run_bencmarks_and_collate(self, scenarios: Union[BenchmarkScenario, list[BenchmarkScenario]], filename: str):
|
||||||
|
if not isinstance(scenarios, list):
|
||||||
|
scenarios = [scenarios]
|
||||||
|
record_queue = queue.Queue()
|
||||||
|
stop_signal = object()
|
||||||
|
|
||||||
|
def _writer_thread():
|
||||||
|
while True:
|
||||||
|
item = record_queue.get()
|
||||||
|
if item is stop_signal:
|
||||||
|
break
|
||||||
|
df_row = pd.DataFrame([item])
|
||||||
|
write_header = not os.path.exists(filename)
|
||||||
|
df_row.to_csv(filename, mode="a", header=write_header, index=False)
|
||||||
|
record_queue.task_done()
|
||||||
|
|
||||||
|
record_queue.task_done()
|
||||||
|
|
||||||
|
writer = threading.Thread(target=_writer_thread, daemon=True)
|
||||||
|
writer.start()
|
||||||
|
|
||||||
|
for s in scenarios:
|
||||||
|
try:
|
||||||
|
record = self.run_benchmark(s)
|
||||||
|
if record:
|
||||||
|
record_queue.put(record)
|
||||||
|
else:
|
||||||
|
logger.info(f"Record empty from scenario: {s.name}.")
|
||||||
|
except Exception as e:
|
||||||
|
logger.info(f"Running scenario ({s.name}) led to error:\n{e}")
|
||||||
|
record_queue.put(stop_signal)
|
||||||
|
logger.info(f"Results serialized to {filename=}.")
|
||||||
|
|
||||||
|
def _run_phase(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
model_cls: ModelMixin,
|
||||||
|
init_fn: Callable,
|
||||||
|
init_kwargs: Dict[str, Any],
|
||||||
|
get_input_fn: Callable,
|
||||||
|
compile_kwargs: Optional[Dict[str, Any]],
|
||||||
|
) -> Dict[str, float]:
|
||||||
|
# setup
|
||||||
|
self.pre_benchmark()
|
||||||
|
|
||||||
|
# init & (optional) compile
|
||||||
|
model = init_fn(model_cls, **init_kwargs)
|
||||||
|
if compile_kwargs:
|
||||||
|
model.compile(**compile_kwargs)
|
||||||
|
|
||||||
|
# build inputs
|
||||||
|
inp = get_input_fn()
|
||||||
|
|
||||||
|
# measure
|
||||||
|
run_ctx = torch._inductor.utils.fresh_inductor_cache() if compile_kwargs else nullcontext()
|
||||||
|
with run_ctx:
|
||||||
|
for _ in range(NUM_WARMUP_ROUNDS):
|
||||||
|
_ = model(**inp)
|
||||||
|
time_s = benchmark_fn(lambda m, d: m(**d), model, inp)
|
||||||
|
mem_gb = torch.cuda.max_memory_allocated() / (1024**3)
|
||||||
|
mem_gb = round(mem_gb, 2)
|
||||||
|
|
||||||
|
# teardown
|
||||||
|
self.post_benchmark(model)
|
||||||
|
del model
|
||||||
|
return {"time": time_s, "memory": mem_gb}
|
||||||
74
benchmarks/benchmarking_wan.py
Normal file
74
benchmarks/benchmarking_wan.py
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn
|
||||||
|
|
||||||
|
from diffusers import WanTransformer3DModel
|
||||||
|
from diffusers.utils.testing_utils import torch_device
|
||||||
|
|
||||||
|
|
||||||
|
CKPT_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
||||||
|
RESULT_FILENAME = "wan.csv"
|
||||||
|
|
||||||
|
|
||||||
|
def get_input_dict(**device_dtype_kwargs):
|
||||||
|
# height: 480
|
||||||
|
# width: 832
|
||||||
|
# num_frames: 81
|
||||||
|
# max_sequence_length: 512
|
||||||
|
hidden_states = torch.randn(1, 16, 21, 60, 104, **device_dtype_kwargs)
|
||||||
|
encoder_hidden_states = torch.randn(1, 512, 4096, **device_dtype_kwargs)
|
||||||
|
timestep = torch.tensor([1.0], **device_dtype_kwargs)
|
||||||
|
|
||||||
|
return {"hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
scenarios = [
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-bf16",
|
||||||
|
model_cls=WanTransformer3DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=model_init_fn,
|
||||||
|
compile_kwargs={"fullgraph": True},
|
||||||
|
),
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-layerwise-upcasting",
|
||||||
|
model_cls=WanTransformer3DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=partial(model_init_fn, layerwise_upcasting=True),
|
||||||
|
),
|
||||||
|
BenchmarkScenario(
|
||||||
|
name=f"{CKPT_ID}-group-offload-leaf",
|
||||||
|
model_cls=WanTransformer3DModel,
|
||||||
|
model_init_kwargs={
|
||||||
|
"pretrained_model_name_or_path": CKPT_ID,
|
||||||
|
"torch_dtype": torch.bfloat16,
|
||||||
|
"subfolder": "transformer",
|
||||||
|
},
|
||||||
|
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
|
||||||
|
model_init_fn=partial(
|
||||||
|
model_init_fn,
|
||||||
|
group_offload_kwargs={
|
||||||
|
"onload_device": torch_device,
|
||||||
|
"offload_device": torch.device("cpu"),
|
||||||
|
"offload_type": "leaf_level",
|
||||||
|
"use_stream": True,
|
||||||
|
"non_blocking": True,
|
||||||
|
},
|
||||||
|
),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
runner = BenchmarkMixin()
|
||||||
|
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME)
|
||||||
166
benchmarks/populate_into_db.py
Normal file
166
benchmarks/populate_into_db.py
Normal file
@@ -0,0 +1,166 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import gpustat
|
||||||
|
import pandas as pd
|
||||||
|
import psycopg2
|
||||||
|
import psycopg2.extras
|
||||||
|
from psycopg2.extensions import register_adapter
|
||||||
|
from psycopg2.extras import Json
|
||||||
|
|
||||||
|
|
||||||
|
register_adapter(dict, Json)
|
||||||
|
|
||||||
|
FINAL_CSV_FILENAME = "collated_results.csv"
|
||||||
|
# https://github.com/huggingface/transformers/blob/593e29c5e2a9b17baec010e8dc7c1431fed6e841/benchmark/init_db.sql#L27
|
||||||
|
BENCHMARKS_TABLE_NAME = "benchmarks"
|
||||||
|
MEASUREMENTS_TABLE_NAME = "model_measurements"
|
||||||
|
|
||||||
|
|
||||||
|
def _init_benchmark(conn, branch, commit_id, commit_msg):
|
||||||
|
gpu_stats = gpustat.GPUStatCollection.new_query()
|
||||||
|
metadata = {"gpu_name": gpu_stats[0]["name"]}
|
||||||
|
repository = "huggingface/diffusers"
|
||||||
|
with conn.cursor() as cur:
|
||||||
|
cur.execute(
|
||||||
|
f"INSERT INTO {BENCHMARKS_TABLE_NAME} (repository, branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s, %s) RETURNING benchmark_id",
|
||||||
|
(repository, branch, commit_id, commit_msg, metadata),
|
||||||
|
)
|
||||||
|
benchmark_id = cur.fetchone()[0]
|
||||||
|
print(f"Initialised benchmark #{benchmark_id}")
|
||||||
|
return benchmark_id
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"branch",
|
||||||
|
type=str,
|
||||||
|
help="The branch name on which the benchmarking is performed.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"commit_id",
|
||||||
|
type=str,
|
||||||
|
help="The commit hash on which the benchmarking is performed.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"commit_msg",
|
||||||
|
type=str,
|
||||||
|
help="The commit message associated with the commit, truncated to 70 characters.",
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
args = parse_args()
|
||||||
|
try:
|
||||||
|
conn = psycopg2.connect(
|
||||||
|
host=os.getenv("PGHOST"),
|
||||||
|
database=os.getenv("PGDATABASE"),
|
||||||
|
user=os.getenv("PGUSER"),
|
||||||
|
password=os.getenv("PGPASSWORD"),
|
||||||
|
)
|
||||||
|
print("DB connection established successfully.")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Problem during DB init: {e}")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
try:
|
||||||
|
benchmark_id = _init_benchmark(
|
||||||
|
conn=conn,
|
||||||
|
branch=args.branch,
|
||||||
|
commit_id=args.commit_id,
|
||||||
|
commit_msg=args.commit_msg,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Problem during initializing benchmark: {e}")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
cur = conn.cursor()
|
||||||
|
|
||||||
|
df = pd.read_csv(FINAL_CSV_FILENAME)
|
||||||
|
|
||||||
|
# Helper to cast values (or None) given a dtype
|
||||||
|
def _cast_value(val, dtype: str):
|
||||||
|
if pd.isna(val):
|
||||||
|
return None
|
||||||
|
|
||||||
|
if dtype == "text":
|
||||||
|
return str(val).strip()
|
||||||
|
|
||||||
|
if dtype == "float":
|
||||||
|
try:
|
||||||
|
return float(val)
|
||||||
|
except ValueError:
|
||||||
|
return None
|
||||||
