Compare commits

...

2 Commits

Author SHA1 Message Date
yiyixuxu
317e83646d up 2025-10-31 21:42:49 +01:00
yiyixuxu
47baa47bfd move node registry to mellon 2025-10-30 05:45:54 +01:00
3 changed files with 5 additions and 258 deletions

View File

@@ -217,6 +217,11 @@ MELLON_OUTPUT_PARAMS = {
"display": "output",
"type": "controlnet",
},
"doc": {
"label": "Doc",
"display": "output",
"type": "string",
},
}
@@ -697,67 +702,3 @@ class MellonNodeConfig(PushToHubMixin):
blocks_names=blocks_names,
node_type=node_type,
)
# Minimal modular registry for Mellon node configs
class ModularMellonNodeRegistry:
"""Registry mapping (pipeline class, blocks_name) -> list of MellonNodeConfig."""
def __init__(self):
self._registry = {}
self._initialized = False
def register(self, pipeline_cls: type, node_params: Dict[str, MellonNodeConfig]):
if not self._initialized:
_initialize_registry(self)
self._registry[pipeline_cls] = node_params
def get(self, pipeline_cls: type) -> MellonNodeConfig:
if not self._initialized:
_initialize_registry(self)
return self._registry.get(pipeline_cls, None)
def get_all(self) -> Dict[type, Dict[str, MellonNodeConfig]]:
if not self._initialized:
_initialize_registry(self)
return self._registry
def _register_preset_node_types(
pipeline_cls, params_map: Dict[str, Dict[str, Any]], registry: ModularMellonNodeRegistry
):
"""Register all node-type presets for a given pipeline class from a params map."""
node_configs = {}
for node_type, spec in params_map.items():
node_config = MellonNodeConfig(
inputs=spec.get("inputs", []),
model_inputs=spec.get("model_inputs", []),
outputs=spec.get("outputs", []),
blocks_names=spec.get("block_names", []),
node_type=node_type,
)
node_configs[node_type] = node_config
registry.register(pipeline_cls, node_configs)
def _initialize_registry(registry: ModularMellonNodeRegistry):
"""Initialize the registry and register all available pipeline configs."""
print("Initializing registry")
registry._initialized = True
try:
from .qwenimage.modular_pipeline import QwenImageModularPipeline
from .qwenimage.node_utils import QwenImage_NODE_TYPES_PARAMS_MAP
_register_preset_node_types(QwenImageModularPipeline, QwenImage_NODE_TYPES_PARAMS_MAP, registry)
except Exception:
raise Exception("Failed to register QwenImageModularPipeline")
try:
from .stable_diffusion_xl.modular_pipeline import StableDiffusionXLModularPipeline
from .stable_diffusion_xl.node_utils import SDXL_NODE_TYPES_PARAMS_MAP
_register_preset_node_types(StableDiffusionXLModularPipeline, SDXL_NODE_TYPES_PARAMS_MAP, registry)
except Exception:
raise Exception("Failed to register StableDiffusionXLModularPipeline")

View File

@@ -1,95 +0,0 @@
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# mellon nodes
QwenImage_NODE_TYPES_PARAMS_MAP = {
"controlnet": {
"inputs": [
"control_image",
"controlnet_conditioning_scale",
"control_guidance_start",
"control_guidance_end",
"height",
"width",
],
"model_inputs": [
"controlnet",
"vae",
],
"outputs": [
"controlnet_out",
],
"block_names": ["controlnet_vae_encoder"],
},
"denoise": {
"inputs": [
"embeddings",
"width",
"height",
"seed",
"num_inference_steps",
"guidance_scale",
"image_latents",
"strength",
"controlnet",
],
"model_inputs": [
"unet",
"guider",
"scheduler",
],
"outputs": [
"latents",
"latents_preview",
],
"block_names": ["denoise"],
},
"vae_encoder": {
"inputs": [
"image",
"width",
"height",
],
"model_inputs": [
"vae",
],
"outputs": [
"image_latents",
],
},
"text_encoder": {
"inputs": [
"prompt",
"negative_prompt",
],
"model_inputs": [
"text_encoders",
],
"outputs": [
"embeddings",
],
},
"decoder": {
"inputs": [
"latents",
],
"model_inputs": [
"vae",
],
"outputs": [
"images",
],
},
}

View File

@@ -1,99 +0,0 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
SDXL_NODE_TYPES_PARAMS_MAP = {
"controlnet": {
"inputs": [
"control_image",
"controlnet_conditioning_scale",
"control_guidance_start",
"control_guidance_end",
"height",
"width",
],
"model_inputs": [
"controlnet",
],
"outputs": [
"controlnet_out",
],
"block_names": [None],
},
"denoise": {
"inputs": [
"embeddings",
"width",
"height",
"seed",
"num_inference_steps",
"guidance_scale",
"image_latents",
"strength",
# custom adapters coming in as inputs
"controlnet",
# ip_adapter is optional and custom; include if available
"ip_adapter",
],
"model_inputs": [
"unet",
"guider",
"scheduler",
],
"outputs": [
"latents",
"latents_preview",
],
"block_names": ["denoise"],
},
"vae_encoder": {
"inputs": [
"image",
"width",
"height",
],
"model_inputs": [
"vae",
],
"outputs": [
"image_latents",
],
"block_names": ["vae_encoder"],
},
"text_encoder": {
"inputs": [
"prompt",
"negative_prompt",
],
"model_inputs": [
"text_encoders",
],
"outputs": [
"embeddings",
],
"block_names": ["text_encoder"],
},
"decoder": {
"inputs": [
"latents",
],
"model_inputs": [
"vae",
],
"outputs": [
"images",
],
"block_names": ["decode"],
},
}