Compare commits

...

224 Commits

Author SHA1 Message Date
yiyixuxu
3e93944bf7 up 2024-09-26 02:32:50 +02:00
v2ray
aa3c46d99a [Doc] Improved level of clarity for latents_to_rgb. (#9529)
Fixed latents_to_rgb doc.

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2024-09-25 19:26:58 -03:00
YiYi Xu
c76e88405c update get_parameter_dtype (#9526)
* up

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-09-25 11:00:57 -10:00
Steven Liu
d9c969172d [docs] Model sharding (#9521)
* flux shard

* feedback
2024-09-25 09:33:54 -07:00
Lee Penkman
065ce07ac3 Update community_projects.md (#9266) 2024-09-25 08:54:36 -07:00
Sayak Paul
6ca5a58e43 [Community Pipeline] Batched implementation of Flux with CFG (#9513)
* batched implementation of flux cfg.

* style.

* readme

* remove comments.
2024-09-25 15:25:15 +05:30
hlky
b52684c3ed Add exponential sigmas to other schedulers and update docs (#9518) 2024-09-24 14:50:12 -10:00
YiYi Xu
bac8a2412d a few fix for SingleFile tests (#9522)
* update sd15 repo

* update more
2024-09-24 13:36:53 -10:00
Sayak Paul
28f9d84549 [CI] allow faster downloads from the Hub in CI. (#9478)
* allow faster downloads from the Hub in CI.

* HF_HUB_ENABLE_HF_TRANSFER: 1

* empty

* empty

* remove ENV HF_HUB_ENABLE_HF_TRANSFER=1.

* empty
2024-09-24 09:42:11 +05:30
LukeLin
2b5bc5be0b [Doc] Fix path and and also import imageio (#9506)
* Fix bug

* import imageio
2024-09-23 16:47:34 -07:00
captainzz
bab17789b5 fix bugs for sd3 controlnet training (#9489)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-23 13:40:44 -10:00
hlky
19547a5734 Add Noise Schedule/Schedule Type to Schedulers Overview documentation (#9504)
* Add Noise Schedule/Schedule Type to Schedulers Overview docs

* Update docs/source/en/api/schedulers/overview.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-23 16:39:55 -07:00
Seongbin Lim
3e69e241f7 Allow DDPMPipeline half precision (#9222)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-23 13:28:14 -10:00
hlky
65f9439b56 [Schedulers] Add exponential sigmas / exponential noise schedule (#9499)
* exponential sigmas

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* make style

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-23 13:12:51 -10:00
pibbo88
00f5b41862 Fix the bug of sd3 controlnet training when using gradient checkpointing. (#9498)
Fix the bug of sd3 controlnet training when using gradient_checkpointing. Refer to issue #9496
2024-09-23 12:30:24 -10:00
M Saqlain
14f6464bef [Tests] Reduce the model size in the lumina test (#8985)
* Reduced model size for lumina-tests

* Handled failing tests
2024-09-23 20:35:50 +05:30
Sayak Paul
ba5af5aebb [Cog] some minor fixes and nits (#9466)
* fix positional arguments in check_inputs().

* add video and latetns to check_inputs().

* prep latents_in_channels.

* quality

* multiple fixes.

* fix
2024-09-23 11:27:05 +05:30
Sayak Paul
aa73072f1f [CI] fix nightly model tests (#9483)
* check if default attn procs fix it.

* print

* print

* replace

* style./

* replace revision with variant.

* replace with stable-diffusion-v1-5/stable-diffusion-inpainting.

* replace with stable-diffusion-v1-5/stable-diffusion-v1-5.

* fix
2024-09-21 07:44:47 +05:30
Aryan
e5d0a328d6 [refactor] LoRA tests (#9481)
* refactor scheduler class usage

* reorder to make tests more readable

* remove pipeline specific checks and skip tests directly

* rewrite denoiser conditions cleaner

* bump tolerance for cog test
2024-09-21 07:10:36 +05:30
Vladimir Mandic
14a1b86fc7 Several fixes to Flux ControlNet pipelines (#9472)
* fix flux controlnet pipelines

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-09-19 15:49:36 -10:00
Aryan
2b443a5d62 [training] CogVideoX Lora (#9302)
* cogvideox lora training draft

* update

* update

* update

* update

* update

* make fix-copies

* update

* update

* apply suggestions from review

* apply suggestions from reveiw

* fix typo

* Update examples/cogvideo/train_cogvideox_lora.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fix lora alpha

* use correct lora scaling for final test pipeline

* Update examples/cogvideo/train_cogvideox_lora.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* apply suggestions from review; prodigy optimizer

YiYi Xu <yixu310@gmail.com>

* add tests

* make style

* add README

* update

* update

* make style

* fix

* update

* add test skeleton

* revert lora utils changes

* add cleaner modifications to lora testing utils

* update lora tests

* deepspeed stuff

* add requirements.txt

* deepspeed refactor

* add lora stuff to img2vid pipeline to fix tests

* fight tests

* add co-authors

Co-Authored-By: Fu-Yun Wang <1697256461@qq.com>

Co-Authored-By: zR <2448370773@qq.com>

* fight lora runner tests

* import Dummy optim and scheduler only wheh required

* update docs

* add coauthors

Co-Authored-By: Fu-Yun Wang <1697256461@qq.com>

* remove option to train text encoder

Co-Authored-By: bghira <bghira@users.github.com>

* update tests

* fight more tests

* update

* fix vid2vid

* fix typo

* remove lora tests; todo in follow-up PR

* undo img2vid changes

* remove text encoder related changes in lora loader mixin

* Revert "remove text encoder related changes in lora loader mixin"

This reverts commit f8a8444487.

* update

* round 1 of fighting tests

* round 2 of fighting tests

* fix copied from comment

* fix typo in lora test

* update styling

Co-Authored-By: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: zR <2448370773@qq.com>
Co-authored-by: Fu-Yun Wang <1697256461@qq.com>
Co-authored-by: bghira <bghira@users.github.com>
2024-09-19 14:37:57 +05:30
Sayak Paul
d13b0d63c0 [Flux] add lora integration tests. (#9353)
* add lora integration tests.

* internal note

* add a skip marker.
2024-09-19 09:21:28 +05:30
Anatoly Belikov
5d476f57c5 adapt masked im2im pipeline for SDXL (#7790)
* adapt masked im2im pipeline for SDXL

* usage for masked im2im stable diffusion XL pipeline

* style

* style

* style

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-17 16:55:49 -10:00
Aryan
da18fbd54c set max_shard_size to None for pipeline save_pretrained (#9447)
* update default max_shard_size

* add None check to fix tests

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-17 10:15:18 -10:00
Aryan
ba06124e4a Remove CogVideoX mentions from single file docs; Test updates (#9444)
* remove mentions from single file

* update tests

* update
2024-09-17 10:05:45 -10:00
Subho Ghosh
bb1b0fa1f9 Feature flux controlnet img2img and inpaint pipeline (#9408)
* Implemented FLUX controlnet support to Img2Img pipeline
2024-09-17 09:43:54 -10:00
Linoy Tsaban
8fcfb2a456 [Flux with CFG] add flux pipeline with cfg support (#9445)
* true_cfg

* add check negative prompt/embeds inputs

* move to community pipelines

* move to community pipelines

* revert true cfg changes to the orig pipline

* style

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-16 12:09:34 -10:00
Sayak Paul
5440cbd34e [CI] updates to the CI report naming, and accelerate installation (#9429)
* chore: id accordingly to avoid duplicates.

* update properly.

* updates

* updates

* empty

* updates

* changing order helps?
2024-09-16 11:29:07 -10:00
suzukimain
b52119ae92 [docs] Replace runwayml/stable-diffusion-v1-5 with Lykon/dreamshaper-8 (#9428)
* [docs] Replace runwayml/stable-diffusion-v1-5 with Lykon/dreamshaper-8

Updated documentation as runwayml/stable-diffusion-v1-5 has been removed from Huggingface.

* Update docs/source/en/using-diffusers/inpaint.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Replace with stable-diffusion-v1-5/stable-diffusion-v1-5

* Update inpaint.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-16 10:18:45 -07:00
Yuxuan.Zhang
8336405e50 CogVideoX-5b-I2V support (#9418)
* draft Init

* draft

* vae encode image

* make style

* image latents preparation

* remove image encoder from conversion script

* fix minor bugs

* make pipeline work

* make style

* remove debug prints

* fix imports

* update example

* make fix-copies

* add fast tests

* fix import

* update vae

* update docs

* update image link

* apply suggestions from review

* apply suggestions from review

* add slow test

* make use of learned positional embeddings

* apply suggestions from review

* doc change

* Update convert_cogvideox_to_diffusers.py

* make style

* final changes

* make style

* fix tests

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-09-16 14:46:24 +05:30
Sayak Paul
2171f77ac5 [CI] make runner_type restricted. (#9441)
make runner_type restricted.
2024-09-16 12:09:31 +05:30
Aryan
2454b98af4 Allow max shard size to be specified when saving pipeline (#9440)
allow max shard size to be specified when saving pipeline
2024-09-16 08:36:07 +05:30
Linoy Tsaban
37e3603c4a [Flux Dreambooth lora] add latent caching (#9160)
* add ostris trainer to README & add cache latents of vae

* add ostris trainer to README & add cache latents of vae

* style

* readme

* add test for latent caching

* add ostris noise scheduler
9ee1ef2a0a/toolkit/samplers/custom_flowmatch_sampler.py (L95)

* style

* fix import

* style

* fix tests

* style

* --change upcasting of transformer?

* update readme according to main

* keep only latent caching

* add configurable param for final saving of trained layers- --upcast_before_saving

* style

* Update examples/dreambooth/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* use clear_objs_and_retain_memory from utilities

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-15 15:30:31 +03:00
Leo Jiang
e2ead7cdcc Fix the issue on sd3 dreambooth w./w.t. lora training (#9419)
* Fix dtype error

* [bugfix] Fixed the issue on sd3 dreambooth training

* [bugfix] Fixed the issue on sd3 dreambooth training

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-14 16:29:38 +05:30
Benjamin Bossan
48e36353d8 MAINT Permission for GH token in stale.yml (#9427)
* MAINT Permission for GH token in stale.yml

See https://github.com/huggingface/peft/pull/2061 for the equivalent PR
in PEFT.

This restores the functionality of the stale bot after permissions for
the token have been limited. The action still shows errors for PEFT but
the bot appears to work fine.

* Also add write permissions for PRs

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-13 21:00:57 +05:30
Sayak Paul
6dc6486565 [LoRA] fix adapter movement when using DoRA. (#9411)
fix adapter movement when using DoRA.
2024-09-13 07:31:53 +05:30
Dhruv Nair
1e8cf2763d [CI] Nightly Test Updates (#9380)
* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-12 20:21:28 +05:30
Sayak Paul
6cf8d98ce1 [CI] update artifact uploader version (#9426)
update artifact uploader version
2024-09-12 19:26:09 +05:30
Juan Acevedo
45aa8bb187 Ptxla sd training (#9381)
* enable pxla training of stable diffusion 2.x models.

* run linter/style and run pipeline test for stable diffusion and fix issues.

* update xla libraries

* fix read me newline.

* move files to research folder.

* update per comments.

* rename readme.

---------

Co-authored-by: Juan Acevedo <jfacevedo@google.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-12 08:35:06 +05:30
Aryan
5e1427a7da [docs] AnimateDiff FreeNoise (#9414)
* update docs

* apply suggestions from review

* Update docs/source/en/api/pipelines/animatediff.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/animatediff.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/animatediff.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply suggestions from review

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-11 12:59:58 -07:00
asfiyab-nvidia
b9e2f886cd FluxPosEmbed: Remove Squeeze No-op (#9409)
Remove Squeeze op

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-10 19:12:36 -10:00
dianyo
b19827f6b4 Migrate the BrownianTree to BrownianInterval in DPM solver (#9335)
migrate the BrownianTree to BrownianInterval

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-10 18:29:15 -10:00
Yu Zheng
c002731d93 [examples] add controlnet sd3 example (#9249)
* add controlnet sd3 example

* add controlnet sd3 example

* update controlnet sd3 example

* add controlnet sd3 example test

* fix quality and style

* update test

* update test

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-11 07:04:37 +05:30
Sayak Paul
adf1f911f0 [Tests] fix some fast gpu tests. (#9379)
fix some fast gpu tests.
2024-09-11 06:50:02 +05:30
captainzz
f28a8c257a fix from_transformer() with extra conditioning channels (#9364)
* fix from_transformer() with extra conditioning channels

* style fix

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Álvaro Somoza <somoza.alvaro@gmail.com>
2024-09-09 07:51:48 -10:00
Jinzhe Pan
2c6a6c97b3 [docs] Add xDiT in section optimization (#9365)
* docs: add xDiT to optimization methods

* fix: picture layout problem

* docs: add more introduction about xdit & apply suggestions

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-09 10:31:07 -07:00
Igor Filippov
a7361dccdc [Pipeline] animatediff + vid2vid + controlnet (#9337)
* add animatediff + vid2vide + controlnet

* post tests fixes

* PR discussion fixes

* update docs

* change input video to links on HF + update an example

* make quality fix

* fix ip adapter test

* fix ip adapter test input

* update ip adapter test
2024-09-09 22:48:21 +05:30
YiYi Xu
485b8bb000 refactor get_timesteps for SDXL img2img + add set_begin_index (#9375)
* refator + add begin_index

* add kolors img2img to doc
2024-09-09 06:38:22 -10:00
Sayak Paul
d08ad65819 modify benchmarks to replace sdv1.5 with dreamshaper. (#9334) 2024-09-09 20:54:56 +05:30
YiYi Xu
8cdcdd9e32 add flux inpaint + img2img + controlnet to auto pipeline (#9367) 2024-09-06 07:14:48 -10:00
Dhruv Nair
d269cc8a4e [CI] Quick fix for Cog Video Test (#9373)
update
2024-09-06 15:25:53 +05:30
Aryan
6dfa49963c [core] Freenoise memory improvements (#9262)
* update

* implement prompt interpolation

* make style

* resnet memory optimizations

* more memory optimizations; todo: refactor

* update

* update animatediff controlnet with latest changes

* refactor chunked inference changes

* remove print statements

* update

* chunk -> split

* remove changes from incorrect conflict resolution

* remove changes from incorrect conflict resolution

* add explanation of SplitInferenceModule

* update docs

* Revert "update docs"

This reverts commit c55a50a271.