|
|
||||||
|
if dtype == "bool":
|
||||||
|
s = str(val).strip().lower()
|
||||||
|
if s in ("true", "t", "yes", "1"):
|
||||||
|
return True
|
||||||
|
if s in ("false", "f", "no", "0"):
|
||||||
|
return False
|
||||||
|
if val in (1, 1.0):
|
||||||
|
return True
|
||||||
|
if val in (0, 0.0):
|
||||||
|
return False
|
||||||
|
return None
|
||||||
|
|
||||||
|
return val
|
||||||
|
|
||||||
|
try:
|
||||||
|
rows_to_insert = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
scenario = _cast_value(row.get("scenario"), "text")
|
||||||
|
model_cls = _cast_value(row.get("model_cls"), "text")
|
||||||
|
num_params_B = _cast_value(row.get("num_params_B"), "float")
|
||||||
|
flops_G = _cast_value(row.get("flops_G"), "float")
|
||||||
|
time_plain_s = _cast_value(row.get("time_plain_s"), "float")
|
||||||
|
mem_plain_GB = _cast_value(row.get("mem_plain_GB"), "float")
|
||||||
|
time_compile_s = _cast_value(row.get("time_compile_s"), "float")
|
||||||
|
mem_compile_GB = _cast_value(row.get("mem_compile_GB"), "float")
|
||||||
|
fullgraph = _cast_value(row.get("fullgraph"), "bool")
|
||||||
|
mode = _cast_value(row.get("mode"), "text")
|
||||||
|
|
||||||
|
# If "github_sha" column exists in the CSV, cast it; else default to None
|
||||||
|
if "github_sha" in df.columns:
|
||||||
|
github_sha = _cast_value(row.get("github_sha"), "text")
|
||||||
|
else:
|
||||||
|
github_sha = None
|
||||||
|
|
||||||
|
measurements = {
|
||||||
|
"scenario": scenario,
|
||||||
|
"model_cls": model_cls,
|
||||||
|
"num_params_B": num_params_B,
|
||||||
|
"flops_G": flops_G,
|
||||||
|
"time_plain_s": time_plain_s,
|
||||||
|
"mem_plain_GB": mem_plain_GB,
|
||||||
|
"time_compile_s": time_compile_s,
|
||||||
|
"mem_compile_GB": mem_compile_GB,
|
||||||
|
"fullgraph": fullgraph,
|
||||||
|
"mode": mode,
|
||||||
|
"github_sha": github_sha,
|
||||||
|
}
|
||||||
|
rows_to_insert.append((benchmark_id, measurements))
|
||||||
|
|
||||||
|
# Batch-insert all rows
|
||||||
|
insert_sql = f"""
|
||||||
|
INSERT INTO {MEASUREMENTS_TABLE_NAME} (
|
||||||
|
benchmark_id,
|
||||||
|
measurements
|
||||||
|
)
|
||||||
|
VALUES (%s, %s);
|
||||||
|
"""
|
||||||
|
|
||||||
|
psycopg2.extras.execute_batch(cur, insert_sql, rows_to_insert)
|
||||||
|
conn.commit()
|
||||||
|
|
||||||
|
cur.close()
|
||||||
|
conn.close()
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Exception: {e}")
|
||||||
|
sys.exit(1)
|
||||||
@@ -1,19 +1,19 @@
|
|||||||
import glob
|
import os
|
||||||
import sys
|
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from huggingface_hub import hf_hub_download, upload_file
|
from huggingface_hub import hf_hub_download, upload_file
|
||||||
from huggingface_hub.utils import EntryNotFoundError
|
from huggingface_hub.utils import EntryNotFoundError
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
REPO_ID = "diffusers/benchmarks"
|
||||||
from utils import BASE_PATH, FINAL_CSV_FILE, GITHUB_SHA, REPO_ID, collate_csv # noqa: E402
|
|
||||||
|
|
||||||
|
|
||||||
def has_previous_benchmark() -> str:
|
def has_previous_benchmark() -> str:
|
||||||
|
from run_all import FINAL_CSV_FILENAME
|
||||||
|
|
||||||
csv_path = None
|
csv_path = None
|
||||||
try:
|
try:
|
||||||
csv_path = hf_hub_download(repo_id=REPO_ID, repo_type="dataset", filename=FINAL_CSV_FILE)
|
csv_path = hf_hub_download(repo_id=REPO_ID, repo_type="dataset", filename=FINAL_CSV_FILENAME)
|
||||||
except EntryNotFoundError:
|
except EntryNotFoundError:
|
||||||
csv_path = None
|
csv_path = None
|
||||||
return csv_path
|
return csv_path
|
||||||
@@ -26,46 +26,50 @@ def filter_float(value):
|
|||||||
|
|
||||||
|
|
||||||
def push_to_hf_dataset():
|
def push_to_hf_dataset():
|
||||||
all_csvs = sorted(glob.glob(f"{BASE_PATH}/*.csv"))
|
from run_all import FINAL_CSV_FILENAME, GITHUB_SHA
|
||||||
collate_csv(all_csvs, FINAL_CSV_FILE)
|
|
||||||
|
|
||||||
# If there's an existing benchmark file, we should report the changes.
|
|
||||||
csv_path = has_previous_benchmark()
|
csv_path = has_previous_benchmark()
|
||||||
if csv_path is not None:
|
if csv_path is not None:
|
||||||
current_results = pd.read_csv(FINAL_CSV_FILE)
|
current_results = pd.read_csv(FINAL_CSV_FILENAME)
|
||||||
previous_results = pd.read_csv(csv_path)
|
previous_results = pd.read_csv(csv_path)
|
||||||
|
|
||||||
numeric_columns = current_results.select_dtypes(include=["float64", "int64"]).columns
|
numeric_columns = current_results.select_dtypes(include=["float64", "int64"]).columns
|
||||||
numeric_columns = [
|
|
||||||
c for c in numeric_columns if c not in ["batch_size", "num_inference_steps", "actual_gpu_memory (gbs)"]
|
|
||||||
]
|
|
||||||
|
|
||||||
for column in numeric_columns:
|
for column in numeric_columns:
|
||||||
previous_results[column] = previous_results[column].map(lambda x: filter_float(x))
|
# get previous values as floats, aligned to current index
|
||||||
|
prev_vals = previous_results[column].map(filter_float).reindex(current_results.index)
|
||||||
|
|
||||||
# Calculate the percentage change
|
# get current values as floats
|
||||||
current_results[column] = current_results[column].astype(float)
|
curr_vals = current_results[column].astype(float)
|
||||||
previous_results[column] = previous_results[column].astype(float)
|
|
||||||
percent_change = ((current_results[column] - previous_results[column]) / previous_results[column]) * 100
|
|
||||||
|
|
||||||
# Format the values with '+' or '-' sign and append to original values
|
# stringify the current values
|
||||||
current_results[column] = current_results[column].map(str) + percent_change.map(
|
curr_str = curr_vals.map(str)
|
||||||
lambda x: f" ({'+' if x > 0 else ''}{x:.2f}%)"
|
|
||||||
|
# build an appendage only when prev exists and differs
|
||||||
|
append_str = prev_vals.where(prev_vals.notnull() & (prev_vals != curr_vals), other=pd.NA).map(
|
||||||
|
lambda x: f" ({x})" if pd.notnull(x) else ""
|
||||||
)
|
)
|
||||||
# There might be newly added rows. So, filter out the NaNs.
|
|
||||||
current_results[column] = current_results[column].map(lambda x: x.replace(" (nan%)", ""))
|
|
||||||
|
|
||||||
# Overwrite the current result file.
|
# combine
|
||||||
current_results.to_csv(FINAL_CSV_FILE, index=False)
|
current_results[column] = curr_str + append_str
|
||||||
|
os.remove(FINAL_CSV_FILENAME)
|
||||||
|
current_results.to_csv(FINAL_CSV_FILENAME, index=False)
|
||||||
|
|
||||||
commit_message = f"upload from sha: {GITHUB_SHA}" if GITHUB_SHA is not None else "upload benchmark results"
|
commit_message = f"upload from sha: {GITHUB_SHA}" if GITHUB_SHA is not None else "upload benchmark results"
|
||||||
upload_file(
|
upload_file(
|
||||||
repo_id=REPO_ID,
|
repo_id=REPO_ID,
|
||||||
path_in_repo=FINAL_CSV_FILE,
|
path_in_repo=FINAL_CSV_FILENAME,
|
||||||
path_or_fileobj=FINAL_CSV_FILE,
|
path_or_fileobj=FINAL_CSV_FILENAME,
|
||||||
repo_type="dataset",
|
repo_type="dataset",
|
||||||
commit_message=commit_message,
|
commit_message=commit_message,
|
||||||
)
|
)
|
||||||
|
upload_file(
|
||||||
|
repo_id="diffusers/benchmark-analyzer",
|
||||||
|
path_in_repo=FINAL_CSV_FILENAME,
|
||||||
|
path_or_fileobj=FINAL_CSV_FILENAME,
|
||||||
|
repo_type="space",
|
||||||
|
commit_message=commit_message,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
6
benchmarks/requirements.txt
Normal file
6
benchmarks/requirements.txt
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
pandas
|
||||||
|
psutil
|
||||||
|
gpustat
|
||||||
|
torchprofile
|
||||||
|
bitsandbytes
|
||||||
|
psycopg2==2.9.9
|
||||||
@@ -1,101 +1,84 @@
|
|||||||
import glob
|
import glob
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
import subprocess
|
import subprocess
|
||||||
import sys
|
|
||||||
from typing import List
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
sys.path.append(".")
