Compare commits

...

255 Commits

Author SHA1 Message Date
Aryan
de7cdf6287 Merge modular diffusers with main (#11893)
* [CI] Fix big GPU test marker (#11786)

* update

* update

* First Block Cache (#11180)

* update

* modify flux single blocks to make compatible with cache techniques (without too much model-specific intrusion code)

* remove debug logs

* update

* cache context for different batches of data

* fix hs residual bug for single return outputs; support ltx

* fix controlnet flux

* support flux, ltx i2v, ltx condition

* update

* update

* Update docs/source/en/api/cache.md

* Update src/diffusers/hooks/hooks.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* address review comments pt. 1

* address review comments pt. 2

* cache context refacotr; address review pt. 3

* address review comments

* metadata registration with decorators instead of centralized

* support cogvideox

* support mochi

* fix

* remove unused function

* remove central registry based on review

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* fix

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-07-08 18:30:27 -10:00
yiyixuxu
73c5fe8bb1 Merge branch 'modular-diffusers' of github.com:huggingface/diffusers into modular-diffusers 2025-07-08 22:13:34 +02:00
yiyixuxu
595581d6ba style 2025-07-08 22:13:00 +02:00
yiyixuxu
d27b65411e add more docstrings + experimental marks 2025-07-08 20:23:44 +02:00
yiyixuxu
cb9dca5523 add experimental marks to all modular docs 2025-07-08 20:23:21 +02:00
YiYi Xu
79166dcb47 Merge branch 'main' into modular-diffusers 2025-07-08 05:46:01 -10:00
Sayak Paul
01240fecb0 [training ] add Kontext i2i training (#11858)
* feat: enable i2i fine-tuning in Kontext script.

* readme

* more checks.

* Apply suggestions from code review

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>

* fixes

* fix

* add proj_mlp to the mix

* Update README_flux.md

add note on installing from commit `05e7a854d0a5661f5b433f6dd5954c224b104f0b`

* fix

* fix

---------

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2025-07-08 21:04:16 +05:30
Steven Liu
ce338d4e4a [docs] LoRA metadata (#11848)
* draft

* hub image

* update

* fix
2025-07-08 08:29:38 -07:00
yiyixuxu
f95c320467 addreess more review comments 2025-07-08 07:11:57 +02:00
yiyixuxu
59abd9514b add link to components manager doc 2025-07-08 06:47:14 +02:00
yiyixuxu
5f3ebef0d7 update remove duplicated config for pag, and remove the description of all the guiders 2025-07-08 06:29:47 +02:00
YiYi Xu
e6ffde2936 Apply suggestions from code review
Co-authored-by: Aryan <aryan@huggingface.co>
2025-07-07 18:25:31 -10:00
yiyixuxu
04171c7345 Merge branch 'modular-diffusers' of github.com:huggingface/diffusers into modular-diffusers 2025-07-08 06:17:08 +02:00
Aryan
be5e10ae61 Copied-from implementation of PAG-guider (#11882)
* update

* fix
2025-07-07 18:16:52 -10:00
yiyixuxu
a2da0004ee add a guide on components manager 2025-07-08 06:16:26 +02:00
yiyixuxu
863c7df543 components manager: use shorter ID, display id instead of name 2025-07-08 06:15:37 +02:00
Sayak Paul
bc55b631fd [tests] remove tests for deprecated pipelines. (#11879)
* remove tests for deprecated pipelines.

* remove folders

* test_pipelines_common
2025-07-08 07:13:16 +05:30
yiyixuxu
e0083b29d5 Merge branch 'modular-diffusers' of github.com:huggingface/diffusers into modular-diffusers 2025-07-07 20:52:54 +02:00
yiyixuxu
6521f599b2 make sure modularpipeline from_pretrained works without modular_model_index 2025-07-07 20:52:37 +02:00
YiYi Xu
0fcce2acd8 Merge branch 'main' into modular-diffusers 2025-07-07 07:17:20 -10:00
Sayak Paul
15d50f16f2 [docs] fix references in flux pipelines. (#11857)
* fix references in flux.

* Update src/diffusers/pipelines/flux/pipeline_flux_kontext.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-07 22:20:34 +05:30
yiyixuxu
ceeb3c1da3 fix 2025-07-07 10:21:01 +02:00
Sayak Paul
2c30287958 [chore] deprecate blip controlnet pipeline. (#11877)
* deprecate blip controlnet pipeline.

* last_supported_version
2025-07-07 13:25:40 +05:30
yiyixuxu
0fcdd699cf style 2025-07-07 09:55:04 +02:00
yiyixuxu
5af003a9e1 update from_componeenet, update_component 2025-07-07 09:51:04 +02:00
yiyixuxu
179d6d958b add subfolder to push_to_hub 2025-07-07 09:50:33 +02:00
yiyixuxu
229c4b355c add from_pretrained/save_pretrained for guider 2025-07-07 09:50:04 +02:00
yiyixuxu
0a4819a755 add sub_folder to save_pretrained() for config mixin 2025-07-07 09:49:29 +02:00
yiyixuxu
7cea9a3bb0 add a guider section on doc 2025-07-07 09:48:28 +02:00
yiyixuxu
23de59e21a add sub_blocks for pipelineBlock 2025-07-06 06:18:34 +02:00
yiyixuxu
4f8b6f5a15 style + copy 2025-07-06 03:23:31 +02:00
yiyixuxu
63e94cbc61 resolve conflicnt 2025-07-06 02:59:32 +02:00
YiYi Xu
2c66fb3a85 Apply suggestions from code review
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-07-05 14:26:13 -10:00
Aryan
284f827d6c Modular custom config object serialization (#11868)
* update

* make style
2025-07-05 07:49:35 -10:00
Aryan
b750c69859 Modular Guider ConfigMixin (#11862)
* update

* update

* register to config pag
2025-07-04 17:08:05 -10:00
Aryan
13c51bb038 Modular PAG Guider (#11860)
* update

* fix

* update
2025-07-04 12:19:10 -10:00
Aryan
425a715e35 Fix Wan AccVideo/CausVid fuse_lora (#11856)
* fix

* actually, better fix

* empty commit; trigger tests again

* mark wanvace test as flaky
2025-07-04 21:10:35 +05:30
Benjamin Bossan
2527917528 FIX set_lora_device when target layers differ (#11844)
* FIX set_lora_device when target layers differ

Resolves #11833

Fixes a bug that occurs after calling set_lora_device when multiple LoRA
adapters are loaded that target different layers.

Note: Technically, the accompanying test does not require a GPU because
the bug is triggered even if the parameters are already on the
corresponding device, i.e. loading on CPU and then changing the device
to CPU is sufficient to cause the bug. However, this may be optimized
away in the future, so I decided to test with GPU.

* Update docstring to warn about device mismatch

* Extend docstring with an example

* Fix docstring

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-07-04 19:26:17 +05:30
Sayak Paul
e6639fef70 [benchmarks] overhaul benchmarks (#11565)
* start overhauling the benchmarking suite.

* fixes

* fixes

* checking.

* checking

* fixes.

* error handling and logging.

* add flops and params.

* add more models.

* utility to fire execution of all benchmarking scripts.

* utility to push to the hub.

* push utility improvement

* seems to be working.

* okay

* add torchprofile dep.

* remove total gpu memory

* fixes

* fix

* need a big gpu

* better

* what's happening.

* okay

* separate requirements and make it nightly.

* add db population script.

* update secret name

* update secret.

* population db update

* disable db population for now.

* change to every monday

* Update .github/workflows/benchmark.yml

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* quality improvements.

* reparate hub upload step.

* repository

* remove csv

* check

* update

* update

* threading.

* update

* update

* updaye

* update

* update

* update

* remove peft dep

* upgrade runner.

* fix

* fixes

* fix merging csvs.

* push dataset to the Space repo for analysis.

* warm up.

* add a readme

* Apply suggestions from code review

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>

* address feedback

* Apply suggestions from code review

* disable db workflow.

* update to bi weekly.

* enable population

* enable

* updaye

* update

* metadata

* fix

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
2025-07-04 11:04:17 +05:30
Aryan
8c938fb410 [docs] Add a note of _keep_in_fp32_modules (#11851)
* update

* Update docs/source/en/using-diffusers/schedulers.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update schedulers.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-02 15:51:57 -07:00
Linoy Tsaban
f864a9a352 [Flux Kontext] Support Fal Kontext LoRA (#11823)
* initial commit

* initial commit

* initial commit

* fix import

* fix prefix

* remove print

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-07-02 16:57:08 +03:00
Vương Đình Minh
d6fa3298fa update: FluxKontextInpaintPipeline support (#11820)
* update: FluxKontextInpaintPipeline support

* fix: Refactor code, remove mask_image_latents and ruff check

* feat: Add test case and fix with pytest

* Apply style fixes

* copies

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-07-01 23:34:27 -10:00
Sayak Paul
6f1d6694df [lora] tests for exclude_modules with Wan VACE (#11843)
* wan vace.

* update

* update

* import problem
2025-07-02 14:23:26 +05:30
Ju Hoon Park
0e95aa853e [From Single File] support from_single_file method for WanVACE3DTransformer (#11807)
* add `WandVACETransformer3DModel` in`SINGLE_FILE_LOADABLE_CLASSES`

* add rename keys for `VACE`

add rename keys for `VACE`

* fix typo

Sincere thanks to @nitinmukesh 🙇‍♂️

* support for `1.3B VACE` model

Sincere thanks to @nitinmukesh again🙇‍♂️

* update

* update

* Apply style fixes

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-07-02 05:55:36 +02:00
Luo Yihang
5ef74fd5f6 fix norm not training in train_control_lora_flux.py (#11832) 2025-07-01 17:37:54 -10:00
Steven Liu
64a9210315 [docs] Deprecated pipelines (#11838)
add warning

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-07-01 14:02:54 -10:00
Steven Liu
d31b8cea3e [docs] Batch generation (#11841)
* draft

* fix

* fix

* feedback

* feedback
2025-07-01 17:00:20 -07:00
Mikko Tukiainen
62e847db5f Use real-valued instead of complex tensors in Wan2.1 RoPE (#11649)
* use real instead of complex tensors in Wan2.1 RoPE

* remove the redundant type conversion

* unpack rotary_emb

* register rotary embedding frequencies as non-persistent buffers

* Apply style fixes

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-07-01 13:57:19 -10:00
Sayak Paul
470458623e [docs] fix single_file example. (#11847)
fix single_file example.
2025-07-01 21:23:27 +05:30
Aryan
a79c3af6bb [single file] Cosmos (#11801)
* update

* update

* update docs
2025-07-01 18:02:58 +05:30
Aryan
3f3f0c16a6 [tests] Fix failing float16 cuda tests (#11835)
* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-07-01 11:13:58 +05:30
jiqing-feng
f3e1310469 reset deterministic in tearDownClass (#11785)
* reset deterministic in tearDownClass

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix deterministic setting

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-07-01 10:06:54 +05:30
Sayak Paul
87f83d3dd9 [tests] add test for hotswapping + compilation on resolution changes (#11825)
* add resolution changes tests to hotswapping test suite.