* update docstring for freenoise split inference

* apply suggestions from review

* add tests

* apply suggestions from review
2024-09-06 12:51:20 +05:30
Haruya Ishikawa
5249a2666e fix one uncaught deprecation warning for accessing vae_latent_channels in VaeImagePreprocessor (#9372)
deprecation warning vae_latent_channels
2024-09-05 07:32:27 -10:00
Linoy Tsaban
55ac421f7b improve README for flux dreambooth lora (#9290)
* improve readme

* improve readme

* improve readme

* improve readme
2024-09-05 17:53:23 +05:30
Dhruv Nair
53051cf282 [CI] Update Single file Nightly Tests (#9357)
* update

* update
2024-09-05 14:33:44 +05:30
Tolga Cangöz
3000551729 Update UNet2DConditionModel's error messages (#9230)
* refactor
2024-09-04 10:49:56 -10:00
Vishnu V Jaddipal
249a9e48e8 Add Flux inpainting and Flux Img2Img (#9135)
---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-09-04 10:31:43 -10:00
Fanli Lin
2ee3215949 [tests] make 2 tests device-agnostic (#9347)
* enabel on xpu

* fix style
2024-09-03 16:34:03 -10:00
Eduardo Escobar
8ecf499d8b Enable load_lora_weights for StableDiffusion3InpaintPipeline (#9330)
Enable load_lora_weights for StableDiffusion3InpaintPipeline

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-03 15:19:37 -10:00
YiYi Xu
dcf320f293 small update on rotary embedding (#9354)
* update

* fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-03 07:18:33 -10:00
Sayak Paul
8ba90aa706 chore: add a cleaning utility to be useful during training. (#9240) 2024-09-03 15:00:17 +05:30
Aryan
9d49b45b19 [refactor] move positional embeddings to patch embed layer for CogVideoX (#9263)
* remove frame limit in cogvideox

* remove debug prints

* Update src/diffusers/models/transformers/cogvideox_transformer_3d.py

* revert pipeline; remove frame limitation

* revert transformer changes

* address review comments

* add error message

* apply suggestions from review
2024-09-03 14:45:12 +05:30
Dhruv Nair
81da2e1c95 [CI] Add option to dispatch Fast GPU tests on main (#9355)
update
2024-09-03 14:35:13 +05:30
Aryan
24053832b5 [tests] remove/speedup some low signal tests (#9285)
* remove 2 shapes from SDFunctionTesterMixin::test_vae_tiling

* combine freeu enable/disable test to reduce many inference runs

* remove low signal unet test for signature

* remove low signal embeddings test

* remove low signal progress bar test from PipelineTesterMixin

* combine ip-adapter single and multi tests to save many inferences

* fix broken tests

* Update tests/pipelines/test_pipelines_common.py

* Update tests/pipelines/test_pipelines_common.py

* add progress bar tests
2024-09-03 13:59:18 +05:30
Dhruv Nair
f6f16a0c11 [CI] More Fast GPU Test Fixes (#9346)
* update

* update

* update

* update
2024-09-03 13:22:38 +05:30
Vishnu V Jaddipal
1c1ccaa03f Xlabs lora fix (#9348)
* Fix ```from_single_file``` for xl_inpaint

* Add basic flux inpaint pipeline

* style, quality, stray print

* Fix stray changes

* Add inpainting model support

* Change lora conversion for xlabs

* Fix stray changes

* Apply suggestions from code review

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-03 10:43:43 +05:30
Dhruv Nair
007ad0e2aa [CI] More fixes for Fast GPU Tests on main (#9300)
update
2024-09-02 17:51:48 +05:30
Aryan
0e6a8403f6 [core] Support VideoToVideo with CogVideoX (#9333)
* add vid2vid pipeline for cogvideox

* make fix-copies

* update docs

* fake context parallel cache, vae encode tiling

* add test for cog vid2vid

* use video link from HF docs repo

* add copied from comments; correctly rename test class
2024-09-02 16:54:58 +05:30
Aryan
af6c0fb766 [core] CogVideoX memory optimizations in VAE encode (#9340)
fake context parallel cache, vae encode tiling

(cherry picked from commit bf890bca0e)
2024-09-02 15:48:37 +05:30
YiYi Xu
d8a16635f4 update runway repo for single_file (#9323)
update to a place holder
2024-08-30 08:51:21 -10:00
Aryan
e417d02811 [docs] Add a note on torchao/quanto benchmarks for CogVideoX and memory-efficient inference (#9296)
* add a note on torchao/quanto benchmarks and memory-efficient inference

* apply suggestions from review

* update

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add note on enable sequential cpu offload

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-30 13:53:25 +05:30
Dhruv Nair
1d4d71875b [CI] Update Hub Token on nightly tests (#9318)
update
2024-08-30 10:23:50 +05:30
YiYi Xu
61d96c3ae7 refactor rotary embedding 3: so it is not on cpu (#9307)
change get_1d_rotary to accept pos as torch tensors
2024-08-30 01:07:15 +05:30
YiYi Xu
4f495b06dc rotary embedding refactor 2: update comments, fix dtype for use_real=False (#9312)
fix notes and dtype
2024-08-28 23:31:47 -10:00
Anand Kumar
40c13fe5b4 [train_custom_diffusion.py] Fix the LR schedulers when num_train_epochs is passed in a distributed training env (#9308)
* Update train_custom_diffusion.py to fix the LR schedulers for `num_train_epochs`

* Fix saving text embeddings during safe serialization

* Fixed formatting
2024-08-29 14:23:36 +05:30
Sayak Paul
2a3fbc2cc2 [LoRA] support kohya and xlabs loras for flux. (#9295)
* support kohya lora in flux.

* format

* support xlabs

* diffusion_model prefix.

* Apply suggestions from code review

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>

* empty commit.

Co-authored-by: Leommm-byte <leom20031@gmail.com>

---------

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
Co-authored-by: Leommm-byte <leom20031@gmail.com>
2024-08-29 07:41:46 +05:30
apolinário
089cf798eb Change default for guidance_scalein FLUX (#9305)
To match the original code, 7.0 is too high
2024-08-28 07:39:45 -10:00
Aryan
cbc2ec8f44 AnimateDiff prompt travel (#9231)
* update

* implement prompt interpolation

* make style

* resnet memory optimizations

* more memory optimizations; todo: refactor

* update

* update animatediff controlnet with latest changes

* refactor chunked inference changes

* remove print statements

* undo memory optimization changes

* update docstrings

* fix tests

* fix pia tests

* apply suggestions from review

* add tests

* update comment
2024-08-28 14:48:12 +05:30
Frank (Haofan) Wang
b5f591fea8 Update __init__.py (#9286) 2024-08-27 07:57:25 -10:00
Dhruv Nair
05b38c3c0d Fix Flux CLIP prompt embeds repeat for num_images_per_prompt > 1 (#9280)
update
2024-08-27 07:41:12 -10:00
Dhruv Nair
8f7fde5701 [CI] Update Release Tests (#9274)
* update

* update
2024-08-27 18:34:00 +05:30
Dhruv Nair
a59672655b Fix Freenoise for AnimateDiff V3 checkpoint. (#9288)
update
2024-08-27 18:30:39 +05:30
Marçal Comajoan Cara
9aca79f2b8 Replace transformers.deepspeed with transformers.integrations.deepspeed (#9281)
to avoid "FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations"

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-27 18:08:23 +05:30
Steven Liu
bbcf2a8589 [docs] Add pipelines to table (#9282)
update pipelines
2024-08-27 12:15:30 +05:30
Álvaro Somoza
4cfb2164fb [IP Adapter] Fix cache_dir and local_files_only for image encoder (#9272)
initial fix
2024-08-26 09:03:08 -10:00
Linoy Tsaban
c977966502 [Dreambooth flux] bug fix for dreambooth script (align with dreambooth lora) (#9257)
* fix shape

* fix prompt encoding

* style

* fix device

* add comment
2024-08-26 17:29:58 +05:30
YiYi Xu
1ca0a75567 refactor 3d rope for cogvideox (#9269)
* refactor 3d rope

* repeat -> expand
2024-08-25 11:57:12 -10:00
王奇勋
c1e6a32ae4 [Flux] Support Union ControlNet (#9175)
* refactor
---------

Co-authored-by: haofanwang <haofanwang.ai@gmail.com>
2024-08-25 00:24:21 -10:00
yangpei-comp
77b2162817 Bugfix in pipeline_kandinsky2_2_combined.py: Image type check mismatch (#9256)
Update pipeline_kandinsky2_2_combined.py

Bugfix on image type check mismatch
2024-08-23 08:38:47 -10:00
Dhruv Nair
4e66513a74 [CI] Run Fast + Fast GPU Tests on release branches. (#9255)
* update

* update
2024-08-23 19:34:37 +05:30
Dhruv Nair
4e74206b0c [Single File] Add Flux Pipeline Support (#9244)
update
2024-08-23 14:40:43 +05:30
Dhruv Nair
255ac592c2 [Single File] Support loading Comfy UI Flux checkpoints (#9243)
update
2024-08-23 14:40:29 +05:30
Sayak Paul
2d9ccf39b5 [Core] fuse_qkv_projection() to Flux (#9185)
* start fusing flux.

* test

* finish fusion

* fix-copues
2024-08-23 10:54:13 +05:30
zR
960c149c77 Cogvideox-5B Model adapter change (#9203)
* draft of embedding

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-22 16:03:29 -10:00
YiYi Xu
dc07fc29da fix _identify_model_variants (#9247)
merge now, will add/fix test next
2024-08-22 12:00:17 -10:00
Elias Rad
805bf33fa7 Docs fix spelling issues (#9219)
* fix PHILOSOPHY.md

* fix CONTRIBUTING.md

* fix tutorial_overview.md

* fix stable_diffusion.md

* Update tutorial_overview.md
2024-08-22 13:38:07 -07:00
Aryan
0ec64fe9fc [tests] fix broken xformers tests (#9206)
* fix xformers tests

* remove unnecessary modifications to cogvideox tests

* update
2024-08-22 15:17:47 +05:30
Sayak Paul
5090b09d48 [Flux LoRA] support parsing alpha from a flux lora state dict. (#9236)
* support parsing alpha from a flux lora state dict.

* conditional import.

* fix breaking changes.

* safeguard alpha.

* fix
2024-08-22 07:01:52 +05:30
Sayak Paul
32d6492c7b [Core] Tear apart from_pretrained() of DiffusionPipeline (#8967)
* break from_pretrained part i.

* part ii.

* init_kwargs

* remove _fetch_init_kwargs

* type annotation

* dtyle

* switch to _check_and_update_init_kwargs_for_missing_modules.

* remove _check_and_update_init_kwargs_for_missing_modules.

* use pipeline_loading_kwargs.

* remove _determine_current_device_map.

* remove _filter_null_components.

* device_map fix.

* fix _update_init_kwargs_with_connected_pipeline.

* better handle custom pipeline.

* explain _maybe_raise_warning_for_inpainting.

* add example for model variant.

* fix
2024-08-22 06:50:57 +05:30
Steven Liu
43f1090a0f [docs] Network alpha docstring (#9238)
fix docstring

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-22 06:46:29 +05:30
YiYi Xu
c291617518 Flux followup (#9074)
* refactor rotary embeds

* adding jsmidt as co-author of this PR for https://github.com/huggingface/diffusers/pull/9133

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Joseph Smidt <josephsmidt@gmail.com>
2024-08-21 08:44:58 -10:00
satani99
9003d75f20 Add StableDiffusionXLControlNetPAGImg2ImgPipeline (#8990)
* Added pad controlnet sdxl img2img pipeline

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-08-21 07:24:22 -10:00
Dhruv Nair
750bd79206 [Single File] Fix configuring scheduler via legacy kwargs (#9229)
update
2024-08-21 21:15:20 +05:30
YiYi Xu
214372aa99 fix a regression in is_safetensors_compatible (#9234)
fix
2024-08-21 18:56:55 +05:30
Vinh H. Pham
867e0c919e StableDiffusionLatentUpscalePipeline - positive/negative prompt embeds support (#8947)
* make latent upscaler accept prompt embeds

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-08-20 18:00:55 -10:00
Sangwon Lee
16a3dad474 Fix StableDiffusionXLPAGInpaintPipeline (#9128) 2024-08-20 11:54:27 -10:00
Disty0
21682bab7e Custom sampler support for Stable Cascade Decoder (#9132)
Custom sampler support Stable Cascade Decoder
2024-08-20 09:56:53 -10:00
Vishnu V Jaddipal
214990e5f2 Fix ``from_single_file`` for xl_inpaint (#9054) 2024-08-20 12:09:01 +05:30
Dhruv Nair
cf2c49b179 Remove M1 runner from Nightly Test (#9193)
* update

* update
2024-08-20 11:44:58 +05:30
Leo Jiang
eda36c4c28 Fix dtype error for StableDiffusionXL (#9217)
Fix dtype error

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-20 06:58:50 +05:30
Zoltan
803e817e3e Add vae slicing and tiling to flux pipeline (#9122)
add vae slicing and tiling to flux pipeline

