Compare commits

..

8 Commits

Author SHA1 Message Date
DN6
215af1a602 resolve conflicts 2025-08-28 15:12:03 +05:30
DN6
1a917d3ac5 Revert "merge main"
This reverts commit 65efbcead5.
2025-08-28 15:02:28 +05:30
DN6
65efbcead5 merge main 2025-08-28 14:56:46 +05:30
DN6
2a52a25b9a update 2025-08-26 10:50:02 +05:30
DN6
0137a16ed5 update 2025-08-26 10:37:30 +05:30
DN6
ce12925a23 update 2025-08-26 09:39:50 +05:30
DN6
80b06b0d5f update 2025-08-26 08:36:19 +05:30
DN6
42c19fdd0d update 2025-08-26 08:35:26 +05:30
28 changed files with 146 additions and 1281 deletions

View File

@@ -120,12 +120,6 @@ The `guidance_scale` parameter in the pipeline is there to support future guidan
- all
- __call__
## QwenImageEditInpaintPipeline
[[autodoc]] QwenImageEditInpaintPipeline
- all
- __call__
## QwenImaggeControlNetPipeline
- all
- __call__

View File

@@ -51,10 +51,10 @@ t2i_pipeline = t2i_blocks.init_pipeline(modular_repo_id, components_manager=comp
</hfoption>
</hfoptions>
Components are only loaded and registered when using [`~ModularPipeline.load_components`] or [`~ModularPipeline.load_components`]. The example below uses [`~ModularPipeline.load_components`] to create a second pipeline that reuses all the components from the first one, and assigns it to a different collection
Components are only loaded and registered when using [`~ModularPipeline.load_components`] or [`~ModularPipeline.load_default_components`]. The example below uses [`~ModularPipeline.load_default_components`] to create a second pipeline that reuses all the components from the first one, and assigns it to a different collection
```py
pipe.load_components()
pipe.load_default_components()
pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
```