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(name)s: %(message)s")
|
||||||
from benchmark_text_to_image import ALL_T2I_CKPTS # noqa: E402
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
PATTERN = "benchmarking_*.py"
|
||||||
PATTERN = "benchmark_*.py"
|
FINAL_CSV_FILENAME = "collated_results.csv"
|
||||||
|
GITHUB_SHA = os.getenv("GITHUB_SHA", None)
|
||||||
|
|
||||||
|
|
||||||
class SubprocessCallException(Exception):
|
class SubprocessCallException(Exception):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
# Taken from `test_examples_utils.py`
|
def run_command(command: list[str], return_stdout=False):
|
||||||
def run_command(command: List[str], return_stdout=False):
|
|
||||||
"""
|
|
||||||
Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture
|
|
||||||
if an error occurred while running `command`
|
|
||||||
"""
|
|
||||||
try:
|
try:
|
||||||
output = subprocess.check_output(command, stderr=subprocess.STDOUT)
|
output = subprocess.check_output(command, stderr=subprocess.STDOUT)
|
||||||
if return_stdout:
|
if return_stdout and hasattr(output, "decode"):
|
||||||
if hasattr(output, "decode"):
|
return output.decode("utf-8")
|
||||||
output = output.decode("utf-8")
|
|
||||||
return output
|
|
||||||
except subprocess.CalledProcessError as e:
|
except subprocess.CalledProcessError as e:
|
||||||
raise SubprocessCallException(
|
raise SubprocessCallException(f"Command `{' '.join(command)}` failed with:\n{e.output.decode()}") from e
|
||||||
f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}"
|
|
||||||
) from e
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def merge_csvs(final_csv: str = "collated_results.csv"):
|
||||||
python_files = glob.glob(PATTERN)
|
all_csvs = glob.glob("*.csv")
|
||||||
|
all_csvs = [f for f in all_csvs if f != final_csv]
|
||||||
|
if not all_csvs:
|
||||||
|
logger.info("No result CSVs found to merge.")
|
||||||
|
return
|
||||||
|
|
||||||
for file in python_files:
|
df_list = []
|
||||||
print(f"****** Running file: {file} ******")
|
for f in all_csvs:
|
||||||
|
try:
|
||||||
# Run with canonical settings.
|
d = pd.read_csv(f)
|
||||||
if file != "benchmark_text_to_image.py" and file != "benchmark_ip_adapters.py":
|
except pd.errors.EmptyDataError:
|
||||||
command = f"python {file}"
|
# If a file existed but was zero‐bytes or corrupted, skip it
|
||||||
run_command(command.split())
|
|
||||||
|
|
||||||
command += " --run_compile"
|
|
||||||
run_command(command.split())
|
|
||||||
|
|
||||||
# Run variants.
|
|
||||||
for file in python_files:
|
|
||||||
# See: https://github.com/pytorch/pytorch/issues/129637
|
|
||||||
if file == "benchmark_ip_adapters.py":
|
|
||||||
continue
|
continue
|
||||||
|
df_list.append(d)
|
||||||
|
|
||||||
if file == "benchmark_text_to_image.py":
|
if not df_list:
|
||||||
for ckpt in ALL_T2I_CKPTS:
|
logger.info("All result CSVs were empty or invalid; nothing to merge.")
|
||||||
command = f"python {file} --ckpt {ckpt}"
|
return
|
||||||
|
|
||||||
if "turbo" in ckpt:
|
final_df = pd.concat(df_list, ignore_index=True)
|
||||||
command += " --num_inference_steps 1"
|
if GITHUB_SHA is not None:
|
||||||
|
final_df["github_sha"] = GITHUB_SHA
|
||||||
|
final_df.to_csv(final_csv, index=False)
|
||||||
|
logger.info(f"Merged {len(all_csvs)} partial CSVs → {final_csv}.")
|
||||||
|
|
||||||
run_command(command.split())
|
|
||||||
|
|
||||||
command += " --run_compile"
|
def run_scripts():
|
||||||
run_command(command.split())
|
python_files = sorted(glob.glob(PATTERN))
|
||||||
|
python_files = [f for f in python_files if f != "benchmarking_utils.py"]
|
||||||
|
|
||||||
elif file == "benchmark_sd_img.py":
|
for file in python_files:
|
||||||
for ckpt in ["stabilityai/stable-diffusion-xl-refiner-1.0", "stabilityai/sdxl-turbo"]:
|
script_name = file.split(".py")[0].split("_")[-1] # example: benchmarking_foo.py -> foo
|
||||||
command = f"python {file} --ckpt {ckpt}"
|
logger.info(f"\n****** Running file: {file} ******")
|
||||||
|
|
||||||
if ckpt == "stabilityai/sdxl-turbo":
|
partial_csv = f"{script_name}.csv"
|
||||||
command += " --num_inference_steps 2"
|
if os.path.exists(partial_csv):
|
||||||
|
logger.info(f"Found {partial_csv}. Removing for safer numbers and duplication.")
|
||||||
|
os.remove(partial_csv)
|
||||||
|
|
||||||
run_command(command.split())
|
command = ["python", file]
|
||||||
command += " --run_compile"
|
try:
|
||||||
run_command(command.split())
|
run_command(command)
|
||||||
|
logger.info(f"→ {file} finished normally.")
|
||||||
|
except SubprocessCallException as e:
|
||||||
|
logger.info(f"Error running {file}:\n{e}")
|
||||||
|
finally:
|
||||||
|
logger.info(f"→ Merging partial CSVs after {file} …")
|
||||||
|
merge_csvs(final_csv=FINAL_CSV_FILENAME)
|
||||||
|
|
||||||
elif file in ["benchmark_sd_inpainting.py", "benchmark_ip_adapters.py"]:
|
logger.info(f"\nAll scripts attempted. Final collated CSV: {FINAL_CSV_FILENAME}")
|
||||||
sdxl_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
||||||
command = f"python {file} --ckpt {sdxl_ckpt}"
|
|
||||||
run_command(command.split())
|
|
||||||
|
|
||||||
command += " --run_compile"
|
|
||||||
run_command(command.split())
|
|
||||||
|
|
||||||
elif file in ["benchmark_controlnet.py", "benchmark_t2i_adapter.py"]:
|
|
||||||
sdxl_ckpt = (
|
|
||||||
"diffusers/controlnet-canny-sdxl-1.0"
|
|
||||||
if "controlnet" in file
|
|
||||||
else "TencentARC/t2i-adapter-canny-sdxl-1.0"
|
|
||||||
)
|
|
||||||
command = f"python {file} --ckpt {sdxl_ckpt}"
|
|
||||||
run_command(command.split())
|
|
||||||
|
|
||||||
command += " --run_compile"
|
|
||||||
run_command(command.split())
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
run_scripts()
|
||||||
|
|||||||
@@ -1,98 +0,0 @@
|
|||||||
import argparse
|
|
||||||
import csv
|
|
||||||
import gc
|
|
||||||
import os
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import Dict, List, Union
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.utils.benchmark as benchmark
|
|
||||||
|
|
||||||
|
|
||||||
GITHUB_SHA = os.getenv("GITHUB_SHA", None)
|
|
||||||
BENCHMARK_FIELDS = [
|
|
||||||
"pipeline_cls",
|
|
||||||
"ckpt_id",
|
|
||||||
"batch_size",
|
|
||||||
"num_inference_steps",
|
|
||||||
"model_cpu_offload",
|
|
||||||
"run_compile",
|
|
||||||
"time (secs)",
|
|
||||||
"memory (gbs)",
|
|
||||||
"actual_gpu_memory (gbs)",
|
|
||||||
"github_sha",
|
|
||||||
]
|
|
||||||
|
|
||||||
PROMPT = "ghibli style, a fantasy landscape with castles"
|
|
||||||
BASE_PATH = os.getenv("BASE_PATH", ".")
|
|
||||||
TOTAL_GPU_MEMORY = float(os.getenv("TOTAL_GPU_MEMORY", torch.cuda.get_device_properties(0).total_memory / (1024**3)))
|
|
||||||
|
|
||||||
REPO_ID = "diffusers/benchmarks"
|
|
||||||
FINAL_CSV_FILE = "collated_results.csv"
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class BenchmarkInfo:
|
|
||||||
time: float
|
|
||||||
memory: float
|
|
||||||
|
|
||||||
|
|
||||||
def flush():
|
|
||||||
"""Wipes off memory."""
|
|
||||||
gc.collect()
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
torch.cuda.reset_max_memory_allocated()
|
|
||||||
torch.cuda.reset_peak_memory_stats()
|
|
||||||
|
|
||||||
|
|
||||||
def bytes_to_giga_bytes(bytes):
|
|
||||||
return f"{(bytes / 1024 / 1024 / 1024):.3f}"
|
|
||||||
|
|
||||||
|
|
||||||
def benchmark_fn(f, *args, **kwargs):
|
|
||||||
t0 = benchmark.Timer(
|
|
||||||
stmt="f(*args, **kwargs)",
|
|
||||||
globals={"args": args, "kwargs": kwargs, "f": f},
|
|
||||||
num_threads=torch.get_num_threads(),
|
|
||||||
)
|
|
||||||
return f"{(t0.blocked_autorange().mean):.3f}"
|
|
||||||
|
|
||||||
|
|
||||||
def generate_csv_dict(
|
|
||||||
pipeline_cls: str, ckpt: str, args: argparse.Namespace, benchmark_info: BenchmarkInfo
|
|
||||||
) -> Dict[str, Union[str, bool, float]]:
|
|
||||||
"""Packs benchmarking data into a dictionary for latter serialization."""
|
|
||||||
data_dict = {
|
|
||||||
"pipeline_cls": pipeline_cls,
|
|
||||||
"ckpt_id": ckpt,
|
|
||||||
"batch_size": args.batch_size,
|
|
||||||
"num_inference_steps": args.num_inference_steps,
|
|
||||||
"model_cpu_offload": args.model_cpu_offload,
|
|
||||||
"run_compile": args.run_compile,
|
|
||||||
"time (secs)": benchmark_info.time,
|
|
||||||
"memory (gbs)": benchmark_info.memory,
|
|
||||||
"actual_gpu_memory (gbs)": f"{(TOTAL_GPU_MEMORY):.3f}",
|
|
||||||
"github_sha": GITHUB_SHA,
|
|
||||||
}
|
|
||||||
return data_dict
|
|
||||||
|
|
||||||
|
|
||||||
def write_to_csv(file_name: str, data_dict: Dict[str, Union[str, bool, float]]):
|
|
||||||
"""Serializes a dictionary into a CSV file."""
|
|
||||||
with open(file_name, mode="w", newline="") as csvfile:
|
|
||||||
writer = csv.DictWriter(csvfile, fieldnames=BENCHMARK_FIELDS)
|
|
||||||
writer.writeheader()
|
|
||||||
writer.writerow(data_dict)
|
|
||||||
|
|
||||||
|
|
||||||
def collate_csv(input_files: List[str], output_file: str):
|
|
||||||
"""Collates multiple identically structured CSVs into a single CSV file."""