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-19 10:39:45 -10:00
YiYi Xu
67f5cce294 fix autopipeline for kolors img2img (#9212)
fix
2024-08-19 07:40:15 -10:00
Jiwook Han
d72bbc68a9 Reflect few contributions on contribution.md that were not reflected on #8294 (#8938)
* incorrect_number_fix

* add_TOC

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* fix: manual edits

* fix: manual edtis

* fix: manual edits

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conceptual/contribution.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* fix: manual edits

---------

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>
2024-08-19 09:54:38 -07:00
Dhruv Nair
9ab80a99a4 [CI] Add fail-fast=False to CUDA nightly and slow tests (#9214)
* update

* update
2024-08-19 16:08:35 +05:30
Dhruv Nair
940b8e0358 [CI] Multiple Slow Test fixes. (#9198)
* update

* update

* update

* update
2024-08-19 13:31:09 +05:30
Dhruv Nair
b2add10d13 Update is_safetensors_compatible check (#8991)
* update

* update

* update

* update

* update
2024-08-19 11:35:22 +05:30
Wenlong Wu
815d882217 Add loading text inversion (#9130) 2024-08-19 09:26:27 +05:30
M Saqlain
ba4348d9a7 [Tests] Improve transformers model test suite coverage - Lumina (#8987)
* Added test suite for lumina

* Fixed failing tests

* Improved code quality

* Added function docstrings

* Improved formatting
2024-08-19 08:29:03 +05:30
townwish4git
d25eb5d385 fix(sd3): fix deletion of text_encoders etc (#8951)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-08-18 15:37:40 -10:00
Tolga Cangöz
7ef8a46523 [Docs] Fix CPU offloading usage (#9207)
* chore: Fix cpu offloading usage

* Trim trailing white space

* docs: update Kolors model link in kolors.md
2024-08-18 13:12:12 -10:00
Sayak Paul
f848febacd feat: allow sharding for auraflow. (#8853) 2024-08-18 08:47:26 +05:30
Beinsezii
b38255006a Add Lumina T2I Auto Pipe Mapping (#8962) 2024-08-16 23:14:17 -10:00
Jianqi Pan
cba548d8a3 fix(pipeline): k sampler sigmas device (#9189)
If Karras is not enabled, a device inconsistency error will occur. This is due to the fact that sigmas were not moved to the specified device.
2024-08-16 22:43:42 -10:00
Álvaro Somoza
db829a4be4 [IP Adapter] Fix object has no attribute with image encoder (#9194)
* fix

* apply suggestion
2024-08-17 02:00:04 -04:00
Sayak Paul
e780c05cc3 [Chore] add set_default_attn_processor to pixart. (#9196)
add set_default_attn_processor to pixart.
2024-08-16 13:07:06 +05:30
C
e649678bf5 [Flux] Optimize guidance creation in flux pipeline by moving it outside the loop (#9153)
* optimize guidance creation in flux pipeline by moving it outside the loop

* use torch.full instead of torch.tensor to create a tensor with a single value

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-16 10:14:05 +05:30
Sayak Paul
39b87b14b5 feat: allow flux transformer to be sharded during inference (#9159)
* feat: support sharding for flux.

* tests
2024-08-16 10:00:51 +05:30
Dhruv Nair
3e46043223 Small improvements for video loading (#9183)
* update

* update
2024-08-16 09:36:58 +05:30
Simo Ryu
1a92bc05a7 Add Learned PE selection for Auraflow (#9182)
* add pe

* Update src/diffusers/models/transformers/auraflow_transformer_2d.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/transformers/auraflow_transformer_2d.py

* beauty

* retrigger ci.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-15 16:30:24 +05:30
dependabot[bot]
0c1e63bd11 Bump jinja2 from 3.1.3 to 3.1.4 in /examples/research_projects/realfill (#7873)
Bumps [jinja2](https://github.com/pallets/jinja) from 3.1.3 to 3.1.4.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/3.1.3...3.1.4)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-14 16:36:59 +05:30
dependabot[bot]
e7e45bd127 Bump torch from 2.0.1 to 2.2.0 in /examples/research_projects/realfill (#8971)
Bumps [torch](https://github.com/pytorch/pytorch) from 2.0.1 to 2.2.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v2.0.1...v2.2.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-14 16:36:46 +05:30
Álvaro Somoza
82058a5413 post release 0.30.0 (#9173)
* post release

* fix quality
2024-08-14 12:55:55 +05:30
Aryan
a85b34e7fd [refactor] CogVideoX followups + tiled decoding support (#9150)
* refactor context parallel cache; update torch compile time benchmark

* add tiling support

* make style

* remove num_frames % 8 == 0 requirement

* update default num_frames to original value

* add explanations + refactor

* update torch compile example

* update docs

* update

* clean up if-statements

* address review comments

* add test for vae tiling

* update docs

* update docs

* update docstrings

* add modeling test for cogvideox transformer

* make style
2024-08-14 03:53:21 +05:30
王奇勋
5ffbe14c32 [FLUX] Support ControlNet (#9126)
* cnt model

* cnt model

* cnt model

* fix Loader "Copied"

* format

* txt_ids for  multiple images

* add test and format

* typo

* Update pipeline_flux_controlnet.py

* remove

* make quality

* fix copy

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/models/controlnet_flux.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* fix

* make copies

* test

* bs

---------

Co-authored-by: haofanwang <haofanwang.ai@gmail.com>
Co-authored-by: haofanwang <haofan@HaofandeMBP.lan>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-08-13 18:17:40 +05:30
林金鹏
cc0513091a Support SD3 controlnet inpainting (#9099)
* add controlnet inpainting pipeline

* [SD3] add controlnet inpaint example

* update example and fix code style

* fix code style with ruff

* Update controlnet_sd3.md : add control inpaint pipeline

* Update docs/source/en/api/pipelines/controlnet_sd3.md

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update docs/source/en/api/pipelines/controlnet_sd3.md

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update docs/source/en/api/pipelines/controlnet_sd3.md

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update __init__.py : add sd3 control pipelines

* Update pipeline : add new param doc & check input reference.

* fix typo

* make style & make quality

* add unittest for sd3 controlnet inpaint

---------

Co-authored-by: 鹏徙 <linjinpeng.ljp@alibaba-inc.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
2024-08-13 17:30:46 +05:30
Sayak Paul
15eb77bc4c Update distributed_inference.md to include a fuller example on distributed inference (#9152)
* Update distributed_inference.md

* Update docs/source/en/training/distributed_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-12 09:56:03 -07:00
Linoy Tsaban
413ca29b71 [Flux Dreambooth LoRA] - te bug fixes & updates (#9139)
* add requirements + fix link to bghira's guide

* text ecnoder training fixes

* text encoder training fixes

* text encoder training fixes

* text encoder training fixes

* style

* add tests

* fix encode_prompt call

* style

* unpack_latents test

* fix lora saving

* remove default val for max_sequenece_length in encode_prompt

* remove default val for max_sequenece_length in encode_prompt

* style

* testing

* style

* testing

* testing

* style

* fix sizing issue

* style

* revert scaling

* style

* style

* scaling test

* style

* scaling test

* remove model pred operation left from pre-conditioning

* remove model pred operation left from pre-conditioning

* fix trainable params

* remove te2 from casting

* transformer to accelerator

* remove prints

* empty commit
2024-08-12 11:58:03 +05:30
Dhruv Nair
10dc06c8d9 Update Video Loading/Export to use imageio (#9094)
* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-12 10:19:53 +05:30
Dibbla!
3ece143308 Errata - fix typo (#9100) 2024-08-12 07:30:19 +05:30
Steven Liu
98930ee131 [docs] Resolve internal links to PEFT (#9144)
* resolve peft links

* fuse_lora
2024-08-10 06:37:46 +05:30
Daniel Socek
c1079f0887 Fix textual inversion SDXL and add support for 2nd text encoder (#9010)
* Fix textual inversion SDXL and add support for 2nd text encoder

Signed-off-by: Daniel Socek <daniel.socek@intel.com>

* Fix style/quality of text inv for sdxl

Signed-off-by: Daniel Socek <daniel.socek@intel.com>

---------

Signed-off-by: Daniel Socek <daniel.socek@intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-09 20:23:06 +05:30
Linoy Tsaban
65e30907b5 [Flux] Dreambooth LoRA training scripts (#9086)
* initial commit - dreambooth for flux

* update transformer to be FluxTransformer2DModel

* update training loop and validation inference

* fix sd3->flux docs

* add guidance handling, not sure if it makes sense(?)

* inital dreambooth lora commit

* fix text_ids in compute_text_embeddings

* fix imports of static methods

* fix pipeline loading in readme, remove auto1111 docs for now

* fix pipeline loading in readme, remove auto1111 docs for now, remove some irrelevant text_encoder_3 refs

* Update examples/dreambooth/train_dreambooth_flux.py

Co-authored-by: Bagheera <59658056+bghira@users.noreply.github.com>

* fix te2 loading and remove te2 refs from text encoder training

* fix tokenizer_2 initialization

* remove text_encoder training refs from lora script (for now)

* try with vae in bfloat16, fix model hook save

* fix tokenization

* fix static imports

* fix CLIP import

* remove text_encoder training refs (for now) from lora script

* fix minor bug in encode_prompt, add guidance def in lora script, ...

* fix unpack_latents args

* fix license in readme

* add "none" to weighting_scheme options for uniform sampling

* style

* adapt model saving - remove text encoder refs

* adapt model loading - remove text encoder refs

* initial commit for readme

* Update examples/dreambooth/train_dreambooth_lora_flux.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/train_dreambooth_lora_flux.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fix vae casting

* remove precondition_outputs

* readme

* readme

* style

* readme

* readme

* update weighting scheme default & docs

* style

* add text_encoder training to lora script, change vae_scale_factor value in both

* style

* text encoder training fixes

* style

* update readme

* minor fixes

* fix te params

* fix te params

---------

Co-authored-by: Bagheera <59658056+bghira@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-09 07:31:04 +05:30
Sayak Paul
cee7c1b0fb Update README.md to include InstantID (#8770)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-08-08 10:14:12 -07:00
Monjoy Narayan Choudhury
1fcb811a8e Add Differential Diffusion to HunyuanDiT. (#9040)
* Add Differential Pipeline.

* Fix Styling Issue using ruff -fix

* Add details to Contributing.md

* Revert "Fix Styling Issue using ruff -fix"

This reverts commit d347de162d.

* Revert "Revert "Fix Styling Issue using ruff -fix""

This reverts commit ce7c3ff216.

* Revert README changes

* Restore README.md

* Update README.md

* Resolved Comments:

* Fix Readme based on review

* Fix formatting after make style

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-08 18:53:39 +05:30
David Steinberg
ae026db7aa Fix a dead link (#9116)
Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-08 18:46:50 +05:30
sayantan sadhu
8e3affc669 fix for lr scheduler in distributed training (#9103)
* fix for lr scheduler in distributed training

* Fixed the recalculation of the total training step section

* Fixed lint error

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-08 08:45:48 +05:30
Steven Liu
ba7e48455a [docs] Organize model toctree (#9118)
* toctree

* fix
2024-08-08 08:31:58 +05:30
zR
2dad462d9b Add CogVideoX text-to-video generation model (#9082)
* add CogVideoX

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-06 21:23:57 -10:00
Dhruv Nair
e3568d14ba Freenoise change vae_batch_size to decode_chunk_size (#9110)
* update

* update
2024-08-07 12:47:18 +05:30
Aryan
f6df22447c [feat] allow sparsectrl to be loaded from single file (#9073)
* allow sparsectrl to be loaded with single file

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-08-07 11:12:30 +05:30
latentCall145
9b5180cb5f Flux fp16 inference fix (#9097)
* clipping for fp16

* fix typo

* added fp16 inference to docs

* fix docs typo

* include link for fp16 investigation

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-07 10:54:20 +05:30
Aryan
16a93f1a25 [core] FreeNoise (#8948)
* initial work draft for freenoise; needs massive cleanup

* fix freeinit bug

* add animatediff controlnet implementation

* revert attention changes

* add freenoise

* remove old helper functions

* add decode batch size param to all pipelines

* make style

* fix copied from comments

* make fix-copies

* make style

* copy animatediff controlnet implementation from #8972

* add experimental support for num_frames not perfectly fitting context length, ocntext stride

* make unet motion model lora work again based on #8995

* copy load video utils from #8972

* copied from AnimateDiff::prepare_latents

* address the case where last batch of frames does not match length of indices in prepare latents

* decode_batch_size->vae_batch_size; batch vae encode support in animatediff vid2vid

* revert sparsectrl and sdxl freenoise changes

* revert pia

* add freenoise tests

* make fix-copies

* improve docstrings

* add freenoise tests to animatediff controlnet

* update tests

* Update src/diffusers/models/unets/unet_motion_model.py

* add freenoise to animatediff pag

* address review comments

* make style

* update tests

* make fix-copies

* fix error message

* remove copied from comment

* fix imports in tests

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-08-07 10:35:18 +05:30
Sayak Paul
2d753b6fb5 fix train_dreambooth_lora_sd3.py loading hook (#9107) 2024-08-07 10:09:47 +05:30
Álvaro Somoza
39e1f7eaa4 [Kolors] Add PAG (#8934)
* txt2img pag added

* autopipe added, fixed case

* style

* apply suggestions

* added fast tests, added todo tests

* revert dummy objects for kolors

* fix pag dummies

* fix test imports

* update pag tests

* add kolor pag to docs

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-07 09:29:52 +05:30
Dhruv Nair
e1b603dc2e [Single File] Add single file support for Flux Transformer (#9083)
* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-07 08:49:57 +05:30
Marc Sun
e4325606db Fix loading sharded checkpoints when we have variants (#9061)
* Fix loading sharded checkpoint when we have variant

* add test

* remote print

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-06 13:38:44 -10:00
Ahn Donghoon (안동훈 / suno)
926daa30f9 add PAG support for Stable Diffusion 3 (#8861)
add pag sd3


---------

Co-authored-by: HyoungwonCho <jhw9811@korea.ac.kr>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: crepejung00 <jaewoojung00@naver.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-06 09:11:35 -10:00
Dhruv Nair
325a5de3a9 [Docs] Add community projects section to docs (#9013)
* update

* update

* update
2024-08-06 08:59:39 -07:00
Dhruv Nair
4c6152c2fb update 2024-08-06 12:00:14 +00:00
Vinh H. Pham
87e50a2f1d [Tests] Improve transformers model test suite coverage - Hunyuan DiT (#8916)
* add hunyuan model test

* apply suggestions

* reduce dims further

* reduce dims further

* run make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-06 12:59:30 +05:30
Aryan
a57a7af45c [bug] remove unreachable norm_type=ada_norm_continuous from norm3 initialization conditions (#9006)
remove ada_norm_continuous from norm3 list

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-06 07:23:48 +05:30
Sayak Paul
52f1378e64 [Core] add QKV fusion to AuraFlow and PixArt Sigma (#8952)
* add fusion support to pixart

* add to auraflow.