* fixes

* docs

* explain duck shapes

* fix
2025-07-01 09:40:34 +05:30
yiyixuxu
3e46c86a93 fix links in the doc 2025-07-01 04:51:49 +02:00
yiyixuxu
8cb5b084b5 up upup 2025-07-01 03:22:27 +02:00
yiyixuxu
13fe248152 add modularpipelineblocks to be pushtohub mixin 2025-07-01 03:22:15 +02:00
yiyixuxu
2e2024152c up up 2025-07-01 03:07:08 +02:00
yiyixuxu
1987c07899 update docstree 2025-07-01 03:06:34 +02:00
yiyixuxu
4543d216ec rename quick start- it is really not quick 2025-07-01 03:06:13 +02:00
yiyixuxu
b5db8aaa6f developer_guide -> end-to-end guide 2025-07-01 03:05:38 +02:00
yiyixuxu
98ea5c9e86 Merge branch 'modular-diffusers' of github.com:huggingface/diffusers into modular-diffusers 2025-06-30 22:10:10 +02:00
yiyixuxu
f27fbceba1 more attemp to fix circular import 2025-06-30 22:09:57 +02:00
YiYi Xu
4b12a60c93 Merge branch 'main' into modular-diffusers 2025-06-30 09:46:44 -10:00
yiyixuxu
abf28d55fb update 2025-06-30 21:45:30 +02:00
Aryan
f064b3bf73 Remove print statement in SCM Scheduler (#11836)
remove print
2025-06-30 09:07:34 -10:00
yiyixuxu
db4b54cfab finish the autopipelines section! 2025-06-30 21:05:32 +02:00
yiyixuxu
0138e176ac remove the get_exeuction_blocks rec from AutoPipelineBlocks repr 2025-06-30 21:05:12 +02:00
Benjamin Bossan
3b079ec3fa ENH: Improve speed of function expanding LoRA scales (#11834)
* ENH Improve speed of expanding LoRA scales

Resolves #11816

The following call proved to be a bottleneck when setting a lot of LoRA
adapters in diffusers:

cdaf84a708/src/diffusers/loaders/peft.py (L482)

This is because we would repeatedly call unet.state_dict(), even though
in the standard case, it is not necessary:

cdaf84a708/src/diffusers/loaders/unet_loader_utils.py (L55)

This PR fixes this by deferring this call, so that it is only run when
it's necessary, not earlier.

* Small fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-06-30 20:25:56 +05:30
Sayak Paul
bc34fa8386 [lora]feat: use exclude modules to loraconfig. (#11806)
* feat: use exclude modules to loraconfig.

* version-guard.

* tests and version guard.

* remove print.

* describe the test

* more detailed warning message + shift to debug

* update

* update

* update

* remove test
2025-06-30 20:08:53 +05:30
yiyixuxu
bbd9340781 up 2025-06-30 11:30:06 +02:00
yiyixuxu
363737ec4b add loop sequential blocks 2025-06-30 11:09:08 +02:00
yiyixuxu
c5849ba9d5 more 2025-06-30 09:46:34 +02:00
yiyixuxu
f09b1ccfae start the section on sequential pipelines 2025-06-30 07:48:44 +02:00
yiyixuxu
285f877620 make InsertableDict importable from modular_pipelines 2025-06-30 07:48:26 +02:00
yiyixuxu
c75b88f86f up 2025-06-30 03:23:44 +02:00
YiYi Xu
b43e703fae Update docs/source/en/modular_diffusers/write_own_pipeline_block.md 2025-06-29 14:49:54 -10:00
YiYi Xu
9fae3828a7 Apply suggestions from code review 2025-06-29 14:49:31 -10:00
yiyixuxu
3a3441cb45 start the write your own pipeline block tutorial 2025-06-30 02:47:38 +02:00
yiyixuxu
fdd2bedae9 2024 -> 2025; fix a circular import 2025-06-29 03:00:46 +02:00
YiYi Xu
fedaa00bd5 Merge branch 'main' into modular-diffusers 2025-06-28 14:50:58 -10:00
yiyixuxu
8c680bc0b4 up 2025-06-28 14:11:17 +02:00
yiyixuxu
92b6b43805 add some visuals 2025-06-28 13:39:45 +02:00
yiyixuxu
49ea4d1bf5 style 2025-06-28 12:50:11 +02:00
yiyixuxu
58dbe0c29e finimsh the quickstart! 2025-06-28 12:46:21 +02:00
yiyixuxu
9aaec5b9bc up 2025-06-28 12:46:06 +02:00
yiyixuxu
93760b1888 InsertableOrderedDict -> InsertableDict 2025-06-28 09:15:13 +02:00
yiyixuxu
75540f42ee more blocks -> sub_blocks 2025-06-28 08:54:05 +02:00
yiyixuxu
b543bcc661 docstring blocks -> sub_blocks 2025-06-28 08:53:46 +02:00
yiyixuxu
885a596696 blocks -> sub_blocks; will not by default load all; add load_default_components method on modular_pipeline 2025-06-28 08:52:43 +02:00
yiyixuxu
655512e2cf components manager: change get -> search_models; add get_ids, get_components_by_ids, get_components_by_names 2025-06-28 08:35:50 +02:00
Sayak Paul
05e7a854d0 [lora] fix: lora unloading behvaiour (#11822)
* fix: lora unloading behvaiour

* fix

* update
2025-06-28 12:00:42 +05:30
Aryan
76ec3d1fee Support dynamically loading/unloading loras with group offloading (#11804)
* update

* add test

* address review comments

* update

* fixes

* change decorator order to fix tests

* try fix

* fight tests
2025-06-27 23:20:53 +05:30
Aryan
cdaf84a708 TorchAO compile + offloading tests (#11697)
* update

* update

* update

* update

* update

* user property instead
2025-06-27 18:31:57 +05:30
Sayak Paul
e8e44a510c [CI] disable onnx, mps, flax from the CI (#11803)
* disable onnx, mps, flax

* remove
2025-06-27 16:33:43 +05:30
yiyixuxu
f63d62e091 intermediates_inputs -> intermediate_inputs; component_manager -> components_manager, and more 2025-06-27 12:48:30 +02:00
Sayak Paul
21543de571 remove syncs before denoising in Kontext (#11818) 2025-06-27 15:57:55 +05:30
Aryan
d7dd924ece Kontext fixes (#11815)
fix
2025-06-26 13:03:44 -10:00
Sayak Paul
00f95b9755 Kontext training (#11813)
* support flux kontext

* make fix-copies

* add example

* add tests

* update docs

* update

* add note on integrity checker

* initial commit

* initial commit

* add readme section and fixes in the training script.

* add test

* rectify ckpt_id

* fix ckpt

* fixes

* change id

* update

* Update examples/dreambooth/train_dreambooth_lora_flux_kontext.py

Co-authored-by: Aryan <aryan@huggingface.co>

* Update examples/dreambooth/README_flux.md

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: linoytsaban <linoy@huggingface.co>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2025-06-26 19:31:42 +03:00
Aryan
eea76892e8 Flux Kontext (#11812)
* support flux kontext

* make fix-copies

* add example

* add tests

* update docs

* update

* add note on integrity checker

* make fix-copies issue

* add copied froms

* make style

* update repository ids

* more copied froms
2025-06-26 21:29:59 +05:30
yiyixuxu
7608d2eb9e style 2025-06-26 12:44:02 +02:00
yiyixuxu
449f299c63 move all the sequential pipelines & auto pipelines to the blocks_presets.py 2025-06-26 12:43:14 +02:00
yiyixuxu
84f4b27dfa modular_pipeline_presets.py -> modular_blocks_presets.py 2025-06-26 12:41:16 +02:00
yiyixuxu
9abac85f77 remove mapping file, move to preeset.py 2025-06-26 12:40:38 +02:00
yiyixuxu
61772f0994 updatee a comment 2025-06-26 12:39:53 +02:00
yiyixuxu
b92cda25e2 move quicktour to first page 2025-06-26 12:39:13 +02:00
kaixuanliu
27bf7fcd0e adjust tolerance criteria for test_float16_inference in unit test (#11809)
Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
2025-06-26 13:19:59 +05:30
Sayak Paul
a185e1ab91 [tests] add a test on torch compile for varied resolutions (#11776)
* add test for checking compile on different shapes.

* update

* update

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-26 10:07:03 +05:30
Animesh Jain
d93381cd41 [rfc][compile] compile method for DiffusionPipeline (#11705)
* [rfc][compile] compile method for DiffusionPipeline

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Apply style fixes

* Update docs/source/en/optimization/fp16.md

* check

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-06-26 08:41:38 +05:30
Dhruv Nair
3649d7b903 Follow up for Group Offload to Disk (#11760)
* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-06-26 07:24:24 +05:30
yiyixuxu
7492e331b4 fix 2025-06-26 03:43:10 +02:00
yiyixuxu
ab6d63407a style 2025-06-26 03:37:58 +02:00
yiyixuxu
da4242d467 use diffusers ModelHook, raise a import error for accelerate inside enable_auto_cpu_offload 2025-06-26 03:36:34 +02:00
Sayak Paul
10c36e0b78 [chore] post release v0.34.0 (#11800)
* post release v0.34.0

* code quality

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-06-26 06:56:46 +05:30
yiyixuxu
129d658da7 oops, fix 2025-06-26 01:36:43 +02:00
yiyixuxu
75e62385f5 revert changes in pipelines.stable_diffusion_xl folder, can seperate PR later 2025-06-26 01:35:00 +02:00
yiyixuxu
a33206d22b fix 2025-06-26 01:31:51 +02:00
yiyixuxu
a82e211f89 style 2025-06-26 00:48:23 +02:00
yiyixuxu
f3453f05ff copy 2025-06-26 00:47:33 +02:00
yiyixuxu
c437ae72c6 copies 2025-06-25 23:26:59 +02:00
Sayak Paul
8846635873 fix deprecation in lora after 0.34.0 release (#11802) 2025-06-25 08:48:20 -10:00
yiyixuxu
9530245e17 correct code format 2025-06-25 12:10:35 +02:00
yiyixuxu
74b908b7e2 style 2025-06-25 12:04:52 +02:00
yiyixuxu
7d2a633e02 style 2025-06-25 11:26:36 +02:00
YiYi Xu
cb328d3ff9 Apply suggestions from code review 2025-06-24 23:12:26 -10:00
YiYi Xu
8c038f0e62 Update src/diffusers/loaders/lora_base.py 2025-06-24 23:05:23 -10:00
yiyixuxu
5917d7039f remove lora related changes 2025-06-25 11:04:25 +02:00
yiyixuxu
c0327e493e update init 2025-06-25 10:49:09 +02:00
kaixuanliu
dd285099eb adjust to get CI test cases passed on XPU (#11759)
* adjust to get CI test cases passed on XPU

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* fix format issue

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>

* Apply style fixes

---------

Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-06-25 14:02:17 +05:30
YiYi Xu
174628edf4 Merge branch 'main' into modular-diffusers 2025-06-24 22:01:03 -10:00
yiyixuxu
1c9f0a83c9 ujpdate toctree 2025-06-25 09:14:19 +02:00
yiyixuxu
cdaaa40d31 update ComponentSpec.from_component, only update config if it is created with from_config 2025-06-25 08:56:08 +02:00
yiyixuxu
ffbaa890ba move save_pretrained to the correct place 2025-06-25 08:55:06 +02:00
yiyixuxu
e49413d87d update doc 2025-06-25 08:52:15 +02:00
Sayak Paul
80f27d7e8d [tests] skip instead of returning. (#11793)
skip instead of returning.
2025-06-25 08:59:36 +05:30
Sayak Paul
d3e27e05f0 guard omnigen processor. (#11799) 2025-06-24 19:15:34 +05:30
Aryan
5df02fc171 [tests] Fix group offloading and layerwise casting test interaction (#11796)
* update

* update

* update
2025-06-24 17:33:32 +05:30
Sayak Paul
7392c8ff5a [chore] raise as early as possible in group offloading (#11792)
* raise as early as possible in group offloading

* remove check from ModuleGroup
2025-06-24 15:05:23 +05:30
Aryan
474a248f10 [tests] Fix HunyuanVideo Framepack device tests (#11789)
update
2025-06-24 13:49:37 +05:30
yiyixuxu
48e4ff5c05 update overview 2025-06-24 10:17:35 +02:00
yiyixuxu
7c78fb1aad add a overview doc page 2025-06-24 08:16:34 +02:00
YiYi Xu
7bc0a07b19 [lora] only remove hooks that we add back (#11768)
up
2025-06-23 16:49:19 -10:00
Sayak Paul
92542719ed [docs] minor cleanups in the lora docs. (#11770)
* minor cleanups in the lora docs.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* format docs