|
|
||||||
with open(output_file, mode="w", newline="") as outfile:
|
|
||||||
writer = csv.DictWriter(outfile, fieldnames=BENCHMARK_FIELDS)
|
|
||||||
writer.writeheader()
|
|
||||||
|
|
||||||
for file in input_files:
|
|
||||||
with open(file, mode="r") as infile:
|
|
||||||
reader = csv.DictReader(infile)
|
|
||||||
for row in reader:
|
|
||||||
writer.writerow(row)
|
|
||||||
@@ -47,6 +47,10 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
|||||||
tensorboard \
|
tensorboard \
|
||||||
transformers \
|
transformers \
|
||||||
matplotlib \
|
matplotlib \
|
||||||
setuptools==69.5.1
|
setuptools==69.5.1 \
|
||||||
|
bitsandbytes \
|
||||||
|
torchao \
|
||||||
|
gguf \
|
||||||
|
optimum-quanto
|
||||||
|
|
||||||
CMD ["/bin/bash"]
|
CMD ["/bin/bash"]
|
||||||
|
|||||||
@@ -1,50 +0,0 @@
|
|||||||
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
|
|
||||||
LABEL maintainer="Hugging Face"
|
|
||||||
LABEL repository="diffusers"
|
|
||||||
|
|
||||||
ENV DEBIAN_FRONTEND=noninteractive
|
|
||||||
|
|
||||||
RUN apt-get -y update \
|
|
||||||
&& apt-get install -y software-properties-common \
|
|
||||||
&& add-apt-repository ppa:deadsnakes/ppa
|
|
||||||
|
|
||||||
RUN apt install -y bash \
|
|
||||||
build-essential \
|
|
||||||
git \
|
|
||||||
git-lfs \
|
|
||||||
curl \
|
|
||||||
ca-certificates \
|
|
||||||
libsndfile1-dev \
|
|
||||||
libgl1 \
|
|
||||||
python3.10 \
|
|
||||||
python3.10-dev \
|
|
||||||
python3-pip \
|
|
||||||
python3.10-venv && \
|
|
||||||
rm -rf /var/lib/apt/lists
|
|
||||||
|
|
||||||
# make sure to use venv
|
|
||||||
RUN python3.10 -m venv /opt/venv
|
|
||||||
ENV PATH="/opt/venv/bin:$PATH"
|
|
||||||
|
|
||||||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
|
|
||||||
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
|
|
||||||
python3.10 -m uv pip install --no-cache-dir \
|
|
||||||
torch \
|
|
||||||
torchvision \
|
|
||||||
torchaudio \
|
|
||||||
invisible_watermark && \
|
|
||||||
python3.10 -m pip install --no-cache-dir \
|
|
||||||
accelerate \
|
|
||||||
datasets \
|
|
||||||
hf-doc-builder \
|
|
||||||
huggingface-hub \
|
|
||||||
hf_transfer \
|
|
||||||
Jinja2 \
|
|
||||||
librosa \
|
|
||||||
numpy==1.26.4 \
|
|
||||||
scipy \
|
|
||||||
tensorboard \
|
|
||||||
transformers \
|
|
||||||
hf_transfer
|
|
||||||
|
|
||||||
CMD ["/bin/bash"]
|
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,38 +1,39 @@
|
|||||||
- sections:
|
- title: Get started
|
||||||
|
sections:
|
||||||
- local: index
|
- local: index
|
||||||
title: 🧨 Diffusers
|
title: Diffusers
|
||||||
- local: quicktour
|
|
||||||
title: Quicktour
|
|
||||||
- local: stable_diffusion
|
|
||||||
title: Effective and efficient diffusion
|
|
||||||
- local: installation
|
- local: installation
|
||||||
title: Installation
|
title: Installation
|
||||||
title: Get started
|
- local: quicktour
|
||||||
- sections:
|
title: Quickstart
|
||||||
- local: tutorials/tutorial_overview
|
- local: stable_diffusion
|
||||||
title: Overview
|
title: Basic performance
|
||||||
- local: using-diffusers/write_own_pipeline
|
|
||||||
title: Understanding pipelines, models and schedulers
|
- title: DiffusionPipeline
|
||||||
- local: tutorials/autopipeline
|
isExpanded: false
|
||||||
title: AutoPipeline
|
sections:
|
||||||
- local: tutorials/basic_training
|
|
||||||
title: Train a diffusion model
|
|
||||||
- local: tutorials/fast_diffusion
|
|
||||||
title: Accelerate inference of text-to-image diffusion models
|
|
||||||
title: Tutorials
|
|
||||||
- sections:
|
|
||||||
- local: using-diffusers/loading
|
- local: using-diffusers/loading
|
||||||
title: Load pipelines
|
title: Load pipelines
|
||||||
|
- local: tutorials/autopipeline
|
||||||
|
title: AutoPipeline
|
||||||
- local: using-diffusers/custom_pipeline_overview
|
- local: using-diffusers/custom_pipeline_overview
|
||||||
title: Load community pipelines and components
|
title: Community pipelines and components
|
||||||
|
- local: using-diffusers/callback
|
||||||
|
title: Pipeline callbacks
|
||||||
|
- local: using-diffusers/reusing_seeds
|
||||||
|
title: Reproducible pipelines
|
||||||
- local: using-diffusers/schedulers
|
- local: using-diffusers/schedulers
|
||||||
title: Load schedulers and models
|
title: Load schedulers and models
|
||||||
|
- local: using-diffusers/scheduler_features
|
||||||
|
title: Scheduler features
|
||||||
- local: using-diffusers/other-formats
|
- local: using-diffusers/other-formats
|
||||||
title: Model files and layouts
|
title: Model files and layouts
|
||||||
- local: using-diffusers/push_to_hub
|
- local: using-diffusers/push_to_hub
|
||||||
title: Push files to the Hub
|
title: Push files to the Hub
|
||||||
title: Load pipelines and adapters
|
|
||||||
- sections:
|
- title: Adapters
|
||||||
|
isExpanded: false
|
||||||
|
sections:
|
||||||
- local: tutorials/using_peft_for_inference
|
- local: tutorials/using_peft_for_inference
|
||||||
title: LoRA
|
title: LoRA
|
||||||
- local: using-diffusers/ip_adapter
|
- local: using-diffusers/ip_adapter
|
||||||
@@ -45,27 +46,16 @@
|
|||||||
title: DreamBooth
|
title: DreamBooth
|
||||||
- local: using-diffusers/textual_inversion_inference
|
- local: using-diffusers/textual_inversion_inference
|
||||||
title: Textual inversion
|
title: Textual inversion
|
||||||
title: Adapters
|
|
||||||
|
- title: Inference
|
||||||
isExpanded: false
|
isExpanded: false
|
||||||
- sections:
|
sections:
|
||||||
- local: using-diffusers/unconditional_image_generation
|
- local: using-diffusers/weighted_prompts
|
||||||
title: Unconditional image generation
|
title: Prompt techniques
|
||||||
- local: using-diffusers/conditional_image_generation
|
|
||||||
title: Text-to-image
|
|
||||||
- local: using-diffusers/img2img
|
|
||||||
title: Image-to-image
|
|
||||||
- local: using-diffusers/inpaint
|
|
||||||
title: Inpainting
|
|
||||||
- local: using-diffusers/text-img2vid
|
|
||||||
title: Video generation
|
|
||||||
- local: using-diffusers/depth2img
|
|
||||||
title: Depth-to-image
|
|
||||||
title: Generative tasks
|
|
||||||
- sections:
|
|
||||||
- local: using-diffusers/overview_techniques
|
|
||||||
title: Overview
|
|
||||||
- local: using-diffusers/create_a_server
|
- local: using-diffusers/create_a_server
|
||||||
title: Create a server
|
title: Create a server
|
||||||
|
- local: using-diffusers/batched_inference
|
||||||
|
title: Batch inference
|
||||||
- local: training/distributed_inference
|
- local: training/distributed_inference
|
||||||
title: Distributed inference
|
title: Distributed inference
|
||||||
- local: using-diffusers/scheduler_features
|
- local: using-diffusers/scheduler_features
|
||||||
@@ -76,14 +66,38 @@
|
|||||||
title: Reproducible pipelines
|
title: Reproducible pipelines
|
||||||
- local: using-diffusers/image_quality
|
- local: using-diffusers/image_quality
|
||||||
title: Controlling image quality
|
title: Controlling image quality
|
||||||
- local: using-diffusers/weighted_prompts
|
|
||||||
title: Prompt techniques
|
- title: Inference optimization
|
||||||
title: Inference techniques
|
isExpanded: false
|
||||||
- sections:
|
sections:
|
||||||
- local: advanced_inference/outpaint
|
- local: optimization/fp16
|
||||||
title: Outpainting
|
title: Accelerate inference
|
||||||
title: Advanced inference
|
- local: optimization/cache
|
||||||
- sections:
|
title: Caching
|
||||||
|
- local: optimization/memory
|
||||||
|
title: Reduce memory usage
|
||||||
|
- local: optimization/speed-memory-optims
|
||||||
|
title: Compile and offloading quantized models
|
||||||
|
- title: Community optimizations
|
||||||
|
sections:
|
||||||
|
- local: optimization/pruna
|
||||||
|
title: Pruna
|
||||||
|
- local: optimization/xformers
|
||||||
|
title: xFormers
|
||||||
|
- local: optimization/tome
|
||||||
|
title: Token merging
|
||||||
|
- local: optimization/deepcache
|
||||||
|
title: DeepCache
|
||||||
|
- local: optimization/tgate
|
||||||
|
title: TGATE
|
||||||
|
- local: optimization/xdit
|
||||||
|
title: xDiT
|
||||||
|
- local: optimization/para_attn
|
||||||
|
title: ParaAttention
|
||||||
|
|
||||||
|
- title: Hybrid Inference
|
||||||
|
isExpanded: false
|
||||||
|
sections:
|
||||||
- local: hybrid_inference/overview
|
- local: hybrid_inference/overview
|
||||||
title: Overview
|
title: Overview
|
||||||
- local: hybrid_inference/vae_decode
|
- local: hybrid_inference/vae_decode
|
||||||
@@ -92,10 +106,112 @@