* add tests

* apply review feedback.

* add back args and kwargs

* style
2024-08-05 14:09:37 -10:00
Tolga Cangöz
3dc97bd148 Update CLIPFeatureExtractor to CLIPImageProcessor and DPTFeatureExtractor to DPTImageProcessor (#9002)
* fix: update `CLIPFeatureExtractor` to `CLIPImageProcessor` in codebase

* `make style && make quality`

* Update `DPTFeatureExtractor` to `DPTImageProcessor` in codebase

* `make style`

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-05 09:20:29 -10:00
omahs
6d32b29239 Fix typos (#9077)
* fix typo
2024-08-05 09:00:08 -10:00
YiYi Xu
bc3c73ad0b add sentencepiece as a soft dependency (#9065)
* add sentencepiece as  soft dependency for kolors

* up

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-05 08:04:51 -10:00
Sayak Paul
5934873b8f [Docs] add stable cascade unet doc. (#9066)
* add stable cascade unet doc.

* fix path
2024-08-05 21:28:48 +05:30
Aryan
b7058d142c PAG variant for HunyuanDiT, PAG refactor (#8936)
* copy hunyuandit pipeline

* pag variant of hunyuan dit

* add tests

* update docs

* make style

* make fix-copies

* Update src/diffusers/pipelines/pag/pag_utils.py

* remove incorrect copied from

* remove pag hunyuan attn procs to resolve conflicts

* add pag attn procs again

* new implementation for pag_utils

* revert pag changes

* add pag refactor back; update pixart sigma

* update pixart pag tests

* apply suggestions from review

Co-Authored-By: yixu310@gmail.com

* make style

* update docs, fix tests

* fix tests

* fix test_components_function since list not accepted as valid __init__ param

* apply patch to fix broken tests

Co-Authored-By: Sayak Paul <spsayakpaul@gmail.com>

* make style

* fix hunyuan tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-05 17:56:09 +05:30
Vinh H. Pham
e1d508ae92 [Tests] Improve transformers model test suite coverage - Latte (#8919)
* add LatteTransformer3DModel model test

* change patch_size to 1

* reduce req len

* reduce channel dims

* increase num_layers

* reduce dims further

* run make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-08-05 17:13:03 +05:30
Sayak Paul
fc6a91e383 [FLUX] support LoRA (#9057)
* feat: lora support for Flux.

add tests

fix imports

major fixes.

* fix

fixes

final fixes?

* fix

* remove is_peft_available.
2024-08-05 10:24:05 +05:30
Aryan
2b76099610 [refactor] apply qk norm in attention processors (#9071)
* apply qk norm in attention processors

* revert attention processor

* qk-norm in only attention proc 2.0 and fused variant
2024-08-04 05:42:46 -10:00
psychedelicious
4f0d01d387 type get_attention_scores as optional in get_attention_scores (#9075)
`None` is valid for `get_attention_scores`, should be typed as such
2024-08-04 17:19:05 +05:30
asfiyab-nvidia
3dc10a535f Update TensorRT txt2img and inpaint community pipelines (#9037)
* Update TensorRT txt2img and inpaint community pipelines

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update tensorrt install instructions

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-04 16:00:40 +05:30
Sayak Paul
c370b90ff1 [Flux] minor documentation fixes for flux. (#9048)
* minor documentation fixes for flux.

* clipskip

* add gist
2024-08-04 15:53:01 +05:30
Philip Rideout
ebf3ab1477 Fix grammar mistake. (#9072) 2024-08-04 04:32:03 +05:30
Aryan
fbe29c6298 [refactor] create modeling blocks specific to AnimateDiff (#8979)
* animatediff specific transformer model

* make style

* make fix-copies

* move blocks to unet motion model

* make style

* remove dummy object

* fix incorrectly passed param causing test failures

* rename model and output class

* fix sparsectrl imports

* remove todo comments

* remove temporal double self attn param from controlnet sparsectrl

* add deprecated versions of blocks

* apply suggestions from review

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-08-03 13:03:39 +05:30
Tolga Cangöz
7071b7461b Errata: Fix typos & \s+$ (#9008)
* Fix typos

* chore: Fix typos

* chore: Update README.md for promptdiffusion example

* Trim trailing white spaces

* Fix a typo

* update number

* chore: update number

* Trim trailing white space

* Update README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-02 21:24:25 -07:00
Frank (Haofan) Wang
a054c78495 Update transformer_flux.py (#9060) 2024-08-03 08:58:32 +05:30
Dhruv Nair
b1f43d7189 Fix Nightly Deps (#9036)
update
2024-08-02 15:18:54 +05:30
Sayak Paul
0e460675e2 [Flux] allow tests to run (#9050)
* fix tests

* fix

* float64 skip

* remove sample_size.

* remove

* remove more

* default_sample_size.

* credit black forest for flux model.

* skip

* fix: tests

* remove OriginalModelMixin

* add transformer model test

* add: transformer model tests
2024-08-02 11:49:59 +05:30
Sayak Paul
7b98c4cc67 [Core] Add PAG support for PixArtSigma (#8921)
* feat: add pixart sigma pag.

* inits.

* fixes

* fix

* remove print.

* copy paste methods to the pixart pag mixin

* fix-copies

* add documentation.

* add tests.

* remove correction file.

* remove pag_applied_layers

* empty
2024-08-02 07:12:41 +05:30
Sayak Paul
27637a5402 Flux pipeline (#9043)
add flux!

Signed-off-by: Adrien <adrien@huggingface.co>
Co-authored-by: Adrien <adrien.69740@gmail.com>
Co-authored-by: Anatoly Belikov <abelikov@singularitynet.io>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-08-01 11:30:52 -10:00
Aryan
2ea22e1cc7 [docs] fix pia example (#9015)
fix pia example docstring
2024-08-02 02:47:40 +05:30
YiYi Xu
95a7832879 fix load sharded checkpoint from a subfolder (local path) (#8913)
fix

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-08-01 20:15:42 +05:30
Dhruv Nair
c646fbc124 Updates deps for pipeline test fetcher (#9033)
update
2024-08-01 13:22:13 +05:30
Aryan
05b706c003 PAG variant for AnimateDiff (#8789)
* add animatediff pag pipeline

* remove unnecessary print

* make fix-copies

* fix ip-adapter bug

* update docs

* add fast tests and fix bugs

* update

* update

* address review comments

* update ip adapter single test expected slice

* implement test_from_pipe_consistent_config; fix expected slice values

* LoraLoaderMixin->StableDiffusionLoraLoaderMixin; add latest freeinit test
2024-08-01 12:39:39 +05:30
Yoach Lacombe
ea1b4ea7ca Fix Stable Audio repository id (#9016)
Fix Stable Audio repo id
2024-07-30 23:17:44 +05:30
Aryan
e5b94b4c57 [core] Move community AnimateDiff ControlNet to core (#8972)
* add animatediff controlnet to core

* make style; remove unused method

* fix copied from comment

* add tests

* changes to make tests work

* add utility function to load videos

* update docs

* update pipeline example

* make style

* update docs with example

* address review comments

* add latest freeinit test from #8969

* LoraLoaderMixin -> StableDiffusionLoraLoaderMixin

* fix docs

* Update src/diffusers/utils/loading_utils.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* fix: variable out of scope

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-07-30 17:10:37 +05:30
Yoach Lacombe
69e72b1dd1 Stable Audio integration (#8716)
* WIP modeling code and pipeline

* add custom attention processor + custom activation + add to init

* correct ProjectionModel forward

* add stable audio to __initèè

* add autoencoder and update pipeline and modeling code

* add half Rope

* add partial rotary v2

* add temporary modfis to scheduler

* add EDM DPM Solver

* remove TODOs

* clean GLU

* remove att.group_norm to attn processor

* revert back src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

* refactor GLU -> SwiGLU

* remove redundant args

* add channel multiples in autoencoder docstrings

* changes in docsrtings and copyright headers

* clean pipeline

* further cleaning

* remove peft and lora and fromoriginalmodel

* Delete src/diffusers/pipelines/stable_audio/diffusers.code-workspace

* make style

* dummy models

* fix copied from

* add fast oobleck tests

* add brownian tree

* oobleck autoencoder slow tests

* remove TODO

* fast stable audio pipeline tests

* add slow tests

* make style

* add first version of docs

* wrap is_torchsde_available to the scheduler

* fix slow test

* test with input waveform

* add input waveform

* remove some todos

* create stableaudio gaussian projection + make style

* add pipeline to toctree

* fix copied from

* make quality

* refactor timestep_features->time_proj

* refactor joint_attention_kwargs->cross_attention_kwargs

* remove forward_chunk

* move StableAudioDitModel to transformers folder

* correct convert + remove partial rotary embed

* apply suggestions from yiyixuxu -> removing attn.kv_heads

* remove temb

* remove cross_attention_kwargs

* further removal of cross_attention_kwargs

* remove text encoder autocast to fp16

* continue removing autocast

* make style

* refactor how text and audio are embedded

* add paper

* update example code

* make style

* unify projection model forward + fix device placement

* make style

* remove fuse qkv

* apply suggestions from review

* Update src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* make style

* smaller models in fast tests

* pass sequential offloading fast tests

* add docs for vae and autoencoder

* make style and update example

* remove useless import

* add cosine scheduler

* dummy classes

* cosine scheduler docs

* better description of scheduler

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-07-30 15:29:06 +05:30
Sayak Paul
8c4856cd6c [LoRA] fix: animate diff lora stuff. (#8995)
* fix: animate diff lora stuff.

* fix scaling function for UNetMotionModel

* emoty
2024-07-30 09:18:41 +05:30
Anatoly Belikov
f240a936da handle lora scale and clip skip in lpw sd and sdxl community pipelines (#8988)
* handle lora scale and clip skip in lpw sd and sdxl

* use StableDiffusionLoraLoaderMixin

* use StableDiffusionXLLoraLoaderMixin

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-07-30 07:19:28 +05:30
Sayak Paul
00d8d46e23 [Docs] credit where it's due for Lumina and Latte. (#9000)
credit where it's due for Lumina and Latte.
2024-07-29 10:02:03 -07:00
Adrien
bfc9369f0a [CI] Update runner configuration for setup and nightly tests (#9005)
* [CI] Update runner configuration for setup and nightly tests

Signed-off-by: Adrien <adrien@huggingface.co>

* fix group

Signed-off-by: Adrien <adrien@huggingface.co>

* update for t4

Signed-off-by: Adrien <adrien@huggingface.co>

---------

Signed-off-by: Adrien <adrien@huggingface.co>
2024-07-29 21:14:31 +05:30
Álvaro Somoza
73acebb8cf [Kolors] Add IP Adapter (#8901)
* initial draft

* apply suggestions

* fix failing test

* added ipa to img2img

* add docs

* apply suggestions
2024-07-26 14:25:44 -04:00
Aryan
ca0747a07e remove unused code from pag attn procs (#8928) 2024-07-26 07:58:40 -10:00
Aryan
5c53ca5ed8 [core] AnimateDiff SparseCtrl (#8897)
* initial sparse control model draft

* remove unnecessary implementation

* copy animatediff pipeline

* remove deprecated callbacks

* update

* update pipeline implementation progress

* make style

* make fix-copies

* update progress

* add partially working pipeline

* remove debug prints

* add model docs

* dummy objects

* improve motion lora conversion script

* fix bugs

* update docstrings

* remove unnecessary model params; docs

* address review comment

* add copied from to zero_module

* copy animatediff test

* add fast tests

* update docs

* update

* update pipeline docs

* fix expected slice values

* fix license

* remove get_down_block usage

* remove temporal_double_self_attention from get_down_block

* update

* update docs with org and documentation images

* make from_unet work in sparsecontrolnetmodel

* add latest freeinit test from #8969

* make fix-copies

* LoraLoaderMixin -> StableDiffsuionLoraLoaderMixin
2024-07-26 17:46:05 +05:30
Aryan
57a021d5e4 [fix] FreeInit step index out of bounds (#8969)
* fix step index out of bounds

* add test for free_init with different schedulers

* add test to vid2vid and pia
2024-07-26 16:45:55 +05:30
Dhruv Nair
1168eaaadd [CI] Nightly Test Runner explicitly set runner for Setup Pipeline Matrix (#8986)
* update

* update

* update
2024-07-26 13:20:35 +05:30
Dhruv Nair
bce9105ac7 [CI] Fix parallelism in nightly tests (#8983)
update
2024-07-26 10:04:01 +05:30
RandomGamingDev
2afb2e0aac Added accelerator based gradient accumulation for basic_example (#8966)
added accelerator based gradient accumulation for basic_example

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-07-26 09:35:52 +05:30
Sayak Paul
d87fe95f90 [Chore] add LoraLoaderMixin to the inits (#8981)
* introduce  to promote reusability.