View File

@@ -75,13 +75,13 @@ Guiders that are already saved on the Hub with a `modular_model_index.json` file
}
```
The guider is only created after calling [`~ModularPipeline.load_components`] based on the loading specification in `modular_model_index.json`.
The guider is only created after calling [`~ModularPipeline.load_default_components`] based on the loading specification in `modular_model_index.json`.
```py
t2i_pipeline = t2i_blocks.init_pipeline("YiYiXu/modular-doc-guider")
# not created during init
assert t2i_pipeline.guider is None
t2i_pipeline.load_components()
t2i_pipeline.load_default_components()
# loaded as PAG guider
t2i_pipeline.guider
```

View File

@@ -29,7 +29,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.to("cuda")
image = pipeline(prompt="Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", output="images")[0]
@@ -49,7 +49,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(IMAGE2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.to("cuda")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
@@ -73,7 +73,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(INPAINT_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.to("cuda")
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
@@ -176,15 +176,15 @@ diffdiff_pipeline = ModularPipeline.from_pretrained(modular_repo_id, trust_remot
## Loading components
A [`ModularPipeline`] doesn't automatically instantiate with components. It only loads the configuration and component specifications. You can load all components with [`~ModularPipeline.load_components`] or only load specific components with [`~ModularPipeline.load_components`].
A [`ModularPipeline`] doesn't automatically instantiate with components. It only loads the configuration and component specifications. You can load all components with [`~ModularPipeline.load_default_components`] or only load specific components with [`~ModularPipeline.load_components`].
<hfoptions id="load">
<hfoption id="load_components">
<hfoption id="load_default_components">
```py
import torch
t2i_pipeline.load_components(torch_dtype=torch.float16)
t2i_pipeline.load_default_components(torch_dtype=torch.float16)
t2i_pipeline.to("cuda")
```

View File

@@ -173,9 +173,9 @@ print(dd_blocks)
## ModularPipeline
Convert the [`SequentialPipelineBlocks`] into a [`ModularPipeline`] with the [`ModularPipeline.init_pipeline`] method. This initializes the expected components to load from a `modular_model_index.json` file. Explicitly load the components by calling [`ModularPipeline.load_components`].
Convert the [`SequentialPipelineBlocks`] into a [`ModularPipeline`] with the [`ModularPipeline.init_pipeline`] method. This initializes the expected components to load from a `modular_model_index.json` file. Explicitly load the components by calling [`ModularPipeline.load_default_components`].
It is a good idea to initialize the [`ComponentManager`] with the pipeline to help manage the different components. Once you call [`~ModularPipeline.load_components`], the components are registered to the [`ComponentManager`] and can be shared between workflows. The example below uses the `collection` argument to assign the components a `"diffdiff"` label for better organization.
It is a good idea to initialize the [`ComponentManager`] with the pipeline to help manage the different components. Once you call [`~ModularPipeline.load_default_components`], the components are registered to the [`ComponentManager`] and can be shared between workflows. The example below uses the `collection` argument to assign the components a `"diffdiff"` label for better organization.
```py
from diffusers.modular_pipelines import ComponentsManager
@@ -209,11 +209,11 @@ Use the [`sub_blocks.insert`] method to insert it into the [`ModularPipeline`].
dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0)
```
Call [`~ModularPipeline.init_pipeline`] to initialize a [`ModularPipeline`] and use [`~ModularPipeline.load_components`] to load the model components. Load and set the IP-Adapter to run the pipeline.
Call [`~ModularPipeline.init_pipeline`] to initialize a [`ModularPipeline`] and use [`~ModularPipeline.load_default_components`] to load the model components. Load and set the IP-Adapter to run the pipeline.
```py
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline.loader.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
dd_pipeline.loader.set_ip_adapter_scale(0.6)
dd_pipeline = dd_pipeline.to(device)
@@ -260,14 +260,14 @@ class SDXLDiffDiffControlNetDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
controlnet_denoise_block = SDXLDiffDiffControlNetDenoiseStep()
```
Insert the `controlnet_input` block and replace the `denoise` block with the new `controlnet_denoise_block`. Initialize a [`ModularPipeline`] and [`~ModularPipeline.load_components`] into it.
Insert the `controlnet_input` block and replace the `denoise` block with the new `controlnet_denoise_block`. Initialize a [`ModularPipeline`] and [`~ModularPipeline.load_default_components`] into it.
```py
dd_blocks.sub_blocks.insert("controlnet_input", control_input_block, 7)
dd_blocks.sub_blocks["denoise"] = controlnet_denoise_block
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline = dd_pipeline.to(device)
control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.jpeg")
@@ -320,7 +320,7 @@ Call [`SequentialPipelineBlocks.from_blocks_dict`] to create a [`SequentialPipel
```py
dd_auto_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_AUTO_BLOCKS)
dd_pipeline = dd_auto_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.load_default_components(torch_dtype=torch.float16)
```
## Share
@@ -340,5 +340,5 @@ from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
components = ComponentsManager()
diffdiff_pipeline = ModularPipeline.from_pretrained("YiYiXu/modular-diffdiff-0704", trust_remote_code=True, components_manager=components, collection="diffdiff")
diffdiff_pipeline.load_components(torch_dtype=torch.float16)
diffdiff_pipeline.load_default_components(torch_dtype=torch.float16)
```

View File

@@ -223,7 +223,7 @@ from diffusers.image_processor import VaeImageProcessor
import torch
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=torch.bfloat16).to("cuda")
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
vae_scale_factor = 2 ** (len(vae.config.block_out_channels))
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
with torch.no_grad():

View File

@@ -48,10 +48,10 @@ t2i_pipeline = t2i_blocks.init_pipeline(modular_repo_id, components_manager=comp
</hfoption>
</hfoptions>
组件仅在调用 [`~ModularPipeline.load_components`] 或 [`~ModularPipeline.load_components`] 时加载和注册。以下示例使用 [`~ModularPipeline.load_components`] 创建第二个管道,重用第一个管道的所有组件,并将其分配到不同的集合。
组件仅在调用 [`~ModularPipeline.load_components`] 或 [`~ModularPipeline.load_default_components`] 时加载和注册。以下示例使用 [`~ModularPipeline.load_default_components`] 创建第二个管道,重用第一个管道的所有组件,并将其分配到不同的集合。
```py
pipe.load_components()
pipe.load_default_components()
pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
```

View File

@@ -73,13 +73,13 @@ ComponentSpec(name='guider', type_hint=<class 'diffusers.guiders.perturbed_atten
}
```
引导器只有在调用 [`~ModularPipeline.load_components`] 之后才会创建,基于 `modular_model_index.json` 中的加载规范。
引导器只有在调用 [`~ModularPipeline.load_default_components`] 之后才会创建,基于 `modular_model_index.json` 中的加载规范。
```py
t2i_pipeline = t2i_blocks.init_pipeline("YiYiXu/modular-doc-guider")
# 在初始化时未创建
assert t2i_pipeline.guider is None
t2i_pipeline.load_components()
t2i_pipeline.load_default_components()
# 加载为 PAG 引导器
t2i_pipeline.guider
```