* fix copies

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-24 08:10:07 +05:30
yiyixuxu
bb4044362e up 2025-06-23 18:37:28 +02:00
yiyixuxu
1ae591e817 update code format 2025-06-23 18:08:55 +02:00
yiyixuxu
42c06e90f4 update doc 2025-06-23 17:55:32 +02:00
yiyixuxu
085ade03be add doc (developer guide) 2025-06-23 16:12:31 +02:00
yiyixuxu
78d2454c7c fix 2025-06-23 16:06:17 +02:00
imbr92
6760300202 Add --lora_alpha and metadata handling to train_dreambooth_lora_sana.py (#11744)
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2025-06-23 15:46:44 +03:00
Yuanchen Guo
798265f2b6 [Wan] Fix mask padding in Wan VACE pipeline. (#11778) 2025-06-23 16:28:21 +05:30
Dhruv Nair
cd813499be [CI] Skip ONNX Upscale tests (#11774)
update
2025-06-23 12:14:01 +05:30
Sayak Paul
fbddf02807 [tests] properly skip tests instead of return (#11771)
model test updates
2025-06-23 11:59:59 +05:30
Yao Matrix
f20b83a04f enable cpu offloading of new pipelines on XPU & use device agnostic empty to make pipelines work on XPU (#11671)
* commit 1

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* patch 2

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* Update pipeline_pag_sana.py

* Update pipeline_sana.py

* Update pipeline_sana_controlnet.py

* Update pipeline_sana_sprint_img2img.py

* Update pipeline_sana_sprint.py

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix fat-thumb while merge conflict

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix ci issues

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
2025-06-23 09:44:16 +05:30
jiqing-feng
ee40088fe5 enable deterministic in bnb 4 bit tests (#11738)
* enable deterministic in bnb 4 bit tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix 8bit test

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-06-23 08:17:36 +05:30
yiyixuxu
19545fd3e1 update components manager __repr__ 2025-06-22 12:59:19 +02:00
yiyixuxu
d12531ddf7 lora: only remove hooks that we add back 2025-06-22 12:32:04 +02:00
yiyixuxu
4751d456f2 shorten loop subblock name 2025-06-22 12:31:16 +02:00
Tolga Cangöz
7fc53b5d66 Fix dimensionalities in apply_rotary_emb functions' comments (#11717)
Fix dimensionality in `apply_rotary_emb` functions' comments.
2025-06-21 12:09:28 -10:00
yiyixuxu
083479c365 ordereddict -> insertableOrderedDict; make sure loader to method works 2025-06-21 04:28:10 +02:00
yiyixuxu
04c16d0a56 update 2025-06-21 04:25:12 +02:00
yiyixuxu
9e58856b7a add __repr__ method for InsertableOrderedDict 2025-06-21 04:24:44 +02:00
Steven Liu
0874dd04dc [docs] LoRA scale scheduling (#11727)
draft
2025-06-20 10:15:29 -07:00
Steven Liu
6184d8a433 [docs] device_map (#11711)
draft

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-06-20 10:14:48 -07:00
Steven Liu
5a6e386464 [docs] Quantization + torch.compile + offloading (#11703)
* draft

* feedback

* update

* feedback

* fix

* feedback

* feedback

* fix

* feedback
2025-06-20 10:11:39 -07:00
yiyixuxu
45392cce11 update the description of StableDiffusionXLDenoiseLoopWrapper 2025-06-20 07:46:54 +02:00
yiyixuxu
8913d59bf3 add to method to modular loader, copied from DiffusionPipeline, not tested yet 2025-06-20 07:46:53 +02:00
yiyixuxu
5a8c1b5f19 add block mappings to modular_diffusers.stable_diffusion_xl.__init__ 2025-06-20 07:46:53 +02:00
yiyixuxu
7ad01a6350 rename modular_pipeline_block_mappings.py to modular_block_mapping 2025-06-20 07:46:45 +02:00
Dhruv Nair
42077e6c73 Fix failing cpu offload test for LTX Latent Upscale (#11755)
update
2025-06-20 06:07:34 +02:00
Sayak Paul
3d8d8485fc fix invalid component handling behaviour in PipelineQuantizationConfig (#11750)
* start

* updates
2025-06-20 07:54:12 +05:30
YiYi Xu
a8e853b791 [modular diffusers] more refactor (#11235)
* add componentspec and configspec

* up

* up

* move methods to blocks

* Modular Diffusers Guiders (#11311)

* cfg; slg; pag; sdxl without controlnet

* support sdxl controlnet

* support controlnet union

* update

* update

* cfg zero*

* use unwrap_module for torch compiled modules

* remove guider kwargs

* remove commented code

* remove old guider

* fix slg bug

* remove debug print

* autoguidance

* smoothed energy guidance

* add note about seg

* tangential cfg

* cfg plus plus

* support cfgpp in ddim

* apply review suggestions

* refactor

* rename enable/disable

* remove cfg++ for now

* rename do_classifier_free_guidance->prepare_unconditional_embeds

* remove unused

* [modular diffusers] introducing ModularLoader (#11462)

* cfg; slg; pag; sdxl without controlnet

---------

Co-authored-by: Aryan <aryan@huggingface.co>

* make loader optional

* remove lora step and ip-adapter step -> no longer needed

* rename pipeline -> components, data -> block_state

* seperate controlnet step into input + denoise

* refactor controlnet union

* reefactor pipeline/block states so that it can dynamically accept kwargs

* remove controlnet union denoise step, refactor & reuse controlnet denoisee step to accept aditional contrlnet kwargs

* allow input_fields as input & update message

* update input formating, consider kwarggs_type inputs with no name, e/g *_controlnet_kwargs

* refactor the denoiseestep using LoopSequential! also add a new file for denoise step

* change warning to debug

* fix get_execusion blocks with loopsequential

* fix auto denoise so all tests pass

* update imports on guiders

* remove modular reelated change from pipelines folder

* made a modular_pipelines folder!

* update __init__

* add notes

* add block state will also make sure modifed intermediates_inputs will be updated

* move block mappings to its own file

* make inputs truly immutable, remove the output logic in sequential pipeline, and update so that intermediates_outputs are only new variables

* decode block, if skip decoding do not need to update latent

* fix imports

* fix import

* fix more

* remove the output step

* make generator intermediates (it is mutable)

* after_denoise -> decoders

* add a to-do for guider cconfig mixin

* refactor component spec: replace create/create_from_pretrained/create_from_config to just create and load method

* refactor modular loader: 1. load only load (pretrained components only if not specific names) 2. update acceept create spec 3. move the updte _componeent_spec logic outside register_components to each method that create/update the component: __init__/update/load

* update components manager

* up

* [WIP] Modular Diffusers support custom code/pipeline blocks (#11539)

* update

* update

* remove the duplicated components_manager file I forgot to deletee

* fix import in block mapping

* add a to-do for modular loader

* prepare_latents_img2img pipeline method -> function, maybe do the same for others?

* update input for loop blocks, do not need to include intermediate

* solve merge conflict: manually add back the remote code change to modular_pipeline

* add node_utils

* modular node!

* add

* refator based on dhruv's feedbacks

* update doc format for kwargs_type

* up

* updatee modular_pipeline.from_pretrained, modular_repo ->pretrained_model_name_or_path

* save_pretrained for serializing config. (#11603)

* save_pretrained for serializing config.

* remove pushtohub

* diffusers-cli rough

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-06-19 15:34:17 -10:00
Dhruv Nair
195926bbdc Update Chroma Docs (#11753)
* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-06-19 19:33:19 +02:00
Sayak Paul
85a916bb8b make group offloading work with disk/nvme transfers (#11682)
* start implementing disk offloading in group.

* delete diff file.

* updates.patch

* offload_to_disk_path

* check if safetensors already exist.

* add test and clarify.

* updates

* update todos.

* update more docs.

* update docs
2025-06-19 18:09:30 +05:30
Dhruv Nair
3287ce2890 Fix HiDream pipeline test module (#11754)
update
2025-06-19 17:06:14 +05:30
Dhruv Nair
0c11c8c1ac [CI] Fix SANA tests (#11756)
update
2025-06-19 17:06:02 +05:30
Dhruv Nair
fc51583c8a [CI] Fix WAN VACE tests (#11757)
update
2025-06-19 17:03:12 +05:30
Sayak Paul
fb57c76aa1 [LoRA] refactor lora loading at the model-level (#11719)
* factor out stuff from load_lora_adapter().

* simplifying text encoder lora loading.

* fix peft.py

* fix logging locations.

* formatting

* fix

* update

* update

* update
2025-06-19 13:06:25 +05:30
dependabot[bot]
7251bb4fd0 Bump urllib3 from 2.2.3 to 2.5.0 in /examples/server (#11748)
Bumps [urllib3](https://github.com/urllib3/urllib3) from 2.2.3 to 2.5.0.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/2.2.3...2.5.0)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-version: 2.5.0
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-06-19 11:09:33 +05:30
Aryan
3fba74e153 Add missing HiDream license (#11747)
update
2025-06-19 08:07:47 +05:30
Aryan
a4df8dbc40 Update more licenses to 2025 (#11746)
update
2025-06-19 07:46:01 +05:30
Sayak Paul
48eae6f420 [Quantizers] add is_compileable property to quantizers. (#11736)
add is_compileable property to quantizers.
2025-06-19 07:45:06 +05:30
Dhruv Nair
66394bf6c7 Chroma Follow Up (#11725)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* updte

* update

* update

* update
2025-06-18 22:24:41 +05:30
Sayak Paul
62cce3045d [chore] change to 2025 licensing for remaining (#11741)
change to 2025 licensing for remaining
2025-06-18 20:56:00 +05:30
Sayak Paul
05e867784d [tests] device_map tests for all models. (#11708)
* device_map tests for all models.

* updates

* Update tests/models/test_modeling_common.py

Co-authored-by: Aryan <aryan@huggingface.co>

* fix device_map in test

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-06-18 10:52:06 +05:30
Leo Jiang
d72184eba3 [training] add ds support to lora hidream (#11737)
* [training] add ds support to lora hidream

* Apply style fixes

---------

Co-authored-by: J石页 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-06-18 09:26:02 +05:30
Saurabh Misra
5ce4814af1 ️ Speed up method AutoencoderKLWan.clear_cache by 886% (#11665)
* ️ Speed up method `AutoencoderKLWan.clear_cache` by 886%

**Key optimizations:**
- Compute the number of `WanCausalConv3d` modules in each model (`encoder`/`decoder`) **only once during initialization**, store in `self._cached_conv_counts`. This removes unnecessary repeated tree traversals at every `clear_cache` call, which was the main bottleneck (from profiling).
- The internal helper `_count_conv3d_fast` is optimized via a generator expression with `sum` for efficiency.