* up

* add more tests

* up

* remove comments.

* fix fuse_nan test

* clarify the scope of fuse_lora and unfuse_lora

* remove space

* rewrite fuse_lora a bit.

* feedback

* copy over load_lora_into_text_encoder.

* address dhruv's feedback.

* fix-copies

* fix issubclass.

* num_fused_loras

* fix

* fix

* remove mapping

* up

* fix

* style

* fix-copies

* change to SD3TransformerLoRALoadersMixin

* Apply suggestions from code review

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* up

* handle wuerstchen

* up

* move lora to lora_pipeline.py

* up

* fix-copies

* fix documentation.

* comment set_adapters().

* fix-copies

* fix set_adapters() at the model level.

* fix?

* fix

* loraloadermixin.

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-07-26 08:59:33 +05:30
Sayak Paul
50e66f2f95 [Chore] remove all is from auraflow. (#8980)
remove all is from auraflow.
2024-07-26 07:31:06 +05:30
efwfe
9b8c8605d1 fix guidance_scale value not equal to the value in comments (#8941)
fix guidance_scale value not equal with the value in comments
2024-07-25 12:31:37 -10:00
YiYi Xu
62863bb1ea Revert "[LoRA] introduce LoraBaseMixin to promote reusability." (#8976)
Revert "[LoRA] introduce LoraBaseMixin to promote reusability. (#8774)"

This reverts commit 527430d0a4.
2024-07-25 09:10:35 -10:00
mazharosama
1fd647f2a0 Enable CivitAI SDXL Inpainting Models Conversion (#8795)
modify in_channels in network_config params

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-07-25 07:44:57 -10:00
asfiyab-nvidia
0bda1d7b89 Update TensorRT img2img community pipeline (#8899)
* Update TensorRT img2img pipeline

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* Update TensorRT version installed

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* make style and quality

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* Update examples/community/stable_diffusion_tensorrt_img2img.py

Co-authored-by: Tolga Cangöz <46008593+tolgacangoz@users.noreply.github.com>

* Update examples/community/README.md

Co-authored-by: Tolga Cangöz <46008593+tolgacangoz@users.noreply.github.com>

* Apply style and quality using ruff 0.1.5

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Tolga Cangöz <46008593+tolgacangoz@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-07-25 21:58:21 +05:30
Sayak Paul
527430d0a4 [LoRA] introduce LoraBaseMixin to promote reusability. (#8774)
* introduce  to promote reusability.

* up

* add more tests

* up

* remove comments.

* fix fuse_nan test

* clarify the scope of fuse_lora and unfuse_lora

* remove space

* rewrite fuse_lora a bit.

* feedback

* copy over load_lora_into_text_encoder.

* address dhruv's feedback.

* fix-copies

* fix issubclass.

* num_fused_loras

* fix

* fix

* remove mapping

* up

* fix

* style

* fix-copies

* change to SD3TransformerLoRALoadersMixin

* Apply suggestions from code review

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* up

* handle wuerstchen

* up

* move lora to lora_pipeline.py

* up

* fix-copies

* fix documentation.

* comment set_adapters().

* fix-copies

* fix set_adapters() at the model level.

* fix?

* fix

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-07-25 21:40:58 +05:30
Aryan
3ae0ee88d3 [tests] speed up animatediff tests (#8846)
* speed up animatediff tests

* fix pia test_ip_adapter_single

* fix tests/pipelines/pia/test_pia.py::PIAPipelineFastTests::test_dict_tuple_outputs_equivalent

* update

* fix ip adapter tests

* skip test_from_pipe_consistent_config tests

* fix prompt_embeds test

* update test_from_pipe_consistent_config tests

* fix expected_slice values

* remove temporal_norm_num_groups from UpBlockMotion

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-07-25 17:35:43 +05:30
Dhruv Nair
5fbb4d32d5 [CI] Slow Test Updates (#8870)
* update

* update

* update
2024-07-25 16:00:43 +05:30
Sayak Paul
d8bcb33f4b [Tests] fix slices of 26 tests (first half) (#8959)
* check for assertions.

* update with correct slices.

* okay

* style

* get it ready

* update

* update

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-07-25 14:56:49 +05:30
Sanchit Gandhi
4a782f462a [AudioLDM2] Fix cache pos for GPT-2 generation (#8964)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-07-25 09:21:49 +05:30
RandomGamingDev
cdd12bde17 Added Code for Gradient Accumulation to work for basic_training (#8961)
added line allowing gradient accumulation to work for basic_training example
2024-07-25 08:40:53 +05:30
Sayak Paul
2c25b98c8e [AuraFlow] fix long prompt handling (#8937)
fix
2024-07-24 11:19:30 +05:30
Dhruv Nair
93983b6780 [CI] Skip flaky download tests in PR CI (#8945)
update
2024-07-24 09:25:06 +05:30
Sayak Paul
41b705f42d remove residual i from auraflow. (#8949)
* remove residual i.

* rename to aura_flow in pipeline test
2024-07-24 07:31:54 +05:30
Sayak Paul
50d21f7c6a [Core] fix QKV fusion for attention (#8829)
* start debugging the problem,

* start

* fix

* fix

* fix imports.

* handle hunyuan

* remove residuals.

* add a check for making sure there's appropriate procs.

* add more rigor to the tests.

* fix test

* remove redundant check

* fix-copies

* move check_qkv_fusion_matches_attn_procs_length and check_qkv_fusion_processors_exist.
2024-07-24 06:52:19 +05:30
Dhruv Nair
3bb1fd6fc0 Fix name when saving text inversion embeddings in dreambooth advanced scripts (#8927)
update
2024-07-23 19:51:20 +05:30
Tolga Cangöz
cf55dcf0ff Fix Colab and Notebook checks for diffusers-cli env (#8408)
* chore: Update is_google_colab check to use environment variable

* Check Colab with all possible COLAB_* env variables

* Remove unnecessary word

* Make `_is_google_colab` more inclusive

* Revert "Make `_is_google_colab` more inclusive"

This reverts commit 6406db21ac.

* Make `_is_google_colab` more inclusive.

* chore: Update import_utils.py with notebook check improvement

* Refactor import_utils.py to improve notebook detection for VS Code's notebook

* chore: Remove `is_notebook()` function and related code

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-07-23 18:04:20 +05:30
Vinh H. Pham
7a95f8d9d8 [Tests] Improve transformers model test suite coverage - Temporal Transformer (#8932)
* add test for temporal transformer

* remove unused variable

* fix code quality

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-07-23 15:36:30 +05:30
akbaig
7710415baf fix: checkpoint save issue in advanced dreambooth lora sdxl script (#8926)
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-07-23 14:44:56 +05:30
Aritra Roy Gosthipaty
8b21feed42 [Tests] reduce the model size in the audioldm2 fast test (#7846)
* chore: initial model size reduction

* chore: fixing expected values for failing tests

* requested edits

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-07-23 14:34:07 +05:30
Dhruv Nair
f57b27d2ad Update pipeline test fetcher (#8931)
update
2024-07-23 10:02:22 +05:30
Sayak Paul
c5fdf33a10 [Benchmarking] check if runner helps to restore benchmarking (#8929)
* check if runner helps.

* remove caching

* gpus

* update runner group
2024-07-23 06:38:13 +05:30
Vishnu V Jaddipal
77c5de2e05 Add attentionless VAE support (#8769)
* Add attentionless VAE support

* make style and quality, fix-copies

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-07-22 14:16:58 -10:00
Sayak Paul
af400040f5 [Tests] proper skipping of request caching test (#8908)
proper skipping of request caching test
2024-07-22 12:52:57 -10:00
593 changed files with 64940 additions and 7971 deletions

View File

@@ -7,22 +7,24 @@ on:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
jobs:
torch_pipelines_cuda_benchmark_tests:
env:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }}
name: Torch Core Pipelines CUDA Benchmarking Tests
strategy:
fail-fast: false
max-parallel: 1
runs-on: [single-gpu, nvidia-gpu, a10, ci]
runs-on:
group: aws-g6-4xlarge-plus
container:
image: diffusers/diffusers-pytorch-compile-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -49,7 +51,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: benchmark_test_reports
path: benchmarks/benchmark_outputs
@@ -58,7 +60,7 @@ jobs:
if: ${{ success() }}
run: |
pip install requests && python utils/notify_benchmarking_status.py --status=success
- name: Report failure status
if: ${{ failure() }}
run: |

View File

@@ -20,7 +20,8 @@ env:
jobs:
test-build-docker-images:
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
runs-on:
group: aws-general-8-plus
if: github.event_name == 'pull_request'
steps:
- name: Set up Docker Buildx
@@ -50,7 +51,8 @@ jobs:
if: steps.file_changes.outputs.all != ''
build-and-push-docker-images:
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
runs-on:
group: aws-general-8-plus
if: github.event_name != 'pull_request'
permissions:
@@ -98,4 +100,4 @@ jobs:
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: "🤗 Results of the ${{ matrix.image-name }} Docker Image build"
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@@ -24,7 +24,7 @@ jobs:
mirror_community_pipeline:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
runs-on: ubuntu-latest
steps:
# Checkout to correct ref
@@ -95,7 +95,7 @@ jobs:
if: ${{ success() }}
run: |
pip install requests && python utils/notify_community_pipelines_mirror.py --status=success
- name: Report failure status
if: ${{ failure() }}
run: |

View File

@@ -7,7 +7,7 @@ on:
env:
DIFFUSERS_IS_CI: yes
HF_HOME: /mnt/cache
HF_HUB_ENABLE_HF_TRANSFER: 1
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 600
@@ -18,8 +18,11 @@ env:
jobs:
setup_torch_cuda_pipeline_matrix:
name: Setup Torch Pipelines Matrix
runs-on: diffusers/diffusers-pytorch-cpu
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
@@ -27,13 +30,9 @@ jobs:
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
pip install -e .
pip install -e .[test]
pip install huggingface_hub
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
@@ -44,22 +43,24 @@ jobs:
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
run_nightly_tests_for_torch_pipelines:
name: Torch Pipelines CUDA Nightly Tests
name: Nightly Torch Pipelines CUDA Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 8
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -67,21 +68,18 @@ jobs:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: Nightly PyTorch CUDA checkpoint (pipelines) tests
- name: Pipeline CUDA Test
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
@@ -90,38 +88,38 @@ jobs:
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
--report-log=tests_pipeline_${{ matrix.module }}_cuda.log \
tests/pipelines/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_tests_for_other_torch_modules:
name: Torch Non-Pipelines CUDA Nightly Tests
runs-on: [single-gpu, nvidia-gpu, t4, ci]
name: Nightly Torch CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, others, examples]
module: [models, schedulers, lora, others, single_file, examples]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -132,16 +130,16 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run nightly PyTorch CUDA tests for non-pipeline modules
if: ${{ matrix.module != 'examples'}}
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
@@ -154,11 +152,10 @@ jobs:
- name: Run nightly example tests with Torch
if: ${{ matrix.module == 'examples' }}
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v --make-reports=examples_torch_cuda \
--report-log=examples_torch_cuda.log \
@@ -172,7 +169,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: torch_${{ matrix.module }}_cuda_test_reports
path: reports
@@ -181,64 +178,7 @@ jobs:
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
run_lora_nightly_tests:
name: Nightly LoRA Tests with PEFT and TORCH
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run nightly LoRA tests with PEFT and Torch
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_lora_cuda \
--report-log=tests_torch_lora_cuda.log \
tests/lora
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_lora_cuda_stats.txt
cat reports/tests_torch_lora_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_lora_cuda_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_flax_tpu_tests:
name: Nightly Flax TPU Tests
@@ -261,7 +201,7 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
@@ -269,7 +209,7 @@ jobs:
- name: Run nightly Flax TPU tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
@@ -285,7 +225,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
@@ -294,14 +234,15 @@ jobs:
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_onnx_tests:
name: Nightly ONNXRuntime CUDA tests on Ubuntu
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
@@ -316,15 +257,14 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run nightly ONNXRuntime CUDA tests
- name: Run Nightly ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
@@ -340,75 +280,129 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.config.report }}_test_reports
name: tests_onnx_cuda_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_tests_apple_m1:
name: Nightly PyTorch MPS tests on MacOS
runs-on: [ self-hosted, apple-m1 ]
if: github.event_name == 'schedule'
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Clean checkout
shell: arch -arch arm64 bash {0}
run: |
git clean -fxd
- name: Setup miniconda
uses: ./.github/actions/setup-miniconda
with:
python-version: 3.9
- name: Install dependencies
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e [quality,test]
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
${CONDA_RUN} python -m uv pip install pytest-reportlog
- name: Environment
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python utils/print_env.py
- name: Run nightly PyTorch tests on M1 (MPS)
shell: arch -arch arm64 bash {0}
env:
HF_HOME: /System/Volumes/Data/mnt/cache
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
--report-log=tests_torch_mps.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_mps_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_mps_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
# M1 runner currently not well supported
# TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
# run_nightly_tests_apple_m1:
# name: Nightly PyTorch MPS tests on MacOS
# runs-on: [ self-hosted, apple-m1 ]
# if: github.event_name == 'schedule'
#
# steps:
# - name: Checkout diffusers
# uses: actions/checkout@v3
# with:
# fetch-depth: 2
#
# - name: Clean checkout
# shell: arch -arch arm64 bash {0}
# run: |
# git clean -fxd
# - name: Setup miniconda
# uses: ./.github/actions/setup-miniconda
# with:
# python-version: 3.9
#
# - name: Install dependencies
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python utils/print_env.py
# - name: Run nightly PyTorch tests on M1 (MPS)
# shell: arch -arch arm64 bash {0}
# env:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.HF_TOKEN }}
# run: |
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_torch_mps_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# with:
# name: torch_mps_test_reports
# path: reports
#
# - name: Generate Report and Notify Channel
# if: always()
# run: |
# pip install slack_sdk tabulate
# python utils/log_reports.py >> $GITHUB_STEP_SUMMARY run_nightly_tests_apple_m1:
# name: Nightly PyTorch MPS tests on MacOS
# runs-on: [ self-hosted, apple-m1 ]
# if: github.event_name == 'schedule'
#
# steps:
# - name: Checkout diffusers
# uses: actions/checkout@v3
# with:
# fetch-depth: 2
#
# - name: Clean checkout
# shell: arch -arch arm64 bash {0}
# run: |
# git clean -fxd
# - name: Setup miniconda
# uses: ./.github/actions/setup-miniconda
# with:
# python-version: 3.9
#
# - name: Install dependencies
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python utils/print_env.py
# - name: Run nightly PyTorch tests on M1 (MPS)
# shell: arch -arch arm64 bash {0}
# env:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.HF_TOKEN }}
# run: |
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_torch_mps_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v4
# with:
# name: torch_mps_test_reports
# path: reports
#
# - name: Generate Report and Notify Channel
# if: always()
# run: |
# pip install slack_sdk tabulate
# python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@@ -15,7 +15,8 @@ concurrency:
jobs:
setup_pr_tests:
name: Setup PR Tests
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
@@ -73,7 +74,8 @@ jobs:
max-parallel: 2
matrix:
modules: ${{ fromJson(needs.setup_pr_tests.outputs.matrix) }}
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
@@ -123,12 +125,13 @@ jobs:
config:
- name: Hub tests for models, schedulers, and pipelines
framework: hub_tests_pytorch
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
runner: aws-general-8-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_hub
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
runs-on:
group: ${{ matrix.config.runner }}
container:
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
@@ -168,7 +171,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -71,7 +71,8 @@ jobs:
name: LoRA - ${{ matrix.lib-versions }}
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
@@ -94,7 +95,7 @@ jobs:
if [ "${{ matrix.lib-versions }}" == "main" ]; then
python -m pip install -U peft@git+https://github.com/huggingface/peft.git
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git
python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
else
python -m uv pip install -U peft transformers accelerate
fi
@@ -109,23 +110,23 @@ jobs:
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_${{ matrix.config.report }} \
--make-reports=tests_${{ matrix.lib-versions }} \
tests/lora/
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_models_lora_${{ matrix.config.report }} \
--make-reports=tests_models_lora_${{ matrix.lib-versions }} \
tests/models/ -k "lora"
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_${{ matrix.config.report }}_failures_short.txt
cat reports/tests_models_lora_${{ matrix.config.report }}_failures_short.txt
cat reports/tests_${{ matrix.lib-versions }}_failures_short.txt
cat reports/tests_models_lora_${{ matrix.lib-versions }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports
name: pr_${{ matrix.lib-versions }}_test_reports
path: reports