View File

@@ -28,7 +28,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.to("cuda")
image = pipeline(prompt="Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", output="images")[0]
@@ -48,7 +48,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(IMAGE2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.to("cuda")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
@@ -72,7 +72,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(INPAINT_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.to("cuda")
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
@@ -176,15 +176,15 @@ diffdiff_pipeline = ModularPipeline.from_pretrained(modular_repo_id, trust_remot
## 加载组件
一个[`ModularPipeline`]不会自动实例化组件。它只加载配置和组件规范。您可以使用[`~ModularPipeline.load_components`]加载所有组件,或仅使用[`~ModularPipeline.load_components`]加载特定组件。
一个[`ModularPipeline`]不会自动实例化组件。它只加载配置和组件规范。您可以使用[`~ModularPipeline.load_default_components`]加载所有组件,或仅使用[`~ModularPipeline.load_components`]加载特定组件。
<hfoptions id="load">
<hfoption id="load_components">
<hfoption id="load_default_components">
```py
import torch
t2i_pipeline.load_components(torch_dtype=torch.float16)
t2i_pipeline.load_default_components(torch_dtype=torch.float16)
t2i_pipeline.to("cuda")
```

View File

@@ -175,7 +175,7 @@ print(dd_blocks)
将 [`SequentialPipelineBlocks`] 转换为 [`ModularPipeline`],使用 [`ModularPipeline.init_pipeline`] 方法。这会初始化从 `modular_model_index.json` 文件加载的预期组件。通过调用 [`ModularPipeline.load_defau
lt_components`]。
初始化[`ComponentManager`]时传入pipeline是一个好主意以帮助管理不同的组件。一旦调用[`~ModularPipeline.load_components`],组件就会被注册到[`ComponentManager`]中,并且可以在工作流之间共享。下面的例子使用`collection`参数为组件分配了一个`"diffdiff"`标签,以便更好地组织。
初始化[`ComponentManager`]时传入pipeline是一个好主意以帮助管理不同的组件。一旦调用[`~ModularPipeline.load_default_components`],组件就会被注册到[`ComponentManager`]中,并且可以在工作流之间共享。下面的例子使用`collection`参数为组件分配了一个`"diffdiff"`标签,以便更好地组织。
```py
from diffusers.modular_pipelines import ComponentsManager
@@ -209,11 +209,11 @@ ip_adapter_block = StableDiffusionXLAutoIPAdapterStep()
dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0)
```
调用[`~ModularPipeline.init_pipeline`]来初始化一个[`ModularPipeline`],并使用[`~ModularPipeline.load_components`]加载模型组件。加载并设置IP-Adapter以运行pipeline。
调用[`~ModularPipeline.init_pipeline`]来初始化一个[`ModularPipeline`],并使用[`~ModularPipeline.load_default_components`]加载模型组件。加载并设置IP-Adapter以运行pipeline。
```py
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline.loader.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
dd_pipeline.loader.set_ip_adapter_scale(0.6)
dd_pipeline = dd_pipeline.to(device)
@@ -261,14 +261,14 @@ class SDXLDiffDiffControlNetDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
controlnet_denoise_block = SDXLDiffDiffControlNetDenoiseStep()
```
插入 `controlnet_input` 块并用新的 `controlnet_denoise_block` 替换 `denoise` 块。初始化一个 [`ModularPipeline`] 并将 [`~ModularPipeline.load_components`] 加载到其中。
插入 `controlnet_input` 块并用新的 `controlnet_denoise_block` 替换 `denoise` 块。初始化一个 [`ModularPipeline`] 并将 [`~ModularPipeline.load_default_components`] 加载到其中。
```py
dd_blocks.sub_blocks.insert("controlnet_input", control_input_block, 7)
dd_blocks.sub_blocks["denoise"] = controlnet_denoise_block
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline = dd_pipeline.to(device)
control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.jpeg")
@@ -322,7 +322,7 @@ DIFFDIFF_AUTO_BLOCKS.insert("controlnet_input",StableDiffusionXLControlNetAutoIn
```py
dd_auto_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_AUTO_BLOCKS)
dd_pipeline = dd_auto_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.load_default_components(torch_dtype=torch.float16)
```
## 分享
@@ -342,5 +342,5 @@ from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
components = ComponentsManager()
diffdiff_pipeline = ModularPipeline.from_pretrained("YiYiXu/modular-diffdiff-0704", trust_remote_code=True, components_manager=components, collection="diffdiff")
diffdiff_pipeline.load_components(torch_dtype=torch.float16)
diffdiff_pipeline.load_default_components(torch_dtype=torch.float16)
```

View File

@@ -223,7 +223,7 @@ from diffusers.image_processor import VaeImageProcessor
import torch
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=torch.bfloat16).to("cuda")
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
vae_scale_factor = 2 ** (len(vae.config.block_out_channels))
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
with torch.no_grad():

View File

@@ -1270,7 +1270,6 @@ def main(args):
subfolder="transformer",
revision=args.revision,
variant=args.variant,
torch_dtype=torch_dtype,
)
pipeline = FluxKontextPipeline.from_pretrained(
args.pretrained_model_name_or_path,
@@ -1293,8 +1292,7 @@ def main(args):
for example in tqdm(
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
):
with torch.autocast(device_type=accelerator.device.type, dtype=torch_dtype):
images = pipeline(prompt=example["prompt"]).images
images = pipeline(example["prompt"]).images
for i, image in enumerate(images):
hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
@@ -1901,10 +1899,6 @@ def main(args):
device=accelerator.device,
prompt=args.instance_prompt,
)
else:
prompt_embeds, pooled_prompt_embeds, text_ids = compute_text_embeddings(
prompts, text_encoders, tokenizers
)
# Convert images to latent space
if args.cache_latents:

View File

@@ -494,7 +494,6 @@ else:
"PixArtSigmaPAGPipeline",
"PixArtSigmaPipeline",
"QwenImageControlNetPipeline",
"QwenImageEditInpaintPipeline",
"QwenImageEditPipeline",
"QwenImageImg2ImgPipeline",
"QwenImageInpaintPipeline",
@@ -1135,7 +1134,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
PixArtSigmaPAGPipeline,
PixArtSigmaPipeline,
QwenImageControlNetPipeline,
QwenImageEditInpaintPipeline,
QwenImageEditPipeline,
QwenImageImg2ImgPipeline,
QwenImageInpaintPipeline,