All comments from the original code are preserved, except for updated or removed local docstrings/comments relevant to changed lines.  
**Function signatures and outputs remain unchanged.**

* Apply style fixes

* Apply suggestions from code review

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Apply style fixes

---------

Co-authored-by: codeflash-ai[bot] <148906541+codeflash-ai[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Aseem Saxena <aseem.bits@gmail.com>
2025-06-18 08:46:03 +05:30
YiYi Xu
6a509ba862 Merge branch 'main' into modular-diffusers 2025-04-30 17:56:25 -10:00
YiYi Xu
96795afc72 Merge branch 'main' into modular-diffusers 2025-04-07 18:05:00 -10:00
yiyixuxu
12650e1393 up 2025-02-04 02:08:28 +01:00
yiyixuxu
addaad013c more more more refactor 2025-02-03 20:36:05 +01:00
yiyixuxu
485f8d1758 more refactor 2025-02-01 21:30:05 +01:00
yiyixuxu
cff0fd6260 more refactor 2025-02-01 11:36:13 +01:00
yiyixuxu
8ddb20bfb8 up 2025-02-01 05:45:00 +01:00
yiyixuxu
e5089d702b update 2025-01-31 21:55:45 +01:00
yiyixuxu
2c3e4eafa8 fix 2025-01-29 17:58:40 +01:00
yiyixuxu
c7020df2cf add model_info 2025-01-27 11:33:27 +01:00
yiyixuxu
4bed3e306e up up 2025-01-26 13:04:33 +01:00
yiyixuxu
00a3bc9d6c fix 2025-01-23 18:16:00 +01:00
YiYi Xu
ccb35acd81 Merge branch 'main' into modular-diffusers 2025-01-23 07:07:11 -10:00
yiyixuxu
00cae4e857 docstring doc doc doc 2025-01-23 11:07:13 +01:00
yiyixuxu
b3fb4188f5 Merge branch 'modular-diffusers' of github.com:huggingface/diffusers into modular-diffusers 2025-01-22 17:24:06 +01:00
YiYi Xu
71df1581f7 Update src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_modular.py
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-01-22 06:19:22 -10:00
yiyixuxu
d046cf7d35 block state + fix for num_images_per_prompt > 1 for denoise/controlnet union etc 2025-01-22 09:48:57 +01:00
yiyixuxu
68a5185c86 refactor more, ipadapter node, lora node 2025-01-20 03:36:01 +01:00
yiyixuxu
6e2fe26bfd fix more for lora 2025-01-18 08:04:12 +01:00
yiyixuxu
77b5fa59c5 make it work with lora has both text_encoder & unet 2025-01-18 04:12:07 +01:00
yiyixuxu
a226920b52 get_block_state make it less verbose 2025-01-17 01:37:18 +01:00
yiyixuxu
7007f72409 InputParam, OutputParam, get_auto_doc 2025-01-16 11:44:24 +01:00
yiyixuxu
a6804de4a2 add controlnet union to auto & fix for pag 2025-01-12 16:24:01 +01:00
yiyixuxu
7f897a9fc4 fix 2025-01-12 04:50:45 +01:00
yiyixuxu
0966663d2a adjust print 2025-01-11 19:15:54 +01:00
yiyixuxu
fb78f4f12d Merge branch 'modular-diffusers' of github.com:huggingface/diffusers into modular-diffusers 2025-01-11 09:05:56 +01:00
yiyixuxu
2220af6940 refactor 2025-01-11 09:05:47 +01:00
hlky
7a34832d52 [modular] Stable Diffusion XL ControlNet Union (#10509)
StableDiffusionXLControlNetUnionDenoiseStep
2025-01-09 10:29:45 -10:00
yiyixuxu
e973de64f9 fix contro;net inpaint preprocess 2025-01-08 21:47:20 +01:00
yiyixuxu
db94ca882d add controlnet inpaint + more refactor 2025-01-07 20:49:58 +01:00
yiyixuxu
6985906a2e controlnet input & remove the MultiPipelineBlocks class 2025-01-07 01:56:33 +01:00
yiyixuxu
54f410db6c add inpaint 2025-01-06 09:19:59 +01:00
yiyixuxu
c12a05b9c1 update to to not assume pipeline has hf_device_map 2025-01-03 20:57:44 +01:00
yiyixuxu
2e0f5c86cc start to add inpaint 2025-01-03 18:20:39 +01:00
yiyixuxu
1d63306295 make it work with lora 2025-01-03 06:07:25 +01:00
yiyixuxu
6c93626f6f remove run_blocks, just use __call__ 2025-01-02 00:59:12 +01:00
yiyixuxu
72c5bf07c8 add a from_block class method to modular pipeline 2025-01-02 00:49:34 +01:00
yiyixuxu
ed59f90f15 modular pipeline builder -> ModularPipeline 2025-01-01 22:15:48 +01:00
yiyixuxu
a09ca7f27e refactors: block __init__ no longer accept args. remove update_states from pipeline blocks, add update_states to modularpipeline, remove multi-block support for modular pipeline, remove offload support on modular pipeline 2025-01-01 21:43:20 +01:00
yiyixuxu
8c02572e16 add memory_reserve_margin arg to auto offload 2024-12-31 20:08:53 +01:00
yiyixuxu
27dde51de8 add output arg to run_blocks 2024-12-31 18:06:44 +01:00
yiyixuxu
10d4a775f1 style 2024-12-31 09:55:50 +01:00
yiyixuxu
72d9a81d99 components manager 2024-12-31 09:54:46 +01:00
yiyixuxu
4fa85c7963 add model_manager and global offloading method 2024-12-31 02:57:42 +01:00
YiYi Xu
806e8e66fb Merge branch 'main' into modular-diffusers 2024-12-29 00:44:43 -10:00
yiyixuxu
0b90051db8 add vae encoder node 2024-12-19 17:57:12 +01:00
yiyixuxu
b305c779b2 add offload support! 2024-12-14 21:37:21 +01:00
yiyixuxu
2b3cd2d39c update 2024-12-14 03:02:31 +01:00
yiyixuxu
bc3d1c9ee6 add model_cpu_offload_seq + _exlude_from_cpu_offload 2024-12-14 00:24:15 +01:00
yiyixuxu
e50d614636 only add model as expected_component when the model need to run for the block, currently it's added even when only config is needed 2024-12-11 03:39:39 +01:00
hlky
a8df0f1ffb Modular APG (#10173) 2024-12-10 08:22:42 -10:00
yiyixuxu
ace53e2d2f update/refactor 2024-12-10 03:41:28 +01:00
yiyixuxu
ffc2992fc2 add autostep (not complete) 2024-11-16 22:42:06 +01:00
yiyixuxu
c70a285c2c style 2024-10-30 10:33:25 +01:00
yiyixuxu
8b811feece refactor, from_pretrained, from_pipe, remove_blocks, replace_blocks 2024-10-30 10:13:03 +01:00
yiyixuxu
37e8dc7a59 remove img2img blocksgit status consolidate text2img and img2img 2024-10-28 00:37:48 +01:00
yiyixuxu
024a9f5de3 fix so that run_blocks can work with inputs in the state 2024-10-27 18:52:56 +01:00
yiyixuxu
005195c23e add 2024-10-27 15:18:10 +01:00
yiyixuxu
6742f160df up 2024-10-27 14:59:31 +01:00
yiyixuxu
540d303250 refactor guider 2024-10-26 21:17:06 +02:00
yiyixuxu
f1b3036ca1 update pag guider - draft 2024-10-24 00:14:59 +02:00
yiyixuxu
46ec1743a2 refactor guider, remove prepareguidance step to be combinedd into denoisestep 2024-10-23 21:42:40 +02:00
yiyixuxu
70272b1108 combine controlnetstep into contronetdesnoisestep 2024-10-20 19:45:00 +02:00
yiyixuxu
2b6dcbfa1d fix controlnet 2024-10-20 19:23:37 +02:00
yiyixuxu
af9572d759 controlnet 2024-10-19 12:36:12 +02:00
yiyixuxu
ddea157979 add from_pipe + run_blocks 2024-10-17 20:02:36 +02:00
yiyixuxu
ad3f9a26c0 update img2img, result match 2024-10-17 05:47:15 +02:00
yiyixuxu
e8d0980f9f add img2img support - output does not match with non-modular pipeline completely yet (look into later) 2024-10-16 20:56:39 +02:00
yiyixuxu
52a7f1cb97 add dataflow info for each block in builder _repr_ 2024-10-16 09:04:32 +02:00
yiyixuxu
33f85fadf6 add 2024-10-14 19:16:23 +02:00
1238 changed files with 29719 additions and 13985 deletions

View File

@@ -11,17 +11,18 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
BASE_PATH: benchmark_outputs
jobs:
torch_pipelines_cuda_benchmark_tests:
torch_models_cuda_benchmark_tests:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }}
name: Torch Core Pipelines CUDA Benchmarking Tests
name: Torch Core Models CUDA Benchmarking Tests
strategy:
fail-fast: false
max-parallel: 1
runs-on:
group: aws-g6-4xlarge-plus
group: aws-g6e-4xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
@@ -35,27 +36,47 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
apt update
apt install -y libpq-dev postgresql-client
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install pandas peft
python -m uv pip uninstall transformers && python -m uv pip install transformers==4.48.0
python -m uv pip install -r benchmarks/requirements.txt
- name: Environment
run: |
python utils/print_env.py
- name: Diffusers Benchmarking
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_BOT_TOKEN }}
BASE_PATH: benchmark_outputs
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
export TOTAL_GPU_MEMORY=$(python -c "import torch; print(torch.cuda.get_device_properties(0).total_memory / (1024**3))")
cd benchmarks && mkdir ${BASE_PATH} && python run_all.py && python push_results.py
cd benchmarks && python run_all.py
- name: Push results to the Hub
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_BOT_TOKEN }}
run: |
cd benchmarks && python push_results.py
mkdir $BASE_PATH && cp *.csv $BASE_PATH
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: benchmark_test_reports
path: benchmarks/benchmark_outputs
path: benchmarks/${{ env.BASE_PATH }}
# TODO: enable this once the connection problem has been resolved.
- name: Update benchmarking results to DB
env:
PGDATABASE: metrics
PGHOST: ${{ secrets.DIFFUSERS_BENCHMARKS_PGHOST }}
PGUSER: transformers_benchmarks
PGPASSWORD: ${{ secrets.DIFFUSERS_BENCHMARKS_PGPASSWORD }}
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
run: |
git config --global --add safe.directory /__w/diffusers/diffusers
commit_id=$GITHUB_SHA
commit_msg=$(git show -s --format=%s "$commit_id" | cut -c1-70)
cd benchmarks && python populate_into_db.py "$BRANCH_NAME" "$commit_id" "$commit_msg"
- name: Report success status
if: ${{ success() }}

View File

@@ -75,10 +75,6 @@ jobs:
- diffusers-pytorch-cuda
- diffusers-pytorch-xformers-cuda
- diffusers-pytorch-minimum-cuda
- diffusers-flax-cpu
- diffusers-flax-tpu
- diffusers-onnxruntime-cpu
- diffusers-onnxruntime-cuda
- diffusers-doc-builder
steps:

View File

@@ -248,7 +248,7 @@ jobs:
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-m "big_gpu_with_torch_cuda" \
-m "big_accelerator" \
--make-reports=tests_big_gpu_torch_cuda \
--report-log=tests_big_gpu_torch_cuda.log \
tests/
@@ -321,55 +321,6 @@ jobs:
name: torch_minimum_version_cuda_test_reports
path: reports
run_nightly_onnx_tests:
name: Nightly ONNXRuntime CUDA tests on Ubuntu
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run Nightly ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
--report-log=tests_onnx_cuda.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tests_onnx_cuda_reports
path: reports
run_nightly_quantization_tests:
name: Torch quantization nightly tests
strategy:
@@ -485,57 +436,6 @@ jobs:
name: torch_cuda_pipeline_level_quant_reports
path: reports
run_flax_tpu_tests:
name: Nightly Flax TPU Tests
runs-on:
group: gcp-ct5lp-hightpu-8t
if: github.event_name == 'schedule'
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host --privileged ${{ vars.V5_LITEPOD_8_ENV}} -v /mnt/hf_cache:/mnt/hf_cache
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run nightly Flax TPU tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_flax_tpu \
--report-log=tests_flax_tpu.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_flax_tpu_stats.txt
cat reports/tests_flax_tpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
generate_consolidated_report:
name: Generate Consolidated Test Report
needs: [
@@ -545,9 +445,9 @@ jobs:
run_big_gpu_torch_tests,
run_nightly_quantization_tests,
run_nightly_pipeline_level_quantization_tests,
run_nightly_onnx_tests,
# run_nightly_onnx_tests,
torch_minimum_version_cuda_tests,
run_flax_tpu_tests
# run_flax_tpu_tests
]
if: always()
runs-on:

View File

@@ -87,11 +87,6 @@ jobs:
runner: aws-general-8-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_models_schedulers
- name: Fast Flax CPU tests
framework: flax
runner: aws-general-8-plus
image: diffusers/diffusers-flax-cpu
report: flax_cpu
- name: PyTorch Example CPU tests
framework: pytorch_examples
runner: aws-general-8-plus
@@ -147,15 +142,6 @@ jobs:
--make-reports=tests_${{ matrix.config.report }} \
tests/models tests/schedulers tests/others
- name: Run fast Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |

View File

@@ -159,102 +159,6 @@ jobs:
name: torch_cuda_test_reports_${{ matrix.module }}
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on:
group: gcp-ct5lp-hightpu-8t
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host --privileged ${{ vars.V5_LITEPOD_8_ENV}} -v /mnt/hf_cache:/mnt/hf_cache
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run Flax TPU tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_flax_tpu \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_flax_tpu_stats.txt
cat reports/tests_flax_tpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
onnx_cuda_tests:
name: ONNX CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: onnx_cuda_test_reports
path: reports
run_torch_compile_tests:
name: PyTorch Compile CUDA tests

View File

@@ -33,16 +33,6 @@ jobs:
runner: aws-general-8-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu
- name: Fast Flax CPU tests on Ubuntu
framework: flax
runner: aws-general-8-plus
image: diffusers/diffusers-flax-cpu
report: flax_cpu
- name: Fast ONNXRuntime CPU tests on Ubuntu
framework: onnxruntime
runner: aws-general-8-plus
image: diffusers/diffusers-onnxruntime-cpu
report: onnx_cpu
- name: PyTorch Example CPU tests on Ubuntu
framework: pytorch_examples
runner: aws-general-8-plus
@@ -87,24 +77,6 @@ jobs:
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run fast Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run fast ONNXRuntime CPU tests
if: ${{ matrix.config.framework == 'onnxruntime' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |

View File

@@ -1,12 +1,7 @@
name: Fast mps tests on main
on:
push:
branches:
- main
paths:
- "src/diffusers/**.py"
- "tests/**.py"
workflow_dispatch:
env:
DIFFUSERS_IS_CI: yes

View File

@@ -213,101 +213,6 @@ jobs:
with:
name: torch_minimum_version_cuda_test_reports
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on: docker-tpu
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow Flax TPU tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_flax_tpu \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_flax_tpu_stats.txt
cat reports/tests_flax_tpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
onnx_cuda_tests:
name: ONNX CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: onnx_cuda_test_reports
path: reports
run_torch_compile_tests:
name: PyTorch Compile CUDA tests

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

69
benchmarks/README.md Normal file
View File

@@ -0,0 +1,69 @@
# Diffusers Benchmarks
Welcome to Diffusers Benchmarks. These benchmarks are use to obtain latency and memory information of the most popular models across different scenarios such as:
* Base case i.e., when using `torch.bfloat16` and `torch.nn.functional.scaled_dot_product_attention`.
* Base + `torch.compile()`
* NF4 quantization
* Layerwise upcasting
Instead of full diffusion pipelines, only the forward pass of the respective model classes (such as `FluxTransformer2DModel`) is tested with the real checkpoints (such as `"black-forest-labs/FLUX.1-dev"`).
The entrypoint to running all the currently available benchmarks is in `run_all.py`. However, one can run the individual benchmarks, too, e.g., `python benchmarking_flux.py`. It should produce a CSV file containing various information about the benchmarks run.
The benchmarks are run on a weekly basis and the CI is defined in [benchmark.yml](../.github/workflows/benchmark.yml).
## Running the benchmarks manually
First set up `torch` and install `diffusers` from the root of the directory:
```py
pip install -e ".[quality,test]"
```
Then make sure the other dependencies are installed:
```sh
cd benchmarks/
pip install -r requirements.txt
```
We need to be authenticated to access some of the checkpoints used during benchmarking:
```sh
huggingface-cli login
```
We use an L40 GPU with 128GB RAM to run the benchmark CI. As such, the benchmarks are configured to run on NVIDIA GPUs. So, make sure you have access to a similar machine (or modify the benchmarking scripts accordingly).
Then you can either launch the entire benchmarking suite by running:
```sh
python run_all.py
```
Or, you can run the individual benchmarks.
## Customizing the benchmarks
We define "scenarios" to cover the most common ways in which these models are used. You can
define a new scenario, modifying an existing benchmark file:
```py
BenchmarkScenario(
name=f"{CKPT_ID}-bnb-8bit",
model_cls=FluxTransformer2DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
"quantization_config": BitsAndBytesConfig(load_in_8bit=True),
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=model_init_fn,
)
```
You can also configure a new model-level benchmark and add it to the existing suite. To do so, just defining a valid benchmarking file like `benchmarking_flux.py` should be enough.
Happy benchmarking 🧨

View File

@@ -1,346 +0,0 @@
import os
import sys
import torch
from diffusers import (
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
AutoPipelineForText2Image,
ControlNetModel,
LCMScheduler,
StableDiffusionAdapterPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLAdapterPipeline,
StableDiffusionXLControlNetPipeline,
T2IAdapter,
WuerstchenCombinedPipeline,
)
from diffusers.utils import load_image
sys.path.append(".")
from utils import ( # noqa: E402
BASE_PATH,
PROMPT,
BenchmarkInfo,
benchmark_fn,
bytes_to_giga_bytes,
flush,
generate_csv_dict,
write_to_csv,
)
RESOLUTION_MAPPING = {
"Lykon/DreamShaper": (512, 512),
"lllyasviel/sd-controlnet-canny": (512, 512),
"diffusers/controlnet-canny-sdxl-1.0": (1024, 1024),
"TencentARC/t2iadapter_canny_sd14v1": (512, 512),
"TencentARC/t2i-adapter-canny-sdxl-1.0": (1024, 1024),
"stabilityai/stable-diffusion-2-1": (768, 768),
"stabilityai/stable-diffusion-xl-base-1.0": (1024, 1024),
"stabilityai/stable-diffusion-xl-refiner-1.0": (1024, 1024),
"stabilityai/sdxl-turbo": (512, 512),
}
class BaseBenchmak:
pipeline_class = None
def __init__(self, args):
super().__init__()
def run_inference(self, args):
raise NotImplementedError
def benchmark(self, args):
raise NotImplementedError
def get_result_filepath(self, args):
pipeline_class_name = str(self.pipe.__class__.__name__)
name = (
args.ckpt.replace("/", "_")
+ "_"
+ pipeline_class_name
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
)
filepath = os.path.join(BASE_PATH, name)
return filepath
class TextToImageBenchmark(BaseBenchmak):
pipeline_class = AutoPipelineForText2Image
def __init__(self, args):
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
if args.run_compile:
if not isinstance(pipe, WuerstchenCombinedPipeline):
pipe.unet.to(memory_format=torch.channels_last)
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
if hasattr(pipe, "movq") and getattr(pipe, "movq", None) is not None:
pipe.movq.to(memory_format=torch.channels_last)
pipe.movq = torch.compile(pipe.movq, mode="reduce-overhead", fullgraph=True)
else:
print("Run torch compile")
pipe.decoder = torch.compile(pipe.decoder, mode="reduce-overhead", fullgraph=True)
pipe.vqgan = torch.compile(pipe.vqgan, mode="reduce-overhead", fullgraph=True)
pipe.set_progress_bar_config(disable=True)
self.pipe = pipe
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
def benchmark(self, args):
flush()
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")
time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds.
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs.
benchmark_info = BenchmarkInfo(time=time, memory=memory)
pipeline_class_name = str(self.pipe.__class__.__name__)
flush()
csv_dict = generate_csv_dict(
pipeline_cls=pipeline_class_name, ckpt=args.ckpt, args=args, benchmark_info=benchmark_info
)
filepath = self.get_result_filepath(args)
write_to_csv(filepath, csv_dict)
print(f"Logs written to: {filepath}")
flush()
class TurboTextToImageBenchmark(TextToImageBenchmark):
def __init__(self, args):
super().__init__(args)
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
guidance_scale=0.0,
)
class LCMLoRATextToImageBenchmark(TextToImageBenchmark):
lora_id = "latent-consistency/lcm-lora-sdxl"
def __init__(self, args):
super().__init__(args)
self.pipe.load_lora_weights(self.lora_id)
self.pipe.fuse_lora()
self.pipe.unload_lora_weights()
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
def get_result_filepath(self, args):
pipeline_class_name = str(self.pipe.__class__.__name__)
name = (
self.lora_id.replace("/", "_")
+ "_"
+ pipeline_class_name
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv"
)
filepath = os.path.join(BASE_PATH, name)
return filepath
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
guidance_scale=1.0,
)
def benchmark(self, args):
flush()
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n")
time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds.
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs.
benchmark_info = BenchmarkInfo(time=time, memory=memory)
pipeline_class_name = str(self.pipe.__class__.__name__)
flush()
csv_dict = generate_csv_dict(
pipeline_cls=pipeline_class_name, ckpt=self.lora_id, args=args, benchmark_info=benchmark_info
)
filepath = self.get_result_filepath(args)
write_to_csv(filepath, csv_dict)
print(f"Logs written to: {filepath}")
flush()
class ImageToImageBenchmark(TextToImageBenchmark):
pipeline_class = AutoPipelineForImage2Image
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/1665_Girl_with_a_Pearl_Earring.jpg"
image = load_image(url).convert("RGB")
def __init__(self, args):
super().__init__(args)
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
image=self.image,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
class TurboImageToImageBenchmark(ImageToImageBenchmark):
def __init__(self, args):
super().__init__(args)
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
image=self.image,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
guidance_scale=0.0,
strength=0.5,
)
class InpaintingBenchmark(ImageToImageBenchmark):
pipeline_class = AutoPipelineForInpainting
mask_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/overture-creations-5sI6fQgYIuo_mask.png"
mask = load_image(mask_url).convert("RGB")
def __init__(self, args):
super().__init__(args)
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
self.mask = self.mask.resize(RESOLUTION_MAPPING[args.ckpt])
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
image=self.image,
mask_image=self.mask,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
class IPAdapterTextToImageBenchmark(TextToImageBenchmark):
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png"
image = load_image(url)
def __init__(self, args):
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16).to("cuda")
pipe.load_ip_adapter(
args.ip_adapter_id[0],
subfolder="models" if "sdxl" not in args.ip_adapter_id[1] else "sdxl_models",
weight_name=args.ip_adapter_id[1],
)
if args.run_compile:
pipe.unet.to(memory_format=torch.channels_last)
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.set_progress_bar_config(disable=True)
self.pipe = pipe
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
ip_adapter_image=self.image,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
class ControlNetBenchmark(TextToImageBenchmark):
pipeline_class = StableDiffusionControlNetPipeline
aux_network_class = ControlNetModel
root_ckpt = "Lykon/DreamShaper"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png"
image = load_image(url).convert("RGB")
def __init__(self, args):
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, controlnet=aux_network, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.set_progress_bar_config(disable=True)
self.pipe = pipe
if args.run_compile:
pipe.unet.to(memory_format=torch.channels_last)
pipe.controlnet.to(memory_format=torch.channels_last)
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
def run_inference(self, pipe, args):
_ = pipe(
prompt=PROMPT,
image=self.image,
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.batch_size,
)
class ControlNetSDXLBenchmark(ControlNetBenchmark):
pipeline_class = StableDiffusionXLControlNetPipeline
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
def __init__(self, args):
super().__init__(args)
class T2IAdapterBenchmark(ControlNetBenchmark):
pipeline_class = StableDiffusionAdapterPipeline
aux_network_class = T2IAdapter
root_ckpt = "Lykon/DreamShaper"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png"
image = load_image(url).convert("L")
def __init__(self, args):
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16)
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, adapter=aux_network, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.set_progress_bar_config(disable=True)
self.pipe = pipe
if args.run_compile:
pipe.unet.to(memory_format=torch.channels_last)
pipe.adapter.to(memory_format=torch.channels_last)
print("Run torch compile")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.adapter = torch.compile(pipe.adapter, mode="reduce-overhead", fullgraph=True)
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt])
class T2IAdapterSDXLBenchmark(T2IAdapterBenchmark):
pipeline_class = StableDiffusionXLAdapterPipeline
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter_sdxl.png"
image = load_image(url)
def __init__(self, args):
super().__init__(args)