|
|||||||
title: VAE Encode
|
title: VAE Encode
|
||||||
- local: hybrid_inference/api_reference
|
- local: hybrid_inference/api_reference
|
||||||
title: API Reference
|
title: API Reference
|
||||||
title: Hybrid Inference
|
|
||||||
- sections:
|
- title: Modular Diffusers
|
||||||
- local: using-diffusers/cogvideox
|
isExpanded: false
|
||||||
title: CogVideoX
|
sections:
|
||||||
|
- local: modular_diffusers/overview
|
||||||
|
title: Overview
|
||||||
|
- local: modular_diffusers/quickstart
|
||||||
|
title: Quickstart
|
||||||
|
- local: modular_diffusers/modular_diffusers_states
|
||||||
|
title: States
|
||||||
|
- local: modular_diffusers/pipeline_block
|
||||||
|
title: ModularPipelineBlocks
|
||||||
|
- local: modular_diffusers/sequential_pipeline_blocks
|
||||||
|
title: SequentialPipelineBlocks
|
||||||
|
- local: modular_diffusers/loop_sequential_pipeline_blocks
|
||||||
|
title: LoopSequentialPipelineBlocks
|
||||||
|
- local: modular_diffusers/auto_pipeline_blocks
|
||||||
|
title: AutoPipelineBlocks
|
||||||
|
- local: modular_diffusers/modular_pipeline
|
||||||
|
title: ModularPipeline
|
||||||
|
- local: modular_diffusers/components_manager
|
||||||
|
title: ComponentsManager
|
||||||
|
- local: modular_diffusers/guiders
|
||||||
|
title: Guiders
|
||||||
|
|
||||||
|
- title: Training
|
||||||
|
isExpanded: false
|
||||||
|
sections:
|
||||||
|
- local: training/overview
|
||||||
|
title: Overview
|
||||||
|
- local: training/create_dataset
|
||||||
|
title: Create a dataset for training
|
||||||
|
- local: training/adapt_a_model
|
||||||
|
title: Adapt a model to a new task
|
||||||
|
- local: tutorials/basic_training
|
||||||
|
title: Train a diffusion model
|
||||||
|
- title: Models
|
||||||
|
sections:
|
||||||
|
- local: training/unconditional_training
|
||||||
|
title: Unconditional image generation
|
||||||
|
- local: training/text2image
|
||||||
|
title: Text-to-image
|
||||||
|
- local: training/sdxl
|
||||||
|
title: Stable Diffusion XL
|
||||||
|
- local: training/kandinsky
|
||||||
|
title: Kandinsky 2.2
|
||||||
|
- local: training/wuerstchen
|
||||||
|
title: Wuerstchen
|
||||||
|
- local: training/controlnet
|
||||||
|
title: ControlNet
|
||||||
|
- local: training/t2i_adapters
|
||||||
|
title: T2I-Adapters
|
||||||
|
- local: training/instructpix2pix
|
||||||
|
title: InstructPix2Pix
|
||||||
|
- local: training/cogvideox
|
||||||
|
title: CogVideoX
|
||||||
|
- title: Methods
|
||||||
|
sections:
|
||||||
|
- local: training/text_inversion
|
||||||
|
title: Textual Inversion
|
||||||
|
- local: training/dreambooth
|
||||||
|
title: DreamBooth
|
||||||
|
- local: training/lora
|
||||||
|
title: LoRA
|
||||||
|
- local: training/custom_diffusion
|
||||||
|
title: Custom Diffusion
|
||||||
|
- local: training/lcm_distill
|
||||||
|
title: Latent Consistency Distillation
|
||||||
|
- local: training/ddpo
|
||||||
|
title: Reinforcement learning training with DDPO
|
||||||
|
|
||||||
|
- title: Quantization
|
||||||
|
isExpanded: false
|
||||||
|
sections:
|
||||||
|
- local: quantization/overview
|
||||||
|
title: Getting started
|
||||||
|
- local: quantization/bitsandbytes
|
||||||
|
title: bitsandbytes
|
||||||
|
- local: quantization/gguf
|
||||||
|
title: gguf
|
||||||
|
- local: quantization/torchao
|
||||||
|
title: torchao
|
||||||
|
- local: quantization/quanto
|
||||||
|
title: quanto
|
||||||
|
|
||||||
|
- title: Model accelerators and hardware
|
||||||
|
isExpanded: false
|
||||||
|
sections:
|
||||||
|
- local: using-diffusers/stable_diffusion_jax_how_to
|
||||||
|
title: JAX/Flax
|
||||||
|
- local: optimization/onnx
|
||||||
|
title: ONNX
|
||||||
|
- local: optimization/open_vino
|
||||||
|
title: OpenVINO
|
||||||
|
- local: optimization/coreml
|
||||||
|
title: Core ML
|
||||||
|
- local: optimization/mps
|
||||||
|
title: Metal Performance Shaders (MPS)
|
||||||
|
- local: optimization/habana
|
||||||
|
title: Intel Gaudi
|
||||||
|
- local: optimization/neuron
|
||||||
|
title: AWS Neuron
|
||||||
|
|
||||||
|
- title: Specific pipeline examples
|
||||||
|
isExpanded: false
|
||||||
|
sections:
|
||||||
- local: using-diffusers/consisid
|
- local: using-diffusers/consisid
|
||||||
title: ConsisID
|
title: ConsisID
|
||||||
- local: using-diffusers/sdxl
|
- local: using-diffusers/sdxl
|
||||||
@@ -120,102 +236,30 @@
|
|||||||
title: Stable Video Diffusion
|
title: Stable Video Diffusion
|
||||||
- local: using-diffusers/marigold_usage
|
- local: using-diffusers/marigold_usage
|
||||||
title: Marigold Computer Vision
|
title: Marigold Computer Vision
|
||||||
title: Specific pipeline examples
|
|
||||||
- sections:
|
- title: Resources
|
||||||
- local: training/overview
|
isExpanded: false
|
||||||
title: Overview
|
sections:
|
||||||
- local: training/create_dataset
|
- title: Task recipes
|
||||||
title: Create a dataset for training
|
|
||||||
- local: training/adapt_a_model
|
|
||||||
title: Adapt a model to a new task
|
|
||||||
- isExpanded: false
|
|
||||||
sections:
|
sections:
|
||||||
- local: training/unconditional_training
|
- local: using-diffusers/unconditional_image_generation
|
||||||
title: Unconditional image generation
|
title: Unconditional image generation
|
||||||
- local: training/text2image
|
- local: using-diffusers/conditional_image_generation
|
||||||
title: Text-to-image
|
title: Text-to-image
|
||||||
- local: training/sdxl
|
- local: using-diffusers/img2img
|
||||||
title: Stable Diffusion XL
|
title: Image-to-image
|
||||||
- local: training/kandinsky
|
- local: using-diffusers/inpaint
|
||||||
title: Kandinsky 2.2
|
title: Inpainting
|
||||||
- local: training/wuerstchen
|
- local: advanced_inference/outpaint
|
||||||
title: Wuerstchen
|
title: Outpainting
|
||||||
- local: training/controlnet
|
- local: using-diffusers/text-img2vid
|
||||||
title: ControlNet
|
title: Video generation
|
||||||
- local: training/t2i_adapters
|
- local: using-diffusers/depth2img
|
||||||
title: T2I-Adapters
|
title: Depth-to-image
|
||||||
- local: training/instructpix2pix
|
- local: using-diffusers/write_own_pipeline
|
||||||
title: InstructPix2Pix
|
title: Understanding pipelines, models and schedulers
|
||||||
- local: training/cogvideox
|
- local: community_projects
|
||||||
title: CogVideoX
|
title: Projects built with Diffusers
|
||||||
title: Models
|
|
||||||
- isExpanded: false
|
|
||||||
sections:
|
|
||||||
- local: training/text_inversion
|
|
||||||
title: Textual Inversion
|
|
||||||
- local: training/dreambooth
|
|
||||||
title: DreamBooth
|
|
||||||
- local: training/lora
|
|
||||||
title: LoRA
|
|
||||||
- local: training/custom_diffusion
|
|
||||||
title: Custom Diffusion
|
|
||||||
- local: training/lcm_distill
|
|
||||||
title: Latent Consistency Distillation
|
|
||||||
- local: training/ddpo
|
|
||||||
title: Reinforcement learning training with DDPO
|
|
||||||
title: Methods
|
|
||||||
title: Training
|
|
||||||
- sections:
|
|
||||||
- local: quantization/overview
|
|
||||||
title: Getting Started
|
|
||||||
- local: quantization/bitsandbytes
|
|
||||||
title: bitsandbytes
|
|
||||||
- local: quantization/gguf
|
|
||||||
title: gguf
|
|
||||||
- local: quantization/torchao
|
|
||||||
title: torchao
|
|
||||||
- local: quantization/quanto
|
|
||||||
title: quanto
|
|
||||||
title: Quantization Methods
|
|
||||||
- sections:
|
|
||||||
- local: optimization/fp16
|
|
||||||
title: Accelerate inference
|
|
||||||
- local: optimization/memory
|
|
||||||
title: Reduce memory usage
|
|
||||||
- local: optimization/torch2.0
|
|
||||||
title: PyTorch 2.0
|
|
||||||
- local: optimization/xformers
|
|
||||||
title: xFormers
|
|
||||||
- local: optimization/tome
|
|
||||||
title: Token merging
|
|
||||||
- local: optimization/deepcache
|
|
||||||
title: DeepCache
|
|
||||||
- local: optimization/tgate
|
|
||||||
title: TGATE
|
|
||||||
- local: optimization/xdit
|
|
||||||
title: xDiT
|
|
||||||
- local: optimization/para_attn
|
|
||||||
title: ParaAttention
|
|
||||||
- sections:
|
|
||||||
- local: using-diffusers/stable_diffusion_jax_how_to
|
|
||||||
title: JAX/Flax
|
|
||||||
- local: optimization/onnx
|
|
||||||
title: ONNX
|
|
||||||
- local: optimization/open_vino
|
|
||||||
title: OpenVINO
|
|
||||||
- local: optimization/coreml
|
|
||||||
title: Core ML
|
|
||||||
title: Optimized model formats
|
|
||||||
- sections:
|
|
||||||
- local: optimization/mps
|
|
||||||
title: Metal Performance Shaders (MPS)