View File

@@ -82,15 +82,15 @@ class AutoGuidance(BaseGuidance):
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
is_layer_or_config_provided = auto_guidance_layers is not None or auto_guidance_config is not None
is_layer_and_config_provided = auto_guidance_layers is not None and auto_guidance_config is not None
if not is_layer_or_config_provided:
if auto_guidance_layers is None and auto_guidance_config is None:
raise ValueError(
"Either `auto_guidance_layers` or `auto_guidance_config` must be provided to enable AutoGuidance."
"Either `auto_guidance_layers` or `auto_guidance_config` must be provided to enable Skip Layer Guidance."
)
if is_layer_and_config_provided:
if auto_guidance_layers is not None and auto_guidance_config is not None:
raise ValueError("Only one of `auto_guidance_layers` or `auto_guidance_config` can be provided.")
if auto_guidance_config is None and dropout is None:
if (dropout is None and auto_guidance_layers is not None) or (
dropout is not None and auto_guidance_layers is None
):
raise ValueError("`dropout` must be provided if `auto_guidance_layers` is provided.")
if auto_guidance_layers is not None:

View File

@@ -2129,10 +2129,6 @@ def _convert_non_diffusers_ltxv_lora_to_diffusers(state_dict, non_diffusers_pref
def _convert_non_diffusers_qwen_lora_to_diffusers(state_dict):
has_diffusion_model = any(k.startswith("diffusion_model.") for k in state_dict)
if has_diffusion_model:
state_dict = {k.removeprefix("diffusion_model."): v for k, v in state_dict.items()}
has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
if has_lora_unet:
state_dict = {k.removeprefix("lora_unet_"): v for k, v in state_dict.items()}
@@ -2205,13 +2201,6 @@ def _convert_non_diffusers_qwen_lora_to_diffusers(state_dict):
all_keys = list(state_dict.keys())
down_key = ".lora_down.weight"
up_key = ".lora_up.weight"
a_key = ".lora_A.weight"
b_key = ".lora_B.weight"
has_non_diffusers_lora_id = any(down_key in k or up_key in k for k in all_keys)
has_diffusers_lora_id = any(a_key in k or b_key in k for k in all_keys)
if has_non_diffusers_lora_id:
def get_alpha_scales(down_weight, alpha_key):
rank = down_weight.shape[0]
@@ -2236,14 +2225,6 @@ def _convert_non_diffusers_qwen_lora_to_diffusers(state_dict):
converted_state_dict[diffusers_down_key] = down_weight * scale_down
converted_state_dict[diffusers_up_key] = up_weight * scale_up
# Already in diffusers format (lora_A/lora_B), just pop
elif has_diffusers_lora_id:
for k in all_keys:
if a_key in k or b_key in k:
converted_state_dict[k] = state_dict.pop(k)
elif ".alpha" in k:
state_dict.pop(k)
if len(state_dict) > 0:
raise ValueError(f"`state_dict` should be empty at this point but has {state_dict.keys()=}")

View File

@@ -6684,8 +6684,7 @@ class QwenImageLoraLoaderMixin(LoraBaseMixin):
has_alphas_in_sd = any(k.endswith(".alpha") for k in state_dict)
has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
has_diffusion_model = any(k.startswith("diffusion_model.") for k in state_dict)
if has_alphas_in_sd or has_lora_unet or has_diffusion_model:
if has_alphas_in_sd or has_lora_unet:
state_dict = _convert_non_diffusers_qwen_lora_to_diffusers(state_dict)
out = (state_dict, metadata) if return_lora_metadata else state_dict

View File

@@ -955,13 +955,12 @@ def _native_npu_attention(
dropout_p: float = 0.0,
scale: Optional[float] = None,
) -> torch.Tensor:
query, key, value = (x.transpose(1, 2).contiguous() for x in (query, key, value))
out = npu_fusion_attention(
return npu_fusion_attention(
query,
key,
value,
query.size(1), # num_heads
input_layout="BNSD",
query.size(2), # num_heads
input_layout="BSND",
pse=None,
scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
pre_tockens=65536,
@@ -970,8 +969,6 @@ def _native_npu_attention(
sync=False,
inner_precise=0,
)[0]
out = out.transpose(1, 2).contiguous()
return out
# Reference: https://github.com/pytorch/xla/blob/06c5533de6588f6b90aa1655d9850bcf733b90b4/torch_xla/experimental/custom_kernel.py#L853