View File

@@ -22,6 +22,7 @@ concurrency:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
@@ -77,28 +78,29 @@ jobs:
config:
- name: Fast PyTorch Pipeline CPU tests
framework: pytorch_pipelines
runner: [ self-hosted, intel-cpu, 32-cpu, 256-ram, ci ]
runner: aws-highmemory-32-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_pipelines
- name: Fast PyTorch Models & Schedulers CPU tests
framework: pytorch_models
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
runner: aws-general-8-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_models_schedulers
- name: Fast Flax CPU tests
framework: flax
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
runner: aws-general-8-plus
image: diffusers/diffusers-flax-cpu
report: flax_cpu
- name: PyTorch Example CPU tests
framework: pytorch_examples
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
runner: aws-general-8-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_example_cpu
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
runs-on:
group: ${{ matrix.config.runner }}
container:
image: ${{ matrix.config.image }}
@@ -167,9 +169,9 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
path: reports
run_staging_tests:
@@ -180,7 +182,8 @@ jobs:
config:
- name: Hub tests for models, schedulers, and pipelines
framework: hub_tests_pytorch
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
runner:
group: aws-general-8-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_hub
@@ -227,7 +230,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -1,6 +1,7 @@
name: Slow Tests on main
name: Fast GPU Tests on main
on:
workflow_dispatch:
push:
branches:
- main
@@ -11,17 +12,17 @@ on:
env:
DIFFUSERS_IS_CI: yes
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: yes
PIPELINE_USAGE_CUTOFF: 50000
jobs:
setup_torch_cuda_pipeline_matrix:
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
outputs:
@@ -46,23 +47,24 @@ jobs:
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
torch_pipelines_cuda_tests:
name: Torch Pipelines CUDA Slow Tests
name: Torch Pipelines CUDA Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 8
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -75,7 +77,7 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
@@ -96,21 +98,24 @@ jobs:
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
torch_cuda_tests:
name: Torch CUDA Tests
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others, single_file]
steps:
@@ -123,13 +128,14 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow PyTorch CUDA tests
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
@@ -137,75 +143,20 @@ jobs:
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_cuda \
--make-reports=tests_torch_cuda_${{ matrix.module }} \
tests/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_cuda_stats.txt
cat reports/tests_torch_cuda_failures_short.txt
cat reports/tests_torch_cuda_${{ matrix.module }}_stats.txt
cat reports/tests_torch_cuda_${{ matrix.module }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: torch_cuda_test_reports
path: reports
peft_cuda_tests:
name: PEFT CUDA Tests
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
python -m pip install -U peft@git+https://github.com/huggingface/peft.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow PEFT CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and not PEFTLoRALoading" \
--make-reports=tests_peft_cuda \
tests/lora/
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "lora and not Flax and not Onnx and not PEFTLoRALoading" \
--make-reports=tests_peft_cuda_models_lora \
tests/models/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_peft_cuda_stats.txt
cat reports/tests_peft_cuda_failures_short.txt
cat reports/tests_peft_cuda_models_lora_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_peft_test_reports
name: torch_cuda_test_reports_${{ matrix.module }}
path: reports
flax_tpu_tests:
@@ -227,7 +178,7 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -250,14 +201,15 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
onnx_cuda_tests:
name: ONNX CUDA Tests
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
@@ -274,7 +226,7 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -297,7 +249,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: onnx_cuda_test_reports
path: reports
@@ -305,11 +257,12 @@ jobs:
run_torch_compile_tests:
name: PyTorch Compile CUDA tests
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-compile-cuda
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
@@ -339,7 +292,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: torch_compile_test_reports
path: reports
@@ -347,11 +300,12 @@ jobs:
run_xformers_tests:
name: PyTorch xformers CUDA tests
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-xformers-cuda
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
@@ -380,7 +334,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: torch_xformers_test_reports
path: reports
@@ -388,11 +342,12 @@ jobs:
run_examples_tests:
name: Examples PyTorch CUDA tests on Ubuntu
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
@@ -430,7 +385,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: examples_test_reports
path: reports

View File

@@ -18,6 +18,7 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no
@@ -29,28 +30,29 @@ jobs:
config:
- name: Fast PyTorch CPU tests on Ubuntu
framework: pytorch
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
runner: aws-general-8-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu
- name: Fast Flax CPU tests on Ubuntu
framework: flax
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
runner: aws-general-8-plus
image: diffusers/diffusers-flax-cpu
report: flax_cpu
- name: Fast ONNXRuntime CPU tests on Ubuntu
framework: onnxruntime
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
runner: aws-general-8-plus
image: diffusers/diffusers-onnxruntime-cpu
report: onnx_cpu
- name: PyTorch Example CPU tests on Ubuntu
framework: pytorch_examples
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
runner: aws-general-8-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_example_cpu
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
runs-on:
group: ${{ matrix.config.runner }}
container:
image: ${{ matrix.config.image }}
@@ -118,7 +120,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -13,6 +13,7 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no
@@ -69,7 +70,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
uses: actions/upload-artifact@v4
with:
name: pr_torch_mps_test_reports
path: reports

389
.github/workflows/release_tests_fast.yml vendored Normal file
View File

@@ -0,0 +1,389 @@
# Duplicate workflow to push_tests.yml that is meant to run on release/patch branches as a final check
# Creating a duplicate workflow here is simpler than adding complex path/branch parsing logic to push_tests.yml
# Needs to be updated if push_tests.yml updated
name: (Release) Fast GPU Tests on main
on:
push:
branches:
- "v*.*.*-release"
- "v*.*.*-patch"
env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 50000
jobs:
setup_torch_cuda_pipeline_matrix:
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
- name: Environment
run: |
python utils/print_env.py
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
run: |
matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
echo $matrix
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
torch_pipelines_cuda_tests:
name: Torch Pipelines CUDA Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 8
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Slow PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
torch_cuda_tests:
name: Torch CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others, single_file]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_${{ matrix.module }}_cuda \
tests/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_torch_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_${{ matrix.module }}_test_reports
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on: docker-tpu
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow Flax TPU tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_flax_tpu \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_flax_tpu_stats.txt
cat reports/tests_flax_tpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: flax_tpu_test_reports
path: reports
onnx_cuda_tests:
name: ONNX CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: onnx_cuda_test_reports
path: reports
run_torch_compile_tests:
name: PyTorch Compile CUDA tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-compile-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_compile_test_reports
path: reports
run_xformers_tests:
name: PyTorch xformers CUDA tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-xformers-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_xformers_test_reports
path: reports
run_examples_tests:
name: Examples PyTorch CUDA tests on Ubuntu
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/examples_torch_cuda_stats.txt
cat reports/examples_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: examples_test_reports
path: reports

View File

@@ -26,7 +26,8 @@ env:
jobs:
run_tests:
name: "Run a test on our runner from a PR"
runs-on: [single-gpu, nvidia-gpu, t4, ci]
runs-on:
group: aws-g4dn-2xlarge
container:
image: ${{ github.event.inputs.docker_image }}
options: --gpus 0 --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@@ -70,4 +71,4 @@ jobs:
env:
PY_TEST: ${{ github.event.inputs.test }}
run: |
pytest "$PY_TEST"
pytest "$PY_TEST"

View File

@@ -19,7 +19,8 @@ env:
jobs:
ssh_runner:
name: "SSH"
runs-on: [self-hosted, intel-cpu, 32-cpu, 256-ram, ci]
runs-on:
group: aws-highmemory-32-plus
container:
image: ${{ github.event.inputs.docker_image }}
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --privileged

View File

@@ -4,8 +4,12 @@ on:
workflow_dispatch:
inputs:
runner_type:
description: 'Type of runner to test (a10 or t4)'
description: 'Type of runner to test (aws-g6-4xlarge-plus: a10 or aws-g4dn-2xlarge: t4)'
type: choice
required: true
options:
- aws-g6-4xlarge-plus
- aws-g4dn-2xlarge
docker_image:
description: 'Name of the Docker image'
required: true
@@ -22,7 +26,8 @@ env:
jobs:
ssh_runner:
name: "SSH"
runs-on: [single-gpu, nvidia-gpu, "${{ github.event.inputs.runner_type }}", ci]
runs-on:
group: "${{ github.event.inputs.runner_type }}"
container:
image: ${{ github.event.inputs.docker_image }}
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged

View File

@@ -9,6 +9,9 @@ jobs:
name: Close Stale Issues
if: github.repository == 'huggingface/diffusers'
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:

View File

@@ -57,13 +57,13 @@ Any question or comment related to the Diffusers library can be asked on the [di
- ...
Every question that is asked on the forum or on Discord actively encourages the community to publicly
share knowledge and might very well help a beginner in the future that has the same question you're
share knowledge and might very well help a beginner in the future who has the same question you're
having. Please do pose any questions you might have.
In the same spirit, you are of immense help to the community by answering such questions because this way you are publicly documenting knowledge for everybody to learn from.
**Please** keep in mind that the more effort you put into asking or answering a question, the higher
the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formated/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formatted/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
**NOTE about channels**:
[*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
@@ -503,4 +503,4 @@ $ git push --set-upstream origin your-branch-for-syncing
### Style guide
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).

View File

@@ -15,7 +15,7 @@ specific language governing permissions and limitations under the License.
🧨 Diffusers provides **state-of-the-art** pretrained diffusion models across multiple modalities.
Its purpose is to serve as a **modular toolbox** for both inference and training.
We aim at building a library that stands the test of time and therefore take API design very seriously.
We aim to build a library that stands the test of time and therefore take API design very seriously.
In a nutshell, Diffusers is built to be a natural extension of PyTorch. Therefore, most of our design choices are based on [PyTorch's Design Principles](https://pytorch.org/docs/stable/community/design.html#pytorch-design-philosophy). Let's go over the most important ones:
@@ -65,7 +65,7 @@ Pipelines are designed to be easy to use (therefore do not follow [*Simple over
The following design principles are followed:
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as its done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [# Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
- Pipelines all inherit from [`DiffusionPipeline`].
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
- Pipelines should be used **only** for inference.
- Pipelines should be very readable, self-explanatory, and easy to tweak.
@@ -107,4 +107,4 @@ The following design principles are followed:
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon.
- The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
- Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.