|
|
||||||
- local: optimization/habana
|
|
||||||
title: Habana Gaudi
|
|
||||||
- local: optimization/neuron
|
|
||||||
title: AWS Neuron
|
|
||||||
title: Optimized hardware
|
|
||||||
title: Accelerate inference and reduce memory
|
|
||||||
- sections:
|
|
||||||
- local: conceptual/philosophy
|
- local: conceptual/philosophy
|
||||||
title: Philosophy
|
title: Philosophy
|
||||||
- local: using-diffusers/controlling_generation
|
- local: using-diffusers/controlling_generation
|
||||||
@@ -226,13 +270,11 @@
|
|||||||
title: Diffusers' Ethical Guidelines
|
title: Diffusers' Ethical Guidelines
|
||||||
- local: conceptual/evaluation
|
- local: conceptual/evaluation
|
||||||
title: Evaluating Diffusion Models
|
title: Evaluating Diffusion Models
|
||||||
title: Conceptual Guides
|
|
||||||
- sections:
|
- title: API
|
||||||
- local: community_projects
|
isExpanded: false
|
||||||
title: Projects built with Diffusers
|
sections:
|
||||||
title: Community Projects
|
- title: Main Classes
|
||||||
- sections:
|
|
||||||
- isExpanded: false
|
|
||||||
sections:
|
sections:
|
||||||
- local: api/configuration
|
- local: api/configuration
|
||||||
title: Configuration
|
title: Configuration
|
||||||
@@ -242,8 +284,19 @@
|
|||||||
title: Outputs
|
title: Outputs
|
||||||
- local: api/quantization
|
- local: api/quantization
|
||||||
title: Quantization
|
title: Quantization
|
||||||
title: Main Classes
|
- title: Modular
|
||||||
- isExpanded: false
|
sections:
|
||||||
|
- local: api/modular_diffusers/pipeline
|
||||||
|
title: Pipeline
|
||||||
|
- local: api/modular_diffusers/pipeline_blocks
|
||||||
|
title: Blocks
|
||||||
|
- local: api/modular_diffusers/pipeline_states
|
||||||
|
title: States
|
||||||
|
- local: api/modular_diffusers/pipeline_components
|
||||||
|
title: Components and configs
|
||||||
|
- local: api/modular_diffusers/guiders
|
||||||
|
title: Guiders
|
||||||
|
- title: Loaders
|
||||||
sections:
|
sections:
|
||||||
- local: api/loaders/ip_adapter
|
- local: api/loaders/ip_adapter
|
||||||
title: IP-Adapter
|
title: IP-Adapter
|
||||||
@@ -259,14 +312,14 @@
|
|||||||
title: SD3Transformer2D
|
title: SD3Transformer2D
|
||||||
- local: api/loaders/peft
|
- local: api/loaders/peft
|
||||||
title: PEFT
|
title: PEFT
|
||||||
title: Loaders
|
- title: Models
|
||||||
- isExpanded: false
|
|
||||||
sections:
|
sections:
|
||||||
- local: api/models/overview
|
- local: api/models/overview
|
||||||
title: Overview
|
title: Overview
|
||||||
- local: api/models/auto_model
|
- local: api/models/auto_model
|
||||||
title: AutoModel
|
title: AutoModel
|
||||||
- sections:
|
- title: ControlNets
|
||||||
|
sections:
|
||||||
- local: api/models/controlnet
|
- local: api/models/controlnet
|
||||||
title: ControlNetModel
|
title: ControlNetModel
|
||||||
- local: api/models/controlnet_union
|
- local: api/models/controlnet_union
|
||||||
@@ -281,12 +334,16 @@
|
|||||||
title: SD3ControlNetModel
|
title: SD3ControlNetModel
|
||||||
- local: api/models/controlnet_sparsectrl
|
- local: api/models/controlnet_sparsectrl
|
||||||
title: SparseControlNetModel
|
title: SparseControlNetModel
|
||||||
title: ControlNets
|
- title: Transformers
|
||||||
- sections:
|
sections:
|
||||||
- local: api/models/allegro_transformer3d
|
- local: api/models/allegro_transformer3d
|
||||||
title: AllegroTransformer3DModel
|
title: AllegroTransformer3DModel
|
||||||
- local: api/models/aura_flow_transformer2d
|
- local: api/models/aura_flow_transformer2d
|
||||||
title: AuraFlowTransformer2DModel
|
title: AuraFlowTransformer2DModel
|
||||||
|
- local: api/models/bria_transformer
|
||||||
|
title: BriaTransformer2DModel
|
||||||
|
- local: api/models/chroma_transformer
|
||||||
|
title: ChromaTransformer2DModel
|
||||||
- local: api/models/cogvideox_transformer3d
|
- local: api/models/cogvideox_transformer3d
|
||||||
title: CogVideoXTransformer3DModel
|
title: CogVideoXTransformer3DModel
|
||||||
- local: api/models/cogview3plus_transformer2d
|
- local: api/models/cogview3plus_transformer2d
|
||||||
@@ -325,10 +382,14 @@
|
|||||||
title: PixArtTransformer2DModel
|
title: PixArtTransformer2DModel
|
||||||
- local: api/models/prior_transformer
|
- local: api/models/prior_transformer
|
||||||
title: PriorTransformer
|
title: PriorTransformer
|
||||||
|
- local: api/models/qwenimage_transformer2d
|
||||||
|
title: QwenImageTransformer2DModel
|
||||||
- local: api/models/sana_transformer2d
|
- local: api/models/sana_transformer2d
|
||||||
title: SanaTransformer2DModel
|
title: SanaTransformer2DModel
|
||||||
- local: api/models/sd3_transformer2d
|
- local: api/models/sd3_transformer2d
|
||||||
title: SD3Transformer2DModel
|
title: SD3Transformer2DModel
|
||||||
|
- local: api/models/skyreels_v2_transformer_3d
|
||||||
|
title: SkyReelsV2Transformer3DModel
|
||||||
- local: api/models/stable_audio_transformer
|
- local: api/models/stable_audio_transformer
|
||||||
title: StableAudioDiTModel
|
title: StableAudioDiTModel
|
||||||
- local: api/models/transformer2d
|
- local: api/models/transformer2d
|
||||||
@@ -337,8 +398,8 @@
|
|||||||
title: TransformerTemporalModel
|
title: TransformerTemporalModel
|
||||||
- local: api/models/wan_transformer_3d
|
- local: api/models/wan_transformer_3d
|
||||||
title: WanTransformer3DModel
|
title: WanTransformer3DModel
|
||||||
title: Transformers
|
- title: UNets
|
||||||
- sections:
|
sections:
|
||||||
- local: api/models/stable_cascade_unet
|
- local: api/models/stable_cascade_unet
|
||||||
title: StableCascadeUNet
|
title: StableCascadeUNet
|
||||||
- local: api/models/unet
|
- local: api/models/unet
|
||||||
@@ -353,8 +414,8 @@
|
|||||||
title: UNetMotionModel
|
title: UNetMotionModel
|
||||||
- local: api/models/uvit2d
|
- local: api/models/uvit2d
|
||||||
title: UViT2DModel
|
title: UViT2DModel
|
||||||
title: UNets
|
- title: VAEs
|
||||||
- sections:
|
sections:
|
||||||
- local: api/models/asymmetricautoencoderkl
|
- local: api/models/asymmetricautoencoderkl
|
||||||
title: AsymmetricAutoencoderKL
|
title: AsymmetricAutoencoderKL
|
||||||
- local: api/models/autoencoder_dc
|
- local: api/models/autoencoder_dc
|
||||||
@@ -375,6 +436,8 @@
|
|||||||
title: AutoencoderKLMagvit
|
title: AutoencoderKLMagvit
|
||||||
- local: api/models/autoencoderkl_mochi
|
- local: api/models/autoencoderkl_mochi
|
||||||
title: AutoencoderKLMochi
|
title: AutoencoderKLMochi
|
||||||
|
- local: api/models/autoencoderkl_qwenimage
|
||||||
|
title: AutoencoderKLQwenImage
|
||||||
- local: api/models/autoencoder_kl_wan
|
- local: api/models/autoencoder_kl_wan
|
||||||
title: AutoencoderKLWan
|
title: AutoencoderKLWan
|
||||||
- local: api/models/consistency_decoder_vae
|
- local: api/models/consistency_decoder_vae
|
||||||
@@ -385,9 +448,7 @@
|
|||||||
title: Tiny AutoEncoder
|
title: Tiny AutoEncoder
|
||||||
- local: api/models/vq
|
- local: api/models/vq
|
||||||
title: VQModel
|
title: VQModel
|
||||||
title: VAEs
|
- title: Pipelines
|
||||||
title: Models
|
|
||||||
- isExpanded: false
|
|
||||||
sections:
|
sections:
|
||||||
- local: api/pipelines/overview
|
- local: api/pipelines/overview
|
||||||
title: Overview
|
title: Overview
|
||||||
@@ -409,6 +470,10 @@
|
|||||||
title: AutoPipeline
|
title: AutoPipeline
|
||||||
- local: api/pipelines/blip_diffusion
|
- local: api/pipelines/blip_diffusion
|
||||||
title: BLIP-Diffusion
|
title: BLIP-Diffusion
|
||||||
|
- local: api/pipelines/bria_3_2
|
||||||
|
title: Bria 3.2
|
||||||
|
- local: api/pipelines/chroma
|
||||||
|
title: Chroma
|
||||||
- local: api/pipelines/cogvideox
|
- local: api/pipelines/cogvideox
|
||||||
title: CogVideoX
|
title: CogVideoX
|
||||||
- local: api/pipelines/cogview3
|
- local: api/pipelines/cogview3
|
||||||
@@ -511,6 +576,8 @@
|
|||||||
title: PixArt-α
|
title: PixArt-α
|
||||||
- local: api/pipelines/pixart_sigma
|
- local: api/pipelines/pixart_sigma
|
||||||
title: PixArt-Σ
|
title: PixArt-Σ
|
||||||
|
- local: api/pipelines/qwenimage
|
||||||
|
title: QwenImage
|
||||||
- local: api/pipelines/sana
|
- local: api/pipelines/sana
|
||||||
title: Sana
|
title: Sana
|
||||||
- local: api/pipelines/sana_sprint
|
- local: api/pipelines/sana_sprint
|
||||||
@@ -521,11 +588,14 @@
|
|||||||
title: Semantic Guidance
|
title: Semantic Guidance
|
||||||
- local: api/pipelines/shap_e
|
- local: api/pipelines/shap_e
|
||||||
title: Shap-E
|
title: Shap-E
|
||||||
|
- local: api/pipelines/skyreels_v2
|