View File

@@ -299,7 +299,7 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
def from_pretrained(
cls,
pretrained_model_name_or_path: str,
trust_remote_code: bool = False,
trust_remote_code: Optional[bool] = None,
**kwargs,
):
hub_kwargs_names = [
@@ -1418,7 +1418,7 @@ class LoopSequentialPipelineBlocks(ModularPipelineBlocks):
# YiYi TODO:
# 1. look into the serialization of modular_model_index.json, make sure the items are properly ordered like model_index.json (currently a mess)
# 2. do we need ConfigSpec? the are basically just key/val kwargs
# 3. imnprove docstring and potentially add validator for methods where we accpet kwargs to be passed to from_pretrained/save_pretrained/load_components()
# 3. imnprove docstring and potentially add validator for methods where we accpet kwargs to be passed to from_pretrained/save_pretrained/load_default_components(), load_components()
class ModularPipeline(ConfigMixin, PushToHubMixin):
"""
Base class for all Modular pipelines.
@@ -1488,7 +1488,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
- Components with default_creation_method="from_config" are created immediately, its specs are not included
in config dict and will not be saved in `modular_model_index.json`
- Components with default_creation_method="from_pretrained" are set to None and can be loaded later with
`load_components()` (with or without specific component names)
`load_default_components()`/`load_components()`
- The pipeline's config dict is populated with component specs (only for from_pretrained components) and
config values, which will be saved as `modular_model_index.json` during `save_pretrained`
- The pipeline's config dict is also used to store the pipeline blocks's class name, which will be saved as
@@ -1603,6 +1603,20 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
params[input_param.name] = input_param.default
return params
def load_default_components(self, **kwargs):
"""
Load from_pretrained components using the loading specs in the config dict.
Args:
**kwargs: Additional arguments passed to `from_pretrained` method, e.g. torch_dtype, cache_dir, etc.
"""
names = [
name
for name in self._component_specs.keys()
if self._component_specs[name].default_creation_method == "from_pretrained"
]
self.load_components(names=names, **kwargs)
@classmethod
@validate_hf_hub_args
def from_pretrained(
@@ -1756,8 +1770,8 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
- non from_pretrained components are created during __init__ and registered as the object itself
- Components are updated with the `update_components()` method: e.g. loader.update_components(unet=unet) or
loader.update_components(guider=guider_spec)
- (from_pretrained) Components are loaded with the `load_components()` method: e.g.
loader.load_components(names=["unet"]) or loader.load_components() to load all default components
- (from_pretrained) Components are loaded with the `load_default_components()` method: e.g.
loader.load_default_components(names=["unet"])
Args:
**kwargs: Keyword arguments where keys are component names and values are component objects.
@@ -2083,14 +2097,13 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
self.register_to_config(**config_to_register)
# YiYi TODO: support map for additional from_pretrained kwargs
def load_components(self, names: Optional[Union[List[str], str]] = None, **kwargs):
# YiYi/Dhruv TODO: consolidate load_components and load_default_components?
def load_components(self, names: Union[List[str], str], **kwargs):
"""
Load selected components from specs.
Args:
names: List of component names to load. If None, will load all components with
default_creation_method == "from_pretrained". If provided as a list or string, will load only the
specified components.
names: List of component names to load; by default will not load any components
**kwargs: additional kwargs to be passed to `from_pretrained()`.Can be:
- a single value to be applied to all components to be loaded, e.g. torch_dtype=torch.bfloat16
- a dict, e.g. torch_dtype={"unet": torch.bfloat16, "default": torch.float32}
@@ -2098,13 +2111,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
`variant`, `revision`, etc.
"""
if names is None:
names = [
name
for name in self._component_specs.keys()
if self._component_specs[name].default_creation_method == "from_pretrained"
]
elif isinstance(names, str):
if isinstance(names, str):
names = [names]
elif not isinstance(names, list):
raise ValueError(f"Invalid type for names: {type(names)}")