View File

@@ -1,26 +0,0 @@
import argparse
import sys
sys.path.append(".")
from base_classes import ControlNetBenchmark, ControlNetSDXLBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="lllyasviel/sd-controlnet-canny",
choices=["lllyasviel/sd-controlnet-canny", "diffusers/controlnet-canny-sdxl-1.0"],
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = (
ControlNetBenchmark(args) if args.ckpt == "lllyasviel/sd-controlnet-canny" else ControlNetSDXLBenchmark(args)
)
benchmark_pipe.benchmark(args)

View File

@@ -1,33 +0,0 @@
import argparse
import sys
sys.path.append(".")
from base_classes import IPAdapterTextToImageBenchmark # noqa: E402
IP_ADAPTER_CKPTS = {
# because original SD v1.5 has been taken down.
"Lykon/DreamShaper": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
"stabilityai/stable-diffusion-xl-base-1.0": ("h94/IP-Adapter", "ip-adapter_sdxl.bin"),
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="rstabilityai/stable-diffusion-xl-base-1.0",
choices=list(IP_ADAPTER_CKPTS.keys()),
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
args.ip_adapter_id = IP_ADAPTER_CKPTS[args.ckpt]
benchmark_pipe = IPAdapterTextToImageBenchmark(args)
args.ckpt = f"{args.ckpt} (IP-Adapter)"
benchmark_pipe.benchmark(args)

View File

@@ -1,29 +0,0 @@
import argparse
import sys
sys.path.append(".")
from base_classes import ImageToImageBenchmark, TurboImageToImageBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="Lykon/DreamShaper",
choices=[
"Lykon/DreamShaper",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-refiner-1.0",
"stabilityai/sdxl-turbo",
],
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = ImageToImageBenchmark(args) if "turbo" not in args.ckpt else TurboImageToImageBenchmark(args)
benchmark_pipe.benchmark(args)

View File

@@ -1,28 +0,0 @@
import argparse
import sys
sys.path.append(".")
from base_classes import InpaintingBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="Lykon/DreamShaper",
choices=[
"Lykon/DreamShaper",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-base-1.0",
],
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = InpaintingBenchmark(args)
benchmark_pipe.benchmark(args)

View File

@@ -1,28 +0,0 @@
import argparse
import sys
sys.path.append(".")
from base_classes import T2IAdapterBenchmark, T2IAdapterSDXLBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="TencentARC/t2iadapter_canny_sd14v1",
choices=["TencentARC/t2iadapter_canny_sd14v1", "TencentARC/t2i-adapter-canny-sdxl-1.0"],
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = (
T2IAdapterBenchmark(args)
if args.ckpt == "TencentARC/t2iadapter_canny_sd14v1"
else T2IAdapterSDXLBenchmark(args)
)
benchmark_pipe.benchmark(args)

View File

@@ -1,23 +0,0 @@
import argparse
import sys
sys.path.append(".")
from base_classes import LCMLoRATextToImageBenchmark # noqa: E402
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="stabilityai/stable-diffusion-xl-base-1.0",
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=4)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_pipe = LCMLoRATextToImageBenchmark(args)
benchmark_pipe.benchmark(args)

View File

@@ -1,40 +0,0 @@
import argparse
import sys
sys.path.append(".")
from base_classes import TextToImageBenchmark, TurboTextToImageBenchmark # noqa: E402
ALL_T2I_CKPTS = [
"Lykon/DreamShaper",
"segmind/SSD-1B",
"stabilityai/stable-diffusion-xl-base-1.0",
"kandinsky-community/kandinsky-2-2-decoder",
"warp-ai/wuerstchen",
"stabilityai/sdxl-turbo",
]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="Lykon/DreamShaper",
choices=ALL_T2I_CKPTS,
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_cls = None
if "turbo" in args.ckpt:
benchmark_cls = TurboTextToImageBenchmark
else:
benchmark_cls = TextToImageBenchmark
benchmark_pipe = benchmark_cls(args)
benchmark_pipe.benchmark(args)

View File

@@ -0,0 +1,98 @@
from functools import partial
import torch
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn
from diffusers import BitsAndBytesConfig, FluxTransformer2DModel
from diffusers.utils.testing_utils import torch_device
CKPT_ID = "black-forest-labs/FLUX.1-dev"
RESULT_FILENAME = "flux.csv"
def get_input_dict(**device_dtype_kwargs):
# resolution: 1024x1024
# maximum sequence length 512
hidden_states = torch.randn(1, 4096, 64, **device_dtype_kwargs)
encoder_hidden_states = torch.randn(1, 512, 4096, **device_dtype_kwargs)
pooled_prompt_embeds = torch.randn(1, 768, **device_dtype_kwargs)
image_ids = torch.ones(512, 3, **device_dtype_kwargs)
text_ids = torch.ones(4096, 3, **device_dtype_kwargs)
timestep = torch.tensor([1.0], **device_dtype_kwargs)
guidance = torch.tensor([1.0], **device_dtype_kwargs)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"pooled_projections": pooled_prompt_embeds,
"timestep": timestep,
"guidance": guidance,
}
if __name__ == "__main__":
scenarios = [
BenchmarkScenario(
name=f"{CKPT_ID}-bf16",
model_cls=FluxTransformer2DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=model_init_fn,
compile_kwargs={"fullgraph": True},
),
BenchmarkScenario(
name=f"{CKPT_ID}-bnb-nf4",
model_cls=FluxTransformer2DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
"quantization_config": BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4"
),
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=model_init_fn,
),
BenchmarkScenario(
name=f"{CKPT_ID}-layerwise-upcasting",
model_cls=FluxTransformer2DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=partial(model_init_fn, layerwise_upcasting=True),
),
BenchmarkScenario(
name=f"{CKPT_ID}-group-offload-leaf",
model_cls=FluxTransformer2DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=partial(
model_init_fn,
group_offload_kwargs={
"onload_device": torch_device,
"offload_device": torch.device("cpu"),
"offload_type": "leaf_level",
"use_stream": True,
"non_blocking": True,
},
),
),
]
runner = BenchmarkMixin()
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME)

View File

@@ -0,0 +1,80 @@
from functools import partial
import torch
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn
from diffusers import LTXVideoTransformer3DModel
from diffusers.utils.testing_utils import torch_device
CKPT_ID = "Lightricks/LTX-Video-0.9.7-dev"
RESULT_FILENAME = "ltx.csv"
def get_input_dict(**device_dtype_kwargs):
# 512x704 (161 frames)
# `max_sequence_length`: 256
hidden_states = torch.randn(1, 7392, 128, **device_dtype_kwargs)
encoder_hidden_states = torch.randn(1, 256, 4096, **device_dtype_kwargs)
encoder_attention_mask = torch.ones(1, 256, **device_dtype_kwargs)
timestep = torch.tensor([1.0], **device_dtype_kwargs)
video_coords = torch.randn(1, 3, 7392, **device_dtype_kwargs)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
"timestep": timestep,
"video_coords": video_coords,
}
if __name__ == "__main__":
scenarios = [
BenchmarkScenario(
name=f"{CKPT_ID}-bf16",
model_cls=LTXVideoTransformer3DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=model_init_fn,
compile_kwargs={"fullgraph": True},
),
BenchmarkScenario(
name=f"{CKPT_ID}-layerwise-upcasting",
model_cls=LTXVideoTransformer3DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=partial(model_init_fn, layerwise_upcasting=True),
),
BenchmarkScenario(
name=f"{CKPT_ID}-group-offload-leaf",
model_cls=LTXVideoTransformer3DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=partial(
model_init_fn,
group_offload_kwargs={
"onload_device": torch_device,
"offload_device": torch.device("cpu"),
"offload_type": "leaf_level",
"use_stream": True,
"non_blocking": True,
},
),
),
]
runner = BenchmarkMixin()
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME)

View File

@@ -0,0 +1,82 @@
from functools import partial
import torch
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn
from diffusers import UNet2DConditionModel
from diffusers.utils.testing_utils import torch_device
CKPT_ID = "stabilityai/stable-diffusion-xl-base-1.0"
RESULT_FILENAME = "sdxl.csv"
def get_input_dict(**device_dtype_kwargs):
# height: 1024
# width: 1024
# max_sequence_length: 77
hidden_states = torch.randn(1, 4, 128, 128, **device_dtype_kwargs)
encoder_hidden_states = torch.randn(1, 77, 2048, **device_dtype_kwargs)
timestep = torch.tensor([1.0], **device_dtype_kwargs)
added_cond_kwargs = {
"text_embeds": torch.randn(1, 1280, **device_dtype_kwargs),
"time_ids": torch.ones(1, 6, **device_dtype_kwargs),
}
return {
"sample": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
"added_cond_kwargs": added_cond_kwargs,
}
if __name__ == "__main__":
scenarios = [
BenchmarkScenario(
name=f"{CKPT_ID}-bf16",
model_cls=UNet2DConditionModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "unet",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=model_init_fn,
compile_kwargs={"fullgraph": True},
),
BenchmarkScenario(
name=f"{CKPT_ID}-layerwise-upcasting",
model_cls=UNet2DConditionModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "unet",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=partial(model_init_fn, layerwise_upcasting=True),
),
BenchmarkScenario(
name=f"{CKPT_ID}-group-offload-leaf",
model_cls=UNet2DConditionModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "unet",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=partial(
model_init_fn,
group_offload_kwargs={
"onload_device": torch_device,
"offload_device": torch.device("cpu"),
"offload_type": "leaf_level",
"use_stream": True,
"non_blocking": True,
},
),
),
]
runner = BenchmarkMixin()
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME)