||||||
|
title: SkyReels-V2
|
||||||
- local: api/pipelines/stable_audio
|
- local: api/pipelines/stable_audio
|
||||||
title: Stable Audio
|
title: Stable Audio
|
||||||
- local: api/pipelines/stable_cascade
|
- local: api/pipelines/stable_cascade
|
||||||
title: Stable Cascade
|
title: Stable Cascade
|
||||||
- sections:
|
- title: Stable Diffusion
|
||||||
|
sections:
|
||||||
- local: api/pipelines/stable_diffusion/overview
|
- local: api/pipelines/stable_diffusion/overview
|
||||||
title: Overview
|
title: Overview
|
||||||
- local: api/pipelines/stable_diffusion/depth2img
|
- local: api/pipelines/stable_diffusion/depth2img
|
||||||
@@ -562,7 +632,6 @@
|
|||||||
title: T2I-Adapter
|
title: T2I-Adapter
|
||||||
- local: api/pipelines/stable_diffusion/text2img
|
- local: api/pipelines/stable_diffusion/text2img
|
||||||
title: Text-to-image
|
title: Text-to-image
|
||||||
title: Stable Diffusion
|
|
||||||
- local: api/pipelines/stable_unclip
|
- local: api/pipelines/stable_unclip
|
||||||
title: Stable unCLIP
|
title: Stable unCLIP
|
||||||
- local: api/pipelines/text_to_video
|
- local: api/pipelines/text_to_video
|
||||||
@@ -581,8 +650,7 @@
|
|||||||
title: Wan
|
title: Wan
|
||||||
- local: api/pipelines/wuerstchen
|
- local: api/pipelines/wuerstchen
|
||||||
title: Wuerstchen
|
title: Wuerstchen
|
||||||
title: Pipelines
|
- title: Schedulers
|
||||||
- isExpanded: false
|
|
||||||
sections:
|
sections:
|
||||||
- local: api/schedulers/overview
|
- local: api/schedulers/overview
|
||||||
title: Overview
|
title: Overview
|
||||||
@@ -652,8 +720,7 @@
|
|||||||
title: UniPCMultistepScheduler
|
title: UniPCMultistepScheduler
|
||||||
- local: api/schedulers/vq_diffusion
|
- local: api/schedulers/vq_diffusion
|
||||||
title: VQDiffusionScheduler
|
title: VQDiffusionScheduler
|
||||||
title: Schedulers
|
- title: Internal classes
|
||||||
- isExpanded: false
|
|
||||||
sections:
|
sections:
|
||||||
- local: api/internal_classes_overview
|
- local: api/internal_classes_overview
|
||||||
title: Overview
|
title: Overview
|
||||||
@@ -671,5 +738,3 @@
|
|||||||
title: VAE Image Processor
|
title: VAE Image Processor
|
||||||
- local: api/video_processor
|
- local: api/video_processor
|
||||||
title: Video Processor
|
title: Video Processor
|
||||||
title: Internal classes
|
|
||||||
title: API
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
@@ -11,72 +11,26 @@ specific language governing permissions and limitations under the License. -->
|
|||||||
|
|
||||||
# Caching methods
|
# Caching methods
|
||||||
|
|
||||||
## Pyramid Attention Broadcast
|
Cache methods speedup diffusion transformers by storing and reusing intermediate outputs of specific layers, such as attention and feedforward layers, instead of recalculating them at each inference step.
|
||||||
|
|
||||||
[Pyramid Attention Broadcast](https://huggingface.co/papers/2408.12588) from Xuanlei Zhao, Xiaolong Jin, Kai Wang, Yang You.
|
## CacheMixin
|
||||||
|
|
||||||
Pyramid Attention Broadcast (PAB) is a method that speeds up inference in diffusion models by systematically skipping attention computations between successive inference steps and reusing cached attention states. The attention states are not very different between successive inference steps. The most prominent difference is in the spatial attention blocks, not as much in the temporal attention blocks, and finally the least in the cross attention blocks. Therefore, many cross attention computation blocks can be skipped, followed by the temporal and spatial attention blocks. By combining other techniques like sequence parallelism and classifier-free guidance parallelism, PAB achieves near real-time video generation.
|
|
||||||
|
|
||||||
Enable PAB with [`~PyramidAttentionBroadcastConfig`] on any pipeline. For some benchmarks, refer to [this](https://github.com/huggingface/diffusers/pull/9562) pull request.
|
|
||||||
|
|
||||||
```python
|
|
||||||
import torch
|
|
||||||
from diffusers import CogVideoXPipeline, PyramidAttentionBroadcastConfig
|
|
||||||
|
|
||||||
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
|
|
||||||
pipe.to("cuda")
|
|
||||||
|
|
||||||
# Increasing the value of `spatial_attention_timestep_skip_range[0]` or decreasing the value of
|
|
||||||
# `spatial_attention_timestep_skip_range[1]` will decrease the interval in which pyramid attention
|
|
||||||
# broadcast is active, leader to slower inference speeds. However, large intervals can lead to
|
|
||||||
# poorer quality of generated videos.
|
|
||||||
config = PyramidAttentionBroadcastConfig(
|
|
||||||
spatial_attention_block_skip_range=2,
|
|
||||||
spatial_attention_timestep_skip_range=(100, 800),
|
|
||||||
current_timestep_callback=lambda: pipe.current_timestep,
|
|
||||||
)
|
|
||||||
pipe.transformer.enable_cache(config)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Faster Cache
|
|
||||||
|
|
||||||
[FasterCache](https://huggingface.co/papers/2410.19355) from Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, Kwan-Yee K. Wong.
|
|
||||||
|
|
||||||
FasterCache is a method that speeds up inference in diffusion transformers by:
|
|
||||||
- Reusing attention states between successive inference steps, due to high similarity between them
|
|
||||||
- Skipping unconditional branch prediction used in classifier-free guidance by revealing redundancies between unconditional and conditional branch outputs for the same timestep, and therefore approximating the unconditional branch output using the conditional branch output
|
|
||||||
|
|
||||||
```python
|
|
||||||
import torch
|
|
||||||
from diffusers import CogVideoXPipeline, FasterCacheConfig
|
|
||||||
|
|
||||||
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
|
|
||||||
pipe.to("cuda")
|
|
||||||
|
|
||||||
config = FasterCacheConfig(
|
|
||||||
spatial_attention_block_skip_range=2,
|
|
||||||
spatial_attention_timestep_skip_range=(-1, 681),
|
|
||||||
current_timestep_callback=lambda: pipe.current_timestep,
|
|
||||||
attention_weight_callback=lambda _: 0.3,
|
|
||||||
unconditional_batch_skip_range=5,
|
|
||||||
unconditional_batch_timestep_skip_range=(-1, 781),
|
|
||||||
tensor_format="BFCHW",
|
|
||||||
)
|
|
||||||
pipe.transformer.enable_cache(config)
|
|
||||||
```
|
|
||||||
|
|
||||||
### CacheMixin
|
|
||||||
|
|
||||||
[[autodoc]] CacheMixin
|
[[autodoc]] CacheMixin
|
||||||
|
|
||||||
### PyramidAttentionBroadcastConfig
|
## PyramidAttentionBroadcastConfig
|
||||||
|
|
||||||
[[autodoc]] PyramidAttentionBroadcastConfig
|
[[autodoc]] PyramidAttentionBroadcastConfig
|
||||||
|
|
||||||
[[autodoc]] apply_pyramid_attention_broadcast
|
[[autodoc]] apply_pyramid_attention_broadcast
|
||||||
|
|
||||||
### FasterCacheConfig
|
## FasterCacheConfig
|
||||||
|
|
||||||
[[autodoc]] FasterCacheConfig
|
[[autodoc]] FasterCacheConfig
|
||||||
|
|
||||||
[[autodoc]] apply_faster_cache
|
[[autodoc]] apply_faster_cache
|
||||||
|
|
||||||
|
### FirstBlockCacheConfig
|
||||||
|
|
||||||
|
[[autodoc]] FirstBlockCacheConfig
|
||||||
|
|
||||||
|
[[autodoc]] apply_first_block_cache
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
@@ -16,7 +16,7 @@ Schedulers from [`~schedulers.scheduling_utils.SchedulerMixin`] and models from
|
|||||||
|
|
||||||
<Tip>
|
<Tip>
|
||||||
|
|
||||||
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `huggingface-cli login`.
|
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `hf auth login`.
|
||||||
|
|
||||||
</Tip>
|
</Tip>
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
@@ -26,9 +26,11 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
|
|||||||
- [`HunyuanVideoLoraLoaderMixin`] provides similar functions for [HunyuanVideo](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hunyuan_video).
|
- [`HunyuanVideoLoraLoaderMixin`] provides similar functions for [HunyuanVideo](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hunyuan_video).
|
||||||
- [`Lumina2LoraLoaderMixin`] provides similar functions for [Lumina2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/lumina2).
|
- [`Lumina2LoraLoaderMixin`] provides similar functions for [Lumina2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/lumina2).
|
||||||
- [`WanLoraLoaderMixin`] provides similar functions for [Wan](https://huggingface.co/docs/diffusers/main/en/api/pipelines/wan).
|
- [`WanLoraLoaderMixin`] provides similar functions for [Wan](https://huggingface.co/docs/diffusers/main/en/api/pipelines/wan).