View File

@@ -393,7 +393,6 @@ else:
"QwenImageImg2ImgPipeline",
"QwenImageInpaintPipeline",
"QwenImageEditPipeline",
"QwenImageEditInpaintPipeline",
"QwenImageControlNetPipeline",
]
try:
@@ -715,7 +714,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
from .qwenimage import (
QwenImageControlNetPipeline,
QwenImageEditInpaintPipeline,
QwenImageEditPipeline,
QwenImageImg2ImgPipeline,
QwenImageInpaintPipeline,

View File

@@ -26,7 +26,6 @@ else:
_import_structure["pipeline_qwenimage"] = ["QwenImagePipeline"]
_import_structure["pipeline_qwenimage_controlnet"] = ["QwenImageControlNetPipeline"]
_import_structure["pipeline_qwenimage_edit"] = ["QwenImageEditPipeline"]
_import_structure["pipeline_qwenimage_edit_inpaint"] = ["QwenImageEditInpaintPipeline"]
_import_structure["pipeline_qwenimage_img2img"] = ["QwenImageImg2ImgPipeline"]
_import_structure["pipeline_qwenimage_inpaint"] = ["QwenImageInpaintPipeline"]
@@ -40,7 +39,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pipeline_qwenimage import QwenImagePipeline
from .pipeline_qwenimage_controlnet import QwenImageControlNetPipeline
from .pipeline_qwenimage_edit import QwenImageEditPipeline
from .pipeline_qwenimage_edit_inpaint import QwenImageEditInpaintPipeline
from .pipeline_qwenimage_img2img import QwenImageImg2ImgPipeline
from .pipeline_qwenimage_inpaint import QwenImageInpaintPipeline
else:

View File

@@ -551,12 +551,6 @@ class QwenImageEditPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
Function invoked when calling the pipeline for generation.
Args:
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.

View File

@@ -45,7 +45,6 @@ DIFFUSERS_ATTN_BACKEND = os.getenv("DIFFUSERS_ATTN_BACKEND", "native")
DIFFUSERS_ATTN_CHECKS = os.getenv("DIFFUSERS_ATTN_CHECKS", "0") in ENV_VARS_TRUE_VALUES
DEFAULT_HF_PARALLEL_LOADING_WORKERS = 8
HF_ENABLE_PARALLEL_LOADING = os.environ.get("HF_ENABLE_PARALLEL_LOADING", "").upper() in ENV_VARS_TRUE_VALUES
DIFFUSERS_DISABLE_REMOTE_CODE = os.getenv("DIFFUSERS_DISABLE_REMOTE_CODE", "false").lower() in ENV_VARS_TRUE_VALUES
# Below should be `True` if the current version of `peft` and `transformers` are compatible with
# PEFT backend. Will automatically fall back to PEFT backend if the correct versions of the libraries are