View File

@@ -0,0 +1,244 @@
import gc
import inspect
import logging
import os
import queue
import threading
from contextlib import nullcontext
from dataclasses import dataclass
from typing import Any, Callable, Dict, Optional, Union
import pandas as pd
import torch
import torch.utils.benchmark as benchmark
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(name)s: %(message)s")
logger = logging.getLogger(__name__)
NUM_WARMUP_ROUNDS = 5
def benchmark_fn(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)",
globals={"args": args, "kwargs": kwargs, "f": f},
num_threads=1,
)
return float(f"{(t0.blocked_autorange().mean):.3f}")
def flush():
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
# Adapted from https://github.com/lucasb-eyer/cnn_vit_benchmarks/blob/15b665ff758e8062131353076153905cae00a71f/main.py
def calculate_flops(model, input_dict):
try:
from torchprofile import profile_macs
except ModuleNotFoundError:
raise
# This is a hacky way to convert the kwargs to args as `profile_macs` cries about kwargs.
sig = inspect.signature(model.forward)
param_names = [
p.name
for p in sig.parameters.values()
if p.kind
in (
inspect.Parameter.POSITIONAL_ONLY,
inspect.Parameter.POSITIONAL_OR_KEYWORD,
)
and p.name != "self"
]
bound = sig.bind_partial(**input_dict)
bound.apply_defaults()
args = tuple(bound.arguments[name] for name in param_names)
model.eval()
with torch.no_grad():
macs = profile_macs(model, args)
flops = 2 * macs # 1 MAC operation = 2 FLOPs (1 multiplication + 1 addition)
return flops
def calculate_params(model):
return sum(p.numel() for p in model.parameters())
# Users can define their own in case this doesn't suffice. For most cases,
# it should be sufficient.
def model_init_fn(model_cls, group_offload_kwargs=None, layerwise_upcasting=False, **init_kwargs):
model = model_cls.from_pretrained(**init_kwargs).eval()
if group_offload_kwargs and isinstance(group_offload_kwargs, dict):
model.enable_group_offload(**group_offload_kwargs)
else:
model.to(torch_device)
if layerwise_upcasting:
model.enable_layerwise_casting(
storage_dtype=torch.float8_e4m3fn, compute_dtype=init_kwargs.get("torch_dtype", torch.bfloat16)
)
return model
@dataclass
class BenchmarkScenario:
name: str
model_cls: ModelMixin
model_init_kwargs: Dict[str, Any]
model_init_fn: Callable
get_model_input_dict: Callable
compile_kwargs: Optional[Dict[str, Any]] = None
@require_torch_gpu
class BenchmarkMixin:
def pre_benchmark(self):
flush()
torch.compiler.reset()
def post_benchmark(self, model):
model.cpu()
flush()
torch.compiler.reset()
@torch.no_grad()
def run_benchmark(self, scenario: BenchmarkScenario):
# 0) Basic stats
logger.info(f"Running scenario: {scenario.name}.")
try:
model = model_init_fn(scenario.model_cls, **scenario.model_init_kwargs)
num_params = round(calculate_params(model) / 1e9, 2)
try:
flops = round(calculate_flops(model, input_dict=scenario.get_model_input_dict()) / 1e9, 2)
except Exception as e:
logger.info(f"Problem in calculating FLOPs:\n{e}")
flops = None
model.cpu()
del model
except Exception as e:
logger.info(f"Error while initializing the model and calculating FLOPs:\n{e}")
return {}
self.pre_benchmark()
# 1) plain stats
results = {}
plain = None
try:
plain = self._run_phase(
model_cls=scenario.model_cls,
init_fn=scenario.model_init_fn,
init_kwargs=scenario.model_init_kwargs,
get_input_fn=scenario.get_model_input_dict,
compile_kwargs=None,
)
except Exception as e:
logger.info(f"Benchmark could not be run with the following error:\n{e}")
return results
# 2) compiled stats (if any)
compiled = {"time": None, "memory": None}
if scenario.compile_kwargs:
try:
compiled = self._run_phase(
model_cls=scenario.model_cls,
init_fn=scenario.model_init_fn,
init_kwargs=scenario.model_init_kwargs,
get_input_fn=scenario.get_model_input_dict,
compile_kwargs=scenario.compile_kwargs,
)
except Exception as e:
logger.info(f"Compilation benchmark could not be run with the following error\n: {e}")
if plain is None:
return results
# 3) merge
result = {
"scenario": scenario.name,
"model_cls": scenario.model_cls.__name__,
"num_params_B": num_params,
"flops_G": flops,
"time_plain_s": plain["time"],
"mem_plain_GB": plain["memory"],
"time_compile_s": compiled["time"],
"mem_compile_GB": compiled["memory"],
}
if scenario.compile_kwargs:
result["fullgraph"] = scenario.compile_kwargs.get("fullgraph", False)
result["mode"] = scenario.compile_kwargs.get("mode", "default")
else:
result["fullgraph"], result["mode"] = None, None
return result
def run_bencmarks_and_collate(self, scenarios: Union[BenchmarkScenario, list[BenchmarkScenario]], filename: str):
if not isinstance(scenarios, list):
scenarios = [scenarios]
record_queue = queue.Queue()
stop_signal = object()
def _writer_thread():
while True:
item = record_queue.get()
if item is stop_signal:
break
df_row = pd.DataFrame([item])
write_header = not os.path.exists(filename)
df_row.to_csv(filename, mode="a", header=write_header, index=False)
record_queue.task_done()
record_queue.task_done()
writer = threading.Thread(target=_writer_thread, daemon=True)
writer.start()
for s in scenarios:
try:
record = self.run_benchmark(s)
if record:
record_queue.put(record)
else:
logger.info(f"Record empty from scenario: {s.name}.")
except Exception as e:
logger.info(f"Running scenario ({s.name}) led to error:\n{e}")
record_queue.put(stop_signal)
logger.info(f"Results serialized to {filename=}.")
def _run_phase(
self,
*,
model_cls: ModelMixin,
init_fn: Callable,
init_kwargs: Dict[str, Any],
get_input_fn: Callable,
compile_kwargs: Optional[Dict[str, Any]],
) -> Dict[str, float]:
# setup
self.pre_benchmark()
# init & (optional) compile
model = init_fn(model_cls, **init_kwargs)
if compile_kwargs:
model.compile(**compile_kwargs)
# build inputs
inp = get_input_fn()
# measure
run_ctx = torch._inductor.utils.fresh_inductor_cache() if compile_kwargs else nullcontext()
with run_ctx:
for _ in range(NUM_WARMUP_ROUNDS):
_ = model(**inp)
time_s = benchmark_fn(lambda m, d: m(**d), model, inp)
mem_gb = torch.cuda.max_memory_allocated() / (1024**3)
mem_gb = round(mem_gb, 2)
# teardown
self.post_benchmark(model)
del model
return {"time": time_s, "memory": mem_gb}

View File

@@ -0,0 +1,74 @@
from functools import partial
import torch
from benchmarking_utils import BenchmarkMixin, BenchmarkScenario, model_init_fn
from diffusers import WanTransformer3DModel
from diffusers.utils.testing_utils import torch_device
CKPT_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
RESULT_FILENAME = "wan.csv"
def get_input_dict(**device_dtype_kwargs):
# height: 480
# width: 832
# num_frames: 81
# max_sequence_length: 512
hidden_states = torch.randn(1, 16, 21, 60, 104, **device_dtype_kwargs)
encoder_hidden_states = torch.randn(1, 512, 4096, **device_dtype_kwargs)
timestep = torch.tensor([1.0], **device_dtype_kwargs)
return {"hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep}
if __name__ == "__main__":
scenarios = [
BenchmarkScenario(
name=f"{CKPT_ID}-bf16",
model_cls=WanTransformer3DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=model_init_fn,
compile_kwargs={"fullgraph": True},
),
BenchmarkScenario(
name=f"{CKPT_ID}-layerwise-upcasting",
model_cls=WanTransformer3DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=partial(model_init_fn, layerwise_upcasting=True),
),
BenchmarkScenario(
name=f"{CKPT_ID}-group-offload-leaf",
model_cls=WanTransformer3DModel,
model_init_kwargs={
"pretrained_model_name_or_path": CKPT_ID,
"torch_dtype": torch.bfloat16,
"subfolder": "transformer",
},
get_model_input_dict=partial(get_input_dict, device=torch_device, dtype=torch.bfloat16),
model_init_fn=partial(
model_init_fn,
group_offload_kwargs={
"onload_device": torch_device,
"offload_device": torch.device("cpu"),
"offload_type": "leaf_level",
"use_stream": True,
"non_blocking": True,
},
),
),
]
runner = BenchmarkMixin()
runner.run_bencmarks_and_collate(scenarios, filename=RESULT_FILENAME)

View File

@@ -0,0 +1,166 @@
import argparse
import os
import sys
import gpustat
import pandas as pd
import psycopg2
import psycopg2.extras
from psycopg2.extensions import register_adapter
from psycopg2.extras import Json
register_adapter(dict, Json)
FINAL_CSV_FILENAME = "collated_results.csv"
# https://github.com/huggingface/transformers/blob/593e29c5e2a9b17baec010e8dc7c1431fed6e841/benchmark/init_db.sql#L27
BENCHMARKS_TABLE_NAME = "benchmarks"
MEASUREMENTS_TABLE_NAME = "model_measurements"
def _init_benchmark(conn, branch, commit_id, commit_msg):
gpu_stats = gpustat.GPUStatCollection.new_query()
metadata = {"gpu_name": gpu_stats[0]["name"]}
repository = "huggingface/diffusers"
with conn.cursor() as cur:
cur.execute(
f"INSERT INTO {BENCHMARKS_TABLE_NAME} (repository, branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s, %s) RETURNING benchmark_id",
(repository, branch, commit_id, commit_msg, metadata),
)
benchmark_id = cur.fetchone()[0]
print(f"Initialised benchmark #{benchmark_id}")
return benchmark_id
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"branch",
type=str,
help="The branch name on which the benchmarking is performed.",
)
parser.add_argument(
"commit_id",
type=str,
help="The commit hash on which the benchmarking is performed.",
)
parser.add_argument(
"commit_msg",
type=str,
help="The commit message associated with the commit, truncated to 70 characters.",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
try:
conn = psycopg2.connect(
host=os.getenv("PGHOST"),
database=os.getenv("PGDATABASE"),
user=os.getenv("PGUSER"),
password=os.getenv("PGPASSWORD"),
)
print("DB connection established successfully.")
except Exception as e:
print(f"Problem during DB init: {e}")
sys.exit(1)
try:
benchmark_id = _init_benchmark(
conn=conn,
branch=args.branch,
commit_id=args.commit_id,
commit_msg=args.commit_msg,
)
except Exception as e:
print(f"Problem during initializing benchmark: {e}")
sys.exit(1)
cur = conn.cursor()
df = pd.read_csv(FINAL_CSV_FILENAME)
# Helper to cast values (or None) given a dtype
def _cast_value(val, dtype: str):
if pd.isna(val):
return None
if dtype == "text":
return str(val).strip()
if dtype == "float":
try:
return float(val)
except ValueError:
return None
if dtype == "bool":
s = str(val).strip().lower()
if s in ("true", "t", "yes", "1"):
return True
if s in ("false", "f", "no", "0"):
return False
if val in (1, 1.0):
return True
if val in (0, 0.0):
return False
return None
return val
try:
rows_to_insert = []
for _, row in df.iterrows():
scenario = _cast_value(row.get("scenario"), "text")
model_cls = _cast_value(row.get("model_cls"), "text")
num_params_B = _cast_value(row.get("num_params_B"), "float")
flops_G = _cast_value(row.get("flops_G"), "float")
time_plain_s = _cast_value(row.get("time_plain_s"), "float")
mem_plain_GB = _cast_value(row.get("mem_plain_GB"), "float")
time_compile_s = _cast_value(row.get("time_compile_s"), "float")
mem_compile_GB = _cast_value(row.get("mem_compile_GB"), "float")
fullgraph = _cast_value(row.get("fullgraph"), "bool")
mode = _cast_value(row.get("mode"), "text")
# If "github_sha" column exists in the CSV, cast it; else default to None
if "github_sha" in df.columns:
github_sha = _cast_value(row.get("github_sha"), "text")
else:
github_sha = None
measurements = {
"scenario": scenario,
"model_cls": model_cls,
"num_params_B": num_params_B,
"flops_G": flops_G,
"time_plain_s": time_plain_s,
"mem_plain_GB": mem_plain_GB,
"time_compile_s": time_compile_s,
"mem_compile_GB": mem_compile_GB,
"fullgraph": fullgraph,
"mode": mode,
"github_sha": github_sha,
}
rows_to_insert.append((benchmark_id, measurements))
# Batch-insert all rows
insert_sql = f"""
INSERT INTO {MEASUREMENTS_TABLE_NAME} (
benchmark_id,
measurements
)
VALUES (%s, %s);
"""
psycopg2.extras.execute_batch(cur, insert_sql, rows_to_insert)
conn.commit()
cur.close()
conn.close()
except Exception as e:
print(f"Exception: {e}")
sys.exit(1)