|
||||||
|
- [`SkyReelsV2LoraLoaderMixin`] provides similar functions for [SkyReels-V2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/skyreels_v2).
|
||||||
- [`CogView4LoraLoaderMixin`] provides similar functions for [CogView4](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogview4).
|
- [`CogView4LoraLoaderMixin`] provides similar functions for [CogView4](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogview4).
|
||||||
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
|
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
|
||||||
- [`HiDreamImageLoraLoaderMixin`] provides similar functions for [HiDream Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream)
|
- [`HiDreamImageLoraLoaderMixin`] provides similar functions for [HiDream Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream)
|
||||||
|
- [`QwenImageLoraLoaderMixin`] provides similar functions for [Qwen Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/qwen)
|
||||||
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
|
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
|
||||||
|
|
||||||
<Tip>
|
<Tip>
|
||||||
@@ -37,6 +39,10 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
|
|||||||
|
|
||||||
</Tip>
|
</Tip>
|
||||||
|
|
||||||
|
## LoraBaseMixin
|
||||||
|
|
||||||
|
[[autodoc]] loaders.lora_base.LoraBaseMixin
|
||||||
|
|
||||||
## StableDiffusionLoraLoaderMixin
|
## StableDiffusionLoraLoaderMixin
|
||||||
|
|
||||||
[[autodoc]] loaders.lora_pipeline.StableDiffusionLoraLoaderMixin
|
[[autodoc]] loaders.lora_pipeline.StableDiffusionLoraLoaderMixin
|
||||||
@@ -88,6 +94,10 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
|
|||||||
|
|
||||||
[[autodoc]] loaders.lora_pipeline.WanLoraLoaderMixin
|
[[autodoc]] loaders.lora_pipeline.WanLoraLoaderMixin
|
||||||
|
|
||||||
|
## SkyReelsV2LoraLoaderMixin
|
||||||
|
|
||||||
|
[[autodoc]] loaders.lora_pipeline.SkyReelsV2LoraLoaderMixin
|
||||||
|
|
||||||
## AmusedLoraLoaderMixin
|
## AmusedLoraLoaderMixin
|
||||||
|
|
||||||
[[autodoc]] loaders.lora_pipeline.AmusedLoraLoaderMixin
|
[[autodoc]] loaders.lora_pipeline.AmusedLoraLoaderMixin
|
||||||
@@ -96,6 +106,10 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
|
|||||||
|
|
||||||
[[autodoc]] loaders.lora_pipeline.HiDreamImageLoraLoaderMixin
|
[[autodoc]] loaders.lora_pipeline.HiDreamImageLoraLoaderMixin
|
||||||
|
|
||||||
|
## QwenImageLoraLoaderMixin
|
||||||
|
|
||||||
|
[[autodoc]] loaders.lora_pipeline.QwenImageLoraLoaderMixin
|
||||||
|
|
||||||
## LoraBaseMixin
|
## LoraBaseMixin
|
||||||
|
|
||||||
[[autodoc]] loaders.lora_base.LoraBaseMixin
|
[[autodoc]] loaders.lora_base.LoraBaseMixin
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
|||||||
|
|
||||||
# AsymmetricAutoencoderKL
|
# AsymmetricAutoencoderKL
|
||||||
|
|
||||||
Improved larger variational autoencoder (VAE) model with KL loss for inpainting task: [Designing a Better Asymmetric VQGAN for StableDiffusion](https://arxiv.org/abs/2306.04632) by Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua.
|
Improved larger variational autoencoder (VAE) model with KL loss for inpainting task: [Designing a Better Asymmetric VQGAN for StableDiffusion](https://huggingface.co/papers/2306.04632) by Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua.
|
||||||
|
|
||||||
The abstract from the paper is:
|
The abstract from the paper is:
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
|||||||
|
|
||||||
# AutoencoderKL
|
# AutoencoderKL
|
||||||
|
|
||||||
The variational autoencoder (VAE) model with KL loss was introduced in [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114v11) by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
|
The variational autoencoder (VAE) model with KL loss was introduced in [Auto-Encoding Variational Bayes](https://huggingface.co/papers/1312.6114v11) by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
|
||||||
|
|
||||||
The abstract from the paper is:
|
The abstract from the paper is:
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
35
docs/source/en/api/models/autoencoderkl_qwenimage.md
Normal file
35
docs/source/en/api/models/autoencoderkl_qwenimage.md
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
|
the License. You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||||
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||||
|
specific language governing permissions and limitations under the License. -->
|
||||||
|
|
||||||
|
# AutoencoderKLQwenImage
|
||||||
|
|
||||||
|
The model can be loaded with the following code snippet.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from diffusers import AutoencoderKLQwenImage
|
||||||
|
|
||||||
|
vae = AutoencoderKLQwenImage.from_pretrained("Qwen/QwenImage-20B", subfolder="vae")
|
||||||
|
```
|
||||||
|
|
||||||
|
## AutoencoderKLQwenImage
|
||||||
|
|
||||||
|
[[autodoc]] AutoencoderKLQwenImage
|
||||||
|
- decode
|
||||||
|
- encode
|
||||||
|
- all
|
||||||
|
|
||||||
|
## AutoencoderKLOutput
|
||||||
|
|
||||||
|
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
|
||||||
|
|
||||||
|
## DecoderOutput
|
||||||
|
|
||||||
|
[[autodoc]] models.autoencoders.vae.DecoderOutput
|
||||||
19
docs/source/en/api/models/bria_transformer.md
Normal file
19
docs/source/en/api/models/bria_transformer.md
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
|
the License. You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||||
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||||
|
specific language governing permissions and limitations under the License.
|
||||||
|
-->
|
||||||
|
|
||||||
|
# BriaTransformer2DModel
|
||||||
|
|
||||||
|
A modified flux Transformer model from [Bria](https://huggingface.co/briaai/BRIA-3.2)
|
||||||
|
|
||||||
|
## BriaTransformer2DModel
|
||||||
|
|
||||||
|
[[autodoc]] BriaTransformer2DModel
|
||||||
19
docs/source/en/api/models/chroma_transformer.md
Normal file
19
docs/source/en/api/models/chroma_transformer.md
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
|
the License. You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||||
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||||
|
specific language governing permissions and limitations under the License.
|
||||||
|
-->
|
||||||
|
|
||||||
|
# ChromaTransformer2DModel
|
||||||
|
|
||||||
|
A modified flux Transformer model from [Chroma](https://huggingface.co/lodestones/Chroma)
|
||||||
|
|
||||||
|
## ChromaTransformer2DModel
|
||||||
|
|
||||||
|
[[autodoc]] ChromaTransformer2DModel
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
@@ -11,7 +11,7 @@ specific language governing permissions and limitations under the License. -->
|
|||||||
|
|
||||||
# ConsisIDTransformer3DModel
|
# ConsisIDTransformer3DModel
|
||||||
|
|
||||||
A Diffusion Transformer model for 3D data from [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) was introduced in [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://arxiv.org/pdf/2411.17440) by Peking University & University of Rochester & etc.
|
A Diffusion Transformer model for 3D data from [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) was introduced in [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://huggingface.co/papers/2411.17440) by Peking University & University of Rochester & etc.
|
||||||
|
|
||||||
The model can be loaded with the following code snippet.
|
The model can be loaded with the following code snippet.
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team and Tencent Hunyuan Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team and Tencent Hunyuan Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
|||||||
|
|
||||||
# HunyuanDiT2DControlNetModel
|
# HunyuanDiT2DControlNetModel
|
||||||
|
|
||||||
HunyuanDiT2DControlNetModel is an implementation of ControlNet for [Hunyuan-DiT](https://arxiv.org/abs/2405.08748).
|
HunyuanDiT2DControlNetModel is an implementation of ControlNet for [Hunyuan-DiT](https://huggingface.co/papers/2405.08748).
|
||||||
|
|
||||||
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
|
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
@@ -11,11 +11,11 @@ specific language governing permissions and limitations under the License. -->
|
|||||||
|
|
||||||
# SparseControlNetModel
|
# SparseControlNetModel
|
||||||
|
|
||||||
SparseControlNetModel is an implementation of ControlNet for [AnimateDiff](https://arxiv.org/abs/2307.04725).
|
SparseControlNetModel is an implementation of ControlNet for [AnimateDiff](https://huggingface.co/papers/2307.04725).
|
||||||
|
|
||||||
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
|
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
|
||||||
|
|
||||||
The SparseCtrl version of ControlNet was introduced in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
|
The SparseCtrl version of ControlNet was introduced in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://huggingface.co/papers/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
|
||||||
|
|
||||||
The abstract from the paper is:
|
The abstract from the paper is:
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team and The InstantX Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
@@ -21,6 +21,22 @@ from diffusers import HiDreamImageTransformer2DModel
|
|||||||
transformer = HiDreamImageTransformer2DModel.from_pretrained("HiDream-ai/HiDream-I1-Full", subfolder="transformer", torch_dtype=torch.bfloat16)
|
transformer = HiDreamImageTransformer2DModel.from_pretrained("HiDream-ai/HiDream-I1-Full", subfolder="transformer", torch_dtype=torch.bfloat16)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Loading GGUF quantized checkpoints for HiDream-I1
|
||||||
|
|
||||||
|
GGUF checkpoints for the `HiDreamImageTransformer2DModel` can be loaded using `~FromOriginalModelMixin.from_single_file`
|
||||||
|
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
from diffusers import GGUFQuantizationConfig, HiDreamImageTransformer2DModel
|
||||||
|
|
||||||
|
ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
|
||||||
|
transformer = HiDreamImageTransformer2DModel.from_single_file(
|
||||||
|
ckpt_path,
|
||||||
|
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
|
||||||
|
torch_dtype=torch.bfloat16
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
## HiDreamImageTransformer2DModel
|
## HiDreamImageTransformer2DModel
|
||||||
|
|
||||||
[[autodoc]] HiDreamImageTransformer2DModel
|
[[autodoc]] HiDreamImageTransformer2DModel
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||||
the License. You may obtain a copy of the License at
|
the License. You may obtain a copy of the License at
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user