View File

@@ -1772,21 +1772,6 @@ class QwenImageControlNetPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class QwenImageEditInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class QwenImageEditPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -20,6 +20,7 @@ import json
import os
import re
import shutil
import signal
import sys
import threading
from pathlib import Path
@@ -33,7 +34,6 @@ from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
from .constants import DIFFUSERS_DISABLE_REMOTE_CODE
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -159,25 +159,52 @@ def check_imports(filename):
return get_relative_imports(filename)
def resolve_trust_remote_code(trust_remote_code, model_name, has_remote_code):
trust_remote_code = trust_remote_code and not DIFFUSERS_DISABLE_REMOTE_CODE
if DIFFUSERS_DISABLE_REMOTE_CODE:
logger.warning(
"Downloading remote code is disabled globally via the DIFFUSERS_DISABLE_REMOTE_CODE environment variable. Ignoring `trust_remote_code`."
def _raise_timeout_error(signum, frame):
raise ValueError(
"Loading this model requires you to execute custom code contained in the model repository on your local "
"machine. Please set the option `trust_remote_code=True` to permit loading of this model."
)
def resolve_trust_remote_code(trust_remote_code, model_name, has_remote_code):
if trust_remote_code is None:
if has_remote_code and TIME_OUT_REMOTE_CODE > 0:
prev_sig_handler = None
try:
prev_sig_handler = signal.signal(signal.SIGALRM, _raise_timeout_error)
signal.alarm(TIME_OUT_REMOTE_CODE)
while trust_remote_code is None:
answer = input(
f"The repository for {model_name} contains custom code which must be executed to correctly "
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
f"You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n\n"
f"Do you wish to run the custom code? [y/N] "
)
if answer.lower() in ["yes", "y", "1"]:
trust_remote_code = True
elif answer.lower() in ["no", "n", "0", ""]:
trust_remote_code = False
signal.alarm(0)
except Exception:
# OS which does not support signal.SIGALRM
raise ValueError(
f"The repository for {model_name} contains custom code which must be executed to correctly "
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
)
finally:
if prev_sig_handler is not None:
signal.signal(signal.SIGALRM, prev_sig_handler)
signal.alarm(0)
elif has_remote_code:
# For the CI which puts the timeout at 0
_raise_timeout_error(None, None)
if has_remote_code and not trust_remote_code:
error_msg = f"The repository for {model_name} contains custom code. "
error_msg += (
"Downloading remote code is disabled globally via the DIFFUSERS_DISABLE_REMOTE_CODE environment variable."
if DIFFUSERS_DISABLE_REMOTE_CODE
else "Pass `trust_remote_code=True` to allow loading remote code modules."
)
raise ValueError(error_msg)
elif has_remote_code and trust_remote_code:
logger.warning(
f"`trust_remote_code` is enabled. Downloading code from {model_name}. Please ensure you trust the contents of this repository"
raise ValueError(
f"Loading {model_name} requires you to execute the configuration file in that"
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
" set the option `trust_remote_code=True` to remove this error."
)
return trust_remote_code

View File

@@ -67,7 +67,7 @@ class SDXLModularTests:
def get_pipeline(self, components_manager=None, torch_dtype=torch.float32):
pipeline = self.pipeline_blocks_class().init_pipeline(self.repo, components_manager=components_manager)
pipeline.load_components(torch_dtype=torch_dtype)
pipeline.load_default_components(torch_dtype=torch_dtype)
return pipeline
def get_dummy_inputs(self, device, seed=0):
@@ -158,7 +158,7 @@ class SDXLModularIPAdapterTests:
blocks = self.pipeline_blocks_class()
_ = blocks.sub_blocks.pop("ip_adapter")
pipe = blocks.init_pipeline(self.repo)
pipe.load_components(torch_dtype=torch.float32)
pipe.load_default_components(torch_dtype=torch.float32)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
cross_attention_dim = pipe.unet.config.get("cross_attention_dim")

View File

@@ -344,7 +344,7 @@ class ModularPipelineTesterMixin:
with tempfile.TemporaryDirectory() as tmpdirname:
base_pipe.save_pretrained(tmpdirname)
pipe = ModularPipeline.from_pretrained(tmpdirname).to(torch_device)
pipe.load_components(torch_dtype=torch.float32)
pipe.load_default_components(torch_dtype=torch.float32)
pipe.to(torch_device)
pipes.append(pipe)

View File

@@ -13,7 +13,7 @@ from ...testing_utils import (
nightly,
numpy_cosine_similarity_distance,
require_accelerate,
require_accelerator,
require_big_accelerator,
require_torch_cuda_compatibility,
torch_device,
)
@@ -31,7 +31,7 @@ enable_full_determinism()
@nightly
@require_accelerator
@require_big_accelerator
@require_accelerate
class QuantoBaseTesterMixin:
model_id = None