View File

@@ -1,19 +1,19 @@
import glob
import sys
import os
import pandas as pd
from huggingface_hub import hf_hub_download, upload_file
from huggingface_hub.utils import EntryNotFoundError
sys.path.append(".")
from utils import BASE_PATH, FINAL_CSV_FILE, GITHUB_SHA, REPO_ID, collate_csv # noqa: E402
REPO_ID = "diffusers/benchmarks"
def has_previous_benchmark() -> str:
from run_all import FINAL_CSV_FILENAME
csv_path = None
try:
csv_path = hf_hub_download(repo_id=REPO_ID, repo_type="dataset", filename=FINAL_CSV_FILE)
csv_path = hf_hub_download(repo_id=REPO_ID, repo_type="dataset", filename=FINAL_CSV_FILENAME)
except EntryNotFoundError:
csv_path = None
return csv_path
@@ -26,46 +26,50 @@ def filter_float(value):
def push_to_hf_dataset():
all_csvs = sorted(glob.glob(f"{BASE_PATH}/*.csv"))
collate_csv(all_csvs, FINAL_CSV_FILE)
from run_all import FINAL_CSV_FILENAME, GITHUB_SHA
# If there's an existing benchmark file, we should report the changes.
csv_path = has_previous_benchmark()
if csv_path is not None:
current_results = pd.read_csv(FINAL_CSV_FILE)
current_results = pd.read_csv(FINAL_CSV_FILENAME)
previous_results = pd.read_csv(csv_path)
numeric_columns = current_results.select_dtypes(include=["float64", "int64"]).columns
numeric_columns = [
c for c in numeric_columns if c not in ["batch_size", "num_inference_steps", "actual_gpu_memory (gbs)"]
]
for column in numeric_columns:
previous_results[column] = previous_results[column].map(lambda x: filter_float(x))
# get previous values as floats, aligned to current index
prev_vals = previous_results[column].map(filter_float).reindex(current_results.index)
# Calculate the percentage change
current_results[column] = current_results[column].astype(float)
previous_results[column] = previous_results[column].astype(float)
percent_change = ((current_results[column] - previous_results[column]) / previous_results[column]) * 100
# get current values as floats
curr_vals = current_results[column].astype(float)
# Format the values with '+' or '-' sign and append to original values
current_results[column] = current_results[column].map(str) + percent_change.map(
lambda x: f" ({'+' if x > 0 else ''}{x:.2f}%)"
# stringify the current values
curr_str = curr_vals.map(str)
# build an appendage only when prev exists and differs
append_str = prev_vals.where(prev_vals.notnull() & (prev_vals != curr_vals), other=pd.NA).map(
lambda x: f" ({x})" if pd.notnull(x) else ""
)
# There might be newly added rows. So, filter out the NaNs.
current_results[column] = current_results[column].map(lambda x: x.replace(" (nan%)", ""))
# Overwrite the current result file.
current_results.to_csv(FINAL_CSV_FILE, index=False)
# combine
current_results[column] = curr_str + append_str
os.remove(FINAL_CSV_FILENAME)
current_results.to_csv(FINAL_CSV_FILENAME, index=False)
commit_message = f"upload from sha: {GITHUB_SHA}" if GITHUB_SHA is not None else "upload benchmark results"
upload_file(
repo_id=REPO_ID,
path_in_repo=FINAL_CSV_FILE,
path_or_fileobj=FINAL_CSV_FILE,
path_in_repo=FINAL_CSV_FILENAME,
path_or_fileobj=FINAL_CSV_FILENAME,
repo_type="dataset",
commit_message=commit_message,
)
upload_file(
repo_id="diffusers/benchmark-analyzer",
path_in_repo=FINAL_CSV_FILENAME,
path_or_fileobj=FINAL_CSV_FILENAME,
repo_type="space",
commit_message=commit_message,
)
if __name__ == "__main__":

View File

@@ -0,0 +1,6 @@
pandas
psutil
gpustat
torchprofile
bitsandbytes
psycopg2==2.9.9

View File

@@ -1,101 +1,84 @@
import glob
import logging
import os
import subprocess
import sys
from typing import List
import pandas as pd
sys.path.append(".")
from benchmark_text_to_image import ALL_T2I_CKPTS # noqa: E402
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(name)s: %(message)s")
logger = logging.getLogger(__name__)
PATTERN = "benchmark_*.py"
PATTERN = "benchmarking_*.py"
FINAL_CSV_FILENAME = "collated_results.csv"
GITHUB_SHA = os.getenv("GITHUB_SHA", None)
class SubprocessCallException(Exception):
pass
# Taken from `test_examples_utils.py`
def run_command(command: List[str], return_stdout=False):
"""
Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture
if an error occurred while running `command`
"""
def run_command(command: list[str], return_stdout=False):
try:
output = subprocess.check_output(command, stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(output, "decode"):
output = output.decode("utf-8")
return output
if return_stdout and hasattr(output, "decode"):
return output.decode("utf-8")
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}"
) from e
raise SubprocessCallException(f"Command `{' '.join(command)}` failed with:\n{e.output.decode()}") from e
def main():
python_files = glob.glob(PATTERN)
def merge_csvs(final_csv: str = "collated_results.csv"):
all_csvs = glob.glob("*.csv")
all_csvs = [f for f in all_csvs if f != final_csv]
if not all_csvs:
logger.info("No result CSVs found to merge.")
return
for file in python_files:
print(f"****** Running file: {file} ******")
# Run with canonical settings.
if file != "benchmark_text_to_image.py" and file != "benchmark_ip_adapters.py":
command = f"python {file}"
run_command(command.split())
command += " --run_compile"
run_command(command.split())
# Run variants.
for file in python_files:
# See: https://github.com/pytorch/pytorch/issues/129637
if file == "benchmark_ip_adapters.py":
df_list = []
for f in all_csvs:
try:
d = pd.read_csv(f)
except pd.errors.EmptyDataError:
# If a file existed but was zerobytes or corrupted, skip it
continue
df_list.append(d)
if file == "benchmark_text_to_image.py":
for ckpt in ALL_T2I_CKPTS:
command = f"python {file} --ckpt {ckpt}"
if not df_list:
logger.info("All result CSVs were empty or invalid; nothing to merge.")
return
if "turbo" in ckpt:
command += " --num_inference_steps 1"
final_df = pd.concat(df_list, ignore_index=True)
if GITHUB_SHA is not None:
final_df["github_sha"] = GITHUB_SHA
final_df.to_csv(final_csv, index=False)
logger.info(f"Merged {len(all_csvs)} partial CSVs → {final_csv}.")
run_command(command.split())
command += " --run_compile"
run_command(command.split())
def run_scripts():
python_files = sorted(glob.glob(PATTERN))
python_files = [f for f in python_files if f != "benchmarking_utils.py"]
elif file == "benchmark_sd_img.py":
for ckpt in ["stabilityai/stable-diffusion-xl-refiner-1.0", "stabilityai/sdxl-turbo"]:
command = f"python {file} --ckpt {ckpt}"
for file in python_files:
script_name = file.split(".py")[0].split("_")[-1] # example: benchmarking_foo.py -> foo
logger.info(f"\n****** Running file: {file} ******")
if ckpt == "stabilityai/sdxl-turbo":
command += " --num_inference_steps 2"
partial_csv = f"{script_name}.csv"
if os.path.exists(partial_csv):
logger.info(f"Found {partial_csv}. Removing for safer numbers and duplication.")
os.remove(partial_csv)
run_command(command.split())
command += " --run_compile"
run_command(command.split())
command = ["python", file]
try:
run_command(command)
logger.info(f"{file} finished normally.")
except SubprocessCallException as e:
logger.info(f"Error running {file}:\n{e}")
finally:
logger.info(f"→ Merging partial CSVs after {file}")
merge_csvs(final_csv=FINAL_CSV_FILENAME)
elif file in ["benchmark_sd_inpainting.py", "benchmark_ip_adapters.py"]:
sdxl_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
command = f"python {file} --ckpt {sdxl_ckpt}"
run_command(command.split())
command += " --run_compile"
run_command(command.split())
elif file in ["benchmark_controlnet.py", "benchmark_t2i_adapter.py"]:
sdxl_ckpt = (
"diffusers/controlnet-canny-sdxl-1.0"
if "controlnet" in file
else "TencentARC/t2i-adapter-canny-sdxl-1.0"
)
command = f"python {file} --ckpt {sdxl_ckpt}"
run_command(command.split())
command += " --run_compile"
run_command(command.split())
logger.info(f"\nAll scripts attempted. Final collated CSV: {FINAL_CSV_FILENAME}")
if __name__ == "__main__":
main()
run_scripts()

View File

@@ -1,98 +0,0 @@
import argparse
import csv
import gc
import os
from dataclasses import dataclass
from typing import Dict, List, Union
import torch
import torch.utils.benchmark as benchmark
GITHUB_SHA = os.getenv("GITHUB_SHA", None)
BENCHMARK_FIELDS = [
"pipeline_cls",
"ckpt_id",
"batch_size",
"num_inference_steps",
"model_cpu_offload",
"run_compile",
"time (secs)",
"memory (gbs)",
"actual_gpu_memory (gbs)",
"github_sha",
]
PROMPT = "ghibli style, a fantasy landscape with castles"
BASE_PATH = os.getenv("BASE_PATH", ".")
TOTAL_GPU_MEMORY = float(os.getenv("TOTAL_GPU_MEMORY", torch.cuda.get_device_properties(0).total_memory / (1024**3)))
REPO_ID = "diffusers/benchmarks"
FINAL_CSV_FILE = "collated_results.csv"
@dataclass
class BenchmarkInfo:
time: float
memory: float
def flush():
"""Wipes off memory."""
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
def bytes_to_giga_bytes(bytes):
return f"{(bytes / 1024 / 1024 / 1024):.3f}"
def benchmark_fn(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)",
globals={"args": args, "kwargs": kwargs, "f": f},
num_threads=torch.get_num_threads(),
)
return f"{(t0.blocked_autorange().mean):.3f}"
def generate_csv_dict(
pipeline_cls: str, ckpt: str, args: argparse.Namespace, benchmark_info: BenchmarkInfo
) -> Dict[str, Union[str, bool, float]]:
"""Packs benchmarking data into a dictionary for latter serialization."""
data_dict = {
"pipeline_cls": pipeline_cls,
"ckpt_id": ckpt,
"batch_size": args.batch_size,
"num_inference_steps": args.num_inference_steps,
"model_cpu_offload": args.model_cpu_offload,
"run_compile": args.run_compile,
"time (secs)": benchmark_info.time,
"memory (gbs)": benchmark_info.memory,
"actual_gpu_memory (gbs)": f"{(TOTAL_GPU_MEMORY):.3f}",
"github_sha": GITHUB_SHA,
}
return data_dict
def write_to_csv(file_name: str, data_dict: Dict[str, Union[str, bool, float]]):
"""Serializes a dictionary into a CSV file."""
with open(file_name, mode="w", newline="") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=BENCHMARK_FIELDS)
writer.writeheader()
writer.writerow(data_dict)
def collate_csv(input_files: List[str], output_file: str):
"""Collates multiple identically structured CSVs into a single CSV file."""
with open(output_file, mode="w", newline="") as outfile:
writer = csv.DictWriter(outfile, fieldnames=BENCHMARK_FIELDS)
writer.writeheader()
for file in input_files:
with open(file, mode="r") as infile:
reader = csv.DictReader(infile)
for row in reader:
writer.writerow(row)

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -64,6 +64,8 @@
title: Overview
- local: using-diffusers/create_a_server
title: Create a server
- local: using-diffusers/batched_inference
title: Batch inference
- local: training/distributed_inference
title: Distributed inference
- local: using-diffusers/scheduler_features
@@ -91,6 +93,16 @@
- local: hybrid_inference/api_reference
title: API Reference
title: Hybrid Inference
- sections:
- local: modular_diffusers/getting_started
title: Getting Started
- local: modular_diffusers/components_manager
title: Components Manager
- local: modular_diffusers/write_own_pipeline_block
title: Write your own pipeline block
- local: modular_diffusers/end_to_end_guide
title: End-to-End Developer Guide
title: Modular Diffusers
- sections:
- local: using-diffusers/consisid
title: ConsisID
@@ -180,6 +192,8 @@
title: Caching
- local: optimization/memory
title: Reduce memory usage
- local: optimization/speed-memory-optims
title: Compile and offloading quantized models
- local: optimization/pruna
title: Pruna
- local: optimization/xformers

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -28,3 +28,9 @@ Cache methods speedup diffusion transformers by storing and reusing intermediate
[[autodoc]] FasterCacheConfig
[[autodoc]] apply_faster_cache
### FirstBlockCacheConfig
[[autodoc]] FirstBlockCacheConfig
[[autodoc]] apply_first_block_cache

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -37,6 +37,10 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
</Tip>
## LoraBaseMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin
## StableDiffusionLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.StableDiffusionLoraLoaderMixin
@@ -96,10 +100,6 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
[[autodoc]] loaders.lora_pipeline.HiDreamImageLoraLoaderMixin
## LoraBaseMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin
## WanLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.WanLoraLoaderMixin

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team and Tencent Hunyuan Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team and Tencent Hunyuan Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

Some files were not shown because too many files have changed in this diff Show More