View File

@@ -67,13 +67,13 @@ Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggi
## Quickstart
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 27.000+ checkpoints):
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 30,000+ checkpoints):
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
```
@@ -144,7 +144,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
<tr style="border-top: 2px solid black">
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
<td><a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5"> stable-diffusion-v1-5/stable-diffusion-v1-5 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
@@ -174,7 +174,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
<td><a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5"> stable-diffusion-v1-5/stable-diffusion-v1-5 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
@@ -202,6 +202,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/InstantID/InstantID
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything
@@ -209,7 +210,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +12.000 other amazing GitHub repositories 💪
- +14,000 other amazing GitHub repositories 💪
Thank you for using us ❤️.

View File

@@ -34,7 +34,7 @@ from utils import ( # noqa: E402
RESOLUTION_MAPPING = {
"runwayml/stable-diffusion-v1-5": (512, 512),
"Lykon/DreamShaper": (512, 512),
"lllyasviel/sd-controlnet-canny": (512, 512),
"diffusers/controlnet-canny-sdxl-1.0": (1024, 1024),
"TencentARC/t2iadapter_canny_sd14v1": (512, 512),
@@ -268,7 +268,7 @@ class IPAdapterTextToImageBenchmark(TextToImageBenchmark):
class ControlNetBenchmark(TextToImageBenchmark):
pipeline_class = StableDiffusionControlNetPipeline
aux_network_class = ControlNetModel
root_ckpt = "runwayml/stable-diffusion-v1-5"
root_ckpt = "Lykon/DreamShaper"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png"
image = load_image(url).convert("RGB")
@@ -311,7 +311,7 @@ class ControlNetSDXLBenchmark(ControlNetBenchmark):
class T2IAdapterBenchmark(ControlNetBenchmark):
pipeline_class = StableDiffusionAdapterPipeline
aux_network_class = T2IAdapter
root_ckpt = "CompVis/stable-diffusion-v1-4"
root_ckpt = "Lykon/DreamShaper"
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png"
image = load_image(url).convert("L")

View File

@@ -7,7 +7,8 @@ from base_classes import IPAdapterTextToImageBenchmark # noqa: E402
IP_ADAPTER_CKPTS = {
"runwayml/stable-diffusion-v1-5": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
# because original SD v1.5 has been taken down.
"Lykon/DreamShaper": ("h94/IP-Adapter", "ip-adapter_sd15.bin"),
"stabilityai/stable-diffusion-xl-base-1.0": ("h94/IP-Adapter", "ip-adapter_sdxl.bin"),
}
@@ -17,7 +18,7 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
default="rstabilityai/stable-diffusion-xl-base-1.0",
choices=list(IP_ADAPTER_CKPTS.keys()),
)
parser.add_argument("--batch_size", type=int, default=1)

View File

@@ -11,9 +11,9 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
default="Lykon/DreamShaper",
choices=[
"runwayml/stable-diffusion-v1-5",
"Lykon/DreamShaper",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-refiner-1.0",
"stabilityai/sdxl-turbo",

View File

@@ -11,9 +11,9 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
default="Lykon/DreamShaper",
choices=[
"runwayml/stable-diffusion-v1-5",
"Lykon/DreamShaper",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-xl-base-1.0",
],

View File

@@ -7,7 +7,7 @@ from base_classes import TextToImageBenchmark, TurboTextToImageBenchmark # noqa
ALL_T2I_CKPTS = [
"runwayml/stable-diffusion-v1-5",
"Lykon/DreamShaper",
"segmind/SSD-1B",
"stabilityai/stable-diffusion-xl-base-1.0",
"kandinsky-community/kandinsky-2-2-decoder",
@@ -21,7 +21,7 @@ if __name__ == "__main__":
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
default="Lykon/DreamShaper",
choices=ALL_T2I_CKPTS,
)
parser.add_argument("--batch_size", type=int, default=1)

View File

@@ -43,6 +43,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -45,6 +45,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -43,6 +43,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -38,11 +38,13 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -38,11 +38,13 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -44,6 +44,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers matplotlib
transformers matplotlib \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -38,12 +38,14 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
pytorch-lightning
pytorch-lightning \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -38,12 +38,14 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
xformers
xformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -56,7 +56,7 @@
- local: using-diffusers/overview_techniques
title: Overview
- local: training/distributed_inference
title: Distributed inference with multiple GPUs
title: Distributed inference
- local: using-diffusers/merge_loras
title: Merge LoRAs
- local: using-diffusers/scheduler_features
@@ -161,6 +161,8 @@
title: DeepCache
- local: optimization/tgate
title: TGATE
- local: optimization/xdit
title: xDiT
- sections:
- local: using-diffusers/stable_diffusion_jax_how_to
title: JAX/Flax
@@ -190,6 +192,10 @@
- local: conceptual/evaluation
title: Evaluating Diffusion Models
title: Conceptual Guides
- sections:
- local: community_projects
title: Projects built with Diffusers
title: Community Projects
- sections:
- isExpanded: false
sections:
@@ -219,54 +225,78 @@
sections:
- local: api/models/overview
title: Overview
- local: api/models/unet
title: UNet1DModel
- local: api/models/unet2d
title: UNet2DModel
- local: api/models/unet2d-cond
title: UNet2DConditionModel
- local: api/models/unet3d-cond
title: UNet3DConditionModel
- local: api/models/unet-motion
title: UNetMotionModel
- local: api/models/uvit2d
title: UViT2DModel
- local: api/models/vq
title: VQModel
- local: api/models/autoencoderkl
title: AutoencoderKL
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_tiny
title: Tiny AutoEncoder
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/transformer2d
title: Transformer2DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/latte_transformer3d
title: LatteTransformer3DModel
- local: api/models/lumina_nextdit2d
title: LuminaNextDiT2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/prior_transformer
title: PriorTransformer
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_hunyuandit
title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
- sections:
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_flux
title: FluxControlNetModel
- local: api/models/controlnet_hunyuandit
title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
title: ControlNets
- sections:
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/cogvideox_transformer3d
title: CogVideoXTransformer3DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/latte_transformer3d
title: LatteTransformer3DModel
- local: api/models/lumina_nextdit2d
title: LuminaNextDiT2DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/prior_transformer
title: PriorTransformer
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/stable_audio_transformer
title: StableAudioDiTModel
- local: api/models/transformer2d
title: Transformer2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
title: Transformers
- sections:
- local: api/models/stable_cascade_unet
title: StableCascadeUNet
- local: api/models/unet
title: UNet1DModel
- local: api/models/unet2d
title: UNet2DModel
- local: api/models/unet2d-cond
title: UNet2DConditionModel
- local: api/models/unet3d-cond
title: UNet3DConditionModel
- local: api/models/unet-motion
title: UNetMotionModel
- local: api/models/uvit2d
title: UViT2DModel
title: UNets
- sections:
- local: api/models/autoencoderkl
title: AutoencoderKL
- local: api/models/autoencoderkl_cogvideox
title: AutoencoderKLCogVideoX
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/autoencoder_oobleck
title: Oobleck AutoEncoder
- local: api/models/autoencoder_tiny
title: Tiny AutoEncoder
- local: api/models/vq
title: VQModel
title: VAEs
title: Models
- isExpanded: false
sections:
@@ -288,10 +318,14 @@
title: AutoPipeline
- local: api/pipelines/blip_diffusion
title: BLIP-Diffusion
- local: api/pipelines/cogvideox
title: CogVideoX
- local: api/pipelines/consistency_models
title: Consistency Models
- local: api/pipelines/controlnet
title: ControlNet
- local: api/pipelines/controlnet_flux
title: ControlNet with Flux.1
- local: api/pipelines/controlnet_hunyuandit
title: ControlNet with Hunyuan-DiT
- local: api/pipelines/controlnet_sd3
@@ -314,6 +348,8 @@
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/flux
title: Flux
- local: api/pipelines/hunyuandit
title: Hunyuan-DiT
- local: api/pipelines/i2vgenxl
@@ -360,6 +396,8 @@
title: Semantic Guidance
- local: api/pipelines/shap_e
title: Shap-E
- local: api/pipelines/stable_audio
title: Stable Audio
- local: api/pipelines/stable_cascade
title: Stable Cascade
- sections:
@@ -423,6 +461,8 @@
title: CMStochasticIterativeScheduler
- local: api/schedulers/consistency_decoder
title: ConsistencyDecoderScheduler
- local: api/schedulers/cosine_dpm
title: CosineDPMSolverMultistepScheduler
- local: api/schedulers/ddim_inverse
title: DDIMInverseScheduler
- local: api/schedulers/ddim

View File

@@ -12,10 +12,13 @@ specific language governing permissions and limitations under the License.
# LoRA
LoRA is a fast and lightweight training method that inserts and trains a significantly smaller number of parameters instead of all the model parameters. This produces a smaller file (~100 MBs) and makes it easier to quickly train a model to learn a new concept. LoRA weights are typically loaded into the UNet, text encoder or both. There are two classes for loading LoRA weights:
LoRA is a fast and lightweight training method that inserts and trains a significantly smaller number of parameters instead of all the model parameters. This produces a smaller file (~100 MBs) and makes it easier to quickly train a model to learn a new concept. LoRA weights are typically loaded into the denoiser, text encoder or both. The denoiser usually corresponds to a UNet ([`UNet2DConditionModel`], for example) or a Transformer ([`SD3Transformer2DModel`], for example). There are several classes for loading LoRA weights:
- [`LoraLoaderMixin`] provides functions for loading and unloading, fusing and unfusing, enabling and disabling, and more functions for managing LoRA weights. This class can be used with any model.
- [`StableDiffusionXLLoraLoaderMixin`] is a [Stable Diffusion (SDXL)](../../api/pipelines/stable_diffusion/stable_diffusion_xl) version of the [`LoraLoaderMixin`] class for loading and saving LoRA weights. It can only be used with the SDXL model.
- [`StableDiffusionLoraLoaderMixin`] provides functions for loading and unloading, fusing and unfusing, enabling and disabling, and more functions for managing LoRA weights. This class can be used with any model.
- [`StableDiffusionXLLoraLoaderMixin`] is a [Stable Diffusion (SDXL)](../../api/pipelines/stable_diffusion/stable_diffusion_xl) version of the [`StableDiffusionLoraLoaderMixin`] class for loading and saving LoRA weights. It can only be used with the SDXL model.
- [`SD3LoraLoaderMixin`] provides similar functions for [Stable Diffusion 3](https://huggingface.co/blog/sd3).
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
<Tip>
@@ -23,10 +26,22 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
</Tip>
## LoraLoaderMixin
## StableDiffusionLoraLoaderMixin
[[autodoc]] loaders.lora.LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.StableDiffusionLoraLoaderMixin
## StableDiffusionXLLoraLoaderMixin
[[autodoc]] loaders.lora.StableDiffusionXLLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin
## SD3LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.SD3LoraLoaderMixin
## AmusedLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.AmusedLoraLoaderMixin
## LoraBaseMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# PEFT
Diffusers supports loading adapters such as [LoRA](../../using-diffusers/loading_adapters) with the [PEFT](https://huggingface.co/docs/peft/index) library with the [`~loaders.peft.PeftAdapterMixin`] class. This allows modeling classes in Diffusers like [`UNet2DConditionModel`] to load an adapter.
Diffusers supports loading adapters such as [LoRA](../../using-diffusers/loading_adapters) with the [PEFT](https://huggingface.co/docs/peft/index) library with the [`~loaders.peft.PeftAdapterMixin`] class. This allows modeling classes in Diffusers like [`UNet2DConditionModel`], [`SD3Transformer2DModel`] to operate with an adapter.
<Tip>

View File

@@ -51,6 +51,7 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
- [`AutoencoderKL`]
- [`ControlNetModel`]
- [`SD3Transformer2DModel`]
- [`FluxTransformer2DModel`]
## FromSingleFileMixin

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# UNet
Some training methods - like LoRA and Custom Diffusion - typically target the UNet's attention layers, but these training methods can also target other non-attention layers. Instead of training all of a model's parameters, only a subset of the parameters are trained, which is faster and more efficient. This class is useful if you're *only* loading weights into a UNet. If you need to load weights into the text encoder or a text encoder and UNet, try using the [`~loaders.LoraLoaderMixin.load_lora_weights`] function instead.
Some training methods - like LoRA and Custom Diffusion - typically target the UNet's attention layers, but these training methods can also target other non-attention layers. Instead of training all of a model's parameters, only a subset of the parameters are trained, which is faster and more efficient. This class is useful if you're *only* loading weights into a UNet. If you need to load weights into the text encoder or a text encoder and UNet, try using the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] function instead.
The [`UNet2DConditionLoadersMixin`] class provides functions for loading and saving weights, fusing and unfusing LoRAs, disabling and enabling LoRAs, and setting and deleting adapters.

View File

@@ -0,0 +1,38 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AutoencoderOobleck
The Oobleck variational autoencoder (VAE) model with KL loss was introduced in [Stability-AI/stable-audio-tools](https://github.com/Stability-AI/stable-audio-tools) and [Stable Audio Open](https://huggingface.co/papers/2407.14358) by Stability AI. The model is used in 🤗 Diffusers to encode audio waveforms into latents and to decode latent representations into audio waveforms.
The abstract from the paper is:
*Open generative models are vitally important for the community, allowing for fine-tunes and serving as baselines when presenting new models. However, most current text-to-audio models are private and not accessible for artists and researchers to build upon. Here we describe the architecture and training process of a new open-weights text-to-audio model trained with Creative Commons data. Our evaluation shows that the model's performance is competitive with the state-of-the-art across various metrics. Notably, the reported FDopenl3 results (measuring the realism of the generations) showcase its potential for high-quality stereo sound synthesis at 44.1kHz.*
## AutoencoderOobleck
[[autodoc]] AutoencoderOobleck
- decode
- encode
- all
## OobleckDecoderOutput
[[autodoc]] models.autoencoders.autoencoder_oobleck.OobleckDecoderOutput
## OobleckDecoderOutput
[[autodoc]] models.autoencoders.autoencoder_oobleck.OobleckDecoderOutput
## AutoencoderOobleckOutput
[[autodoc]] models.autoencoders.autoencoder_oobleck.AutoencoderOobleckOutput

View File

@@ -0,0 +1,37 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLCogVideoX
The 3D variational autoencoder (VAE) model with KL loss used in [CogVideoX](https://github.com/THUDM/CogVideo) was introduced in [CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLCogVideoX
vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.float16).to("cuda")
```
## AutoencoderKLCogVideoX
[[autodoc]] AutoencoderKLCogVideoX
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,30 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CogVideoXTransformer3DModel
A Diffusion Transformer model for 3D data from [CogVideoX](https://github.com/THUDM/CogVideo) was introduced in [CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://github.com/THUDM/CogVideo/blob/main/resources/CogVideoX.pdf) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import CogVideoXTransformer3DModel
vae = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## CogVideoXTransformer3DModel
[[autodoc]] CogVideoXTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -29,7 +29,7 @@ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
controlnet = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
url = "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```

View File

@@ -0,0 +1,45 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# FluxControlNetModel
FluxControlNetModel is an implementation of ControlNet for Flux.1.
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
## Loading from the original format
By default the [`FluxControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`].
```py
from diffusers import FluxControlNetPipeline
from diffusers.models import FluxControlNetModel, FluxMultiControlNetModel
controlnet = FluxControlNetModel.from_pretrained("InstantX/FLUX.1-dev-Controlnet-Canny")
pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet)
controlnet = FluxControlNetModel.from_pretrained("InstantX/FLUX.1-dev-Controlnet-Canny")
controlnet = FluxMultiControlNetModel([controlnet])
pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet)
```
## FluxControlNetModel
[[autodoc]] FluxControlNetModel
## FluxControlNetOutput
[[autodoc]] models.controlnet_flux.FluxControlNetOutput

View File

@@ -0,0 +1,46 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# SparseControlNetModel
SparseControlNetModel is an implementation of ControlNet for [AnimateDiff](https://arxiv.org/abs/2307.04725).
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
The SparseCtrl version of ControlNet was introduced in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The abstract from the paper is:
*The development of text-to-video (T2V), i.e., generating videos with a given text prompt, has been significantly advanced in recent years. However, relying solely on text prompts often results in ambiguous frame composition due to spatial uncertainty. The research community thus leverages the dense structure signals, e.g., per-frame depth/edge sequences, to enhance controllability, whose collection accordingly increases the burden of inference. In this work, we present SparseCtrl to enable flexible structure control with temporally sparse signals, requiring only one or a few inputs, as shown in Figure 1. It incorporates an additional condition encoder to process these sparse signals while leaving the pre-trained T2V model untouched. The proposed approach is compatible with various modalities, including sketches, depth maps, and RGB images, providing more practical control for video generation and promoting applications such as storyboarding, depth rendering, keyframe animation, and interpolation. Extensive experiments demonstrate the generalization of SparseCtrl on both original and personalized T2V generators. Codes and models will be publicly available at [this https URL](https://guoyww.github.io/projects/SparseCtrl).*
## Example for loading SparseControlNetModel
```python
import torch
from diffusers import SparseControlNetModel
# fp32 variant in float16
# 1. Scribble checkpoint
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16)
# 2. RGB checkpoint
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-rgb", torch_dtype=torch.float16)
# For loading fp16 variant, pass `variant="fp16"` as an additional parameter
```
## SparseControlNetModel
[[autodoc]] SparseControlNetModel
## SparseControlNetOutput
[[autodoc]] models.controlnet_sparsectrl.SparseControlNetOutput

View File

@@ -0,0 +1,19 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# FluxTransformer2DModel
A Transformer model for image-like data from [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).
## FluxTransformer2DModel
[[autodoc]] FluxTransformer2DModel

View File

@@ -0,0 +1,19 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# StableAudioDiTModel
A Transformer model for audio waveforms from [Stable Audio Open](https://huggingface.co/papers/2407.14358).
## StableAudioDiTModel
[[autodoc]] StableAudioDiTModel

View File

@@ -0,0 +1,19 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# StableCascadeUNet
A UNet model from the [Stable Cascade pipeline](../pipelines/stable_cascade.md).
## StableCascadeUNet
[[autodoc]] models.unets.unet_stable_cascade.StableCascadeUNet

View File

@@ -25,7 +25,11 @@ The abstract of the paper is the following:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* |
| [AnimateDiffControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py) | *Controlled Video-to-Video Generation with AnimateDiff using ControlNet* |
| [AnimateDiffSparseControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py) | *Controlled Video-to-Video Generation with AnimateDiff using SparseCtrl* |
| [AnimateDiffSDXLPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py) | *Video-to-Video Generation with AnimateDiff* |
| [AnimateDiffVideoToVideoPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py) | *Video-to-Video Generation with AnimateDiff* |
| [AnimateDiffVideoToVideoControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py) | *Video-to-Video Generation with AnimateDiff using ControlNet* |
## Available checkpoints
@@ -100,6 +104,266 @@ AnimateDiff tends to work better with finetuned Stable Diffusion models. If you
</Tip>
### AnimateDiffControlNetPipeline
AnimateDiff can also be used with ControlNets ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide depth maps, the ControlNet model generates a video that'll preserve the spatial information from the depth maps. It is a more flexible and accurate way to control the video generation process.
```python
import torch
from diffusers import AnimateDiffControlNetPipeline, AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler
from diffusers.utils import export_to_gif, load_video
# Additionally, you will need a preprocess videos before they can be used with the ControlNet
# HF maintains just the right package for it: `pip install controlnet_aux`
from controlnet_aux.processor import ZoeDetector
# Download controlnets from https://huggingface.co/lllyasviel/ControlNet-v1-1 to use .from_single_file
# Download Diffusers-format controlnets, such as https://huggingface.co/lllyasviel/sd-controlnet-depth, to use .from_pretrained()
controlnet = ControlNetModel.from_single_file("control_v11f1p_sd15_depth.pth", torch_dtype=torch.float16)
# We use AnimateLCM for this example but one can use the original motion adapters as well (for example, https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3)
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe: AnimateDiffControlNetPipeline = AnimateDiffControlNetPipeline.from_pretrained(
"SG161222/Realistic_Vision_V5.1_noVAE",
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
).to(device="cuda", dtype=torch.float16)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora")
pipe.set_adapters(["lcm-lora"], [0.8])
depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif")
conditioning_frames = []
with pipe.progress_bar(total=len(video)) as progress_bar:
for frame in video:
conditioning_frames.append(depth_detector(frame))
progress_bar.update()
prompt = "a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality"
negative_prompt = "bad quality, worst quality"
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=len(video),
num_inference_steps=10,
guidance_scale=2.0,
conditioning_frames=conditioning_frames,
generator=torch.Generator().manual_seed(42),
).frames[0]
export_to_gif(video, "animatediff_controlnet.gif", fps=8)
```
Here are some sample outputs:
<table align="center">
<tr>
<th align="center">Source Video</th>
<th align="center">Output Video</th>
</tr>
<tr>
<td align="center">
raccoon playing a guitar
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif" alt="racoon playing a guitar" />
</td>
<td align="center">
a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-controlnet-output.gif" alt="a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality" />
</td>
</tr>
</table>
### AnimateDiffSparseControlNetPipeline
[SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The abstract from the paper is:
*The development of text-to-video (T2V), i.e., generating videos with a given text prompt, has been significantly advanced in recent years. However, relying solely on text prompts often results in ambiguous frame composition due to spatial uncertainty. The research community thus leverages the dense structure signals, e.g., per-frame depth/edge sequences, to enhance controllability, whose collection accordingly increases the burden of inference. In this work, we present SparseCtrl to enable flexible structure control with temporally sparse signals, requiring only one or a few inputs, as shown in Figure 1. It incorporates an additional condition encoder to process these sparse signals while leaving the pre-trained T2V model untouched. The proposed approach is compatible with various modalities, including sketches, depth maps, and RGB images, providing more practical control for video generation and promoting applications such as storyboarding, depth rendering, keyframe animation, and interpolation. Extensive experiments demonstrate the generalization of SparseCtrl on both original and personalized T2V generators. Codes and models will be publicly available at [this https URL](https://guoyww.github.io/projects/SparseCtrl).*
SparseCtrl introduces the following checkpoints for controlled text-to-video generation:
- [SparseCtrl Scribble](https://huggingface.co/guoyww/animatediff-sparsectrl-scribble)
- [SparseCtrl RGB](https://huggingface.co/guoyww/animatediff-sparsectrl-rgb)
#### Using SparseCtrl Scribble
```python
import torch
from diffusers import AnimateDiffSparseControlNetPipeline
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif, load_image
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
controlnet_id = "guoyww/animatediff-sparsectrl-scribble"
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
vae_id = "stabilityai/sd-vae-ft-mse"
device = "cuda"
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
scheduler = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
algorithm_type="dpmsolver++",
use_karras_sigmas=True,
)
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
model_id,
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
scheduler=scheduler,
torch_dtype=torch.float16,
).to(device)
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
pipe.fuse_lora(lora_scale=1.0)
prompt = "an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality"
negative_prompt = "low quality, worst quality, letterboxed"
image_files = [
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png"
]
condition_frame_indices = [0, 8, 15]
conditioning_frames = [load_image(img_file) for img_file in image_files]
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
conditioning_frames=conditioning_frames,
controlnet_conditioning_scale=1.0,
controlnet_frame_indices=condition_frame_indices,
generator=torch.Generator().manual_seed(1337),
).frames[0]
export_to_gif(video, "output.gif")
```
Here are some sample outputs:
<table align="center">
<tr>
<center>
<b>an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality</b>
</center>
</tr>
<tr>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png" alt="scribble-1" />
</center>
</td>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png" alt="scribble-2" />
</center>
</td>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png" alt="scribble-3" />
</center>
</td>
</tr>
<tr>
<td colspan=3>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-sparsectrl-scribble-results.gif" alt="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality" />
</center>
</td>
</tr>
</table>
#### Using SparseCtrl RGB
```python
import torch
from diffusers import AnimateDiffSparseControlNetPipeline
from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif, load_image
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3"
controlnet_id = "guoyww/animatediff-sparsectrl-rgb"
lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3"
vae_id = "stabilityai/sd-vae-ft-mse"
device = "cuda"
motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=torch.float16).to(device)
controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=torch.float16).to(device)
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
scheduler = DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
algorithm_type="dpmsolver++",
use_karras_sigmas=True,
)
pipe = AnimateDiffSparseControlNetPipeline.from_pretrained(
model_id,
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
scheduler=scheduler,
torch_dtype=torch.float16,
).to(device)
pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-firework.png")
video = pipe(
prompt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background",
negative_prompt="low quality, worst quality",
num_inference_steps=25,
conditioning_frames=image,
controlnet_frame_indices=[0],
controlnet_conditioning_scale=1.0,
generator=torch.Generator().manual_seed(42),
).frames[0]
export_to_gif(video, "output.gif")
```
Here are some sample outputs:
<table align="center">
<tr>
<center>
<b>closeup face photo of man in black clothes, night city street, bokeh, fireworks in background</b>
</center>
</tr>
<tr>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-firework.png" alt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background" />
</center>
</td>
<td>
<center>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-sparsectrl-rgb-result.gif" alt="closeup face photo of man in black clothes, night city street, bokeh, fireworks in background" />
</center>
</td>
</tr>
</table>
### AnimateDiffSDXLPipeline
AnimateDiff can also be used with SDXL models. This is currently an experimental feature as only a beta release of the motion adapter checkpoint is available.
@@ -255,6 +519,97 @@ Here are some sample outputs:
</tr>
</table>
### AnimateDiffVideoToVideoControlNetPipeline
AnimateDiff can be used together with ControlNets to enhance video-to-video generation by allowing for precise control over the output. ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala, and allows you to condition Stable Diffusion with an additional control image to ensure that the spatial information is preserved throughout the video.
This pipeline allows you to condition your generation both on the original video and on a sequence of control images.
```python
import torch
from PIL import Image
from tqdm.auto import tqdm
from controlnet_aux.processor import OpenposeDetector
from diffusers import AnimateDiffVideoToVideoControlNetPipeline
from diffusers.utils import export_to_gif, load_video
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler
# Load the ControlNet
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
# Load the motion adapter
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
# Load SD 1.5 based finetuned model
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe = AnimateDiffVideoToVideoControlNetPipeline.from_pretrained(
"SG161222/Realistic_Vision_V5.1_noVAE",
motion_adapter=motion_adapter,
controlnet=controlnet,
vae=vae,
).to(device="cuda", dtype=torch.float16)
# Enable LCM to speed up inference
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora")
pipe.set_adapters(["lcm-lora"], [0.8])
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif")
video = [frame.convert("RGB") for frame in video]
prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
# Create controlnet preprocessor
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
# Preprocess controlnet images
conditioning_frames = []
for frame in tqdm(video):
conditioning_frames.append(open_pose(frame))
strength = 0.8
with torch.inference_mode():
video = pipe(
video=video,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=10,
guidance_scale=2.0,
controlnet_conditioning_scale=0.75,
conditioning_frames=conditioning_frames,
strength=strength,
generator=torch.Generator().manual_seed(42),
).frames[0]
video = [frame.resize(conditioning_frames[0].size) for frame in video]
export_to_gif(video, f"animatediff_vid2vid_controlnet.gif", fps=8)
```
Here are some sample outputs:
<table align="center">
<tr>
<th align="center">Source Video</th>
<th align="center">Output Video</th>
</tr>
<tr>
<td align="center">
anime girl, dancing
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif" alt="anime girl, dancing" />
</td>
<td align="center">
astronaut in space, dancing
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff_vid2vid_controlnet.gif" alt="astronaut in space, dancing" />
</td>
</tr>
</table>
**The lights and composition were transferred from the Source Video.**
## Using Motion LoRAs
Motion LoRAs are a collection of LoRAs that work with the `guoyww/animatediff-motion-adapter-v1-5-2` checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.
@@ -559,6 +914,89 @@ export_to_gif(frames, "animatelcm-motion-lora.gif")
</tr>
</table>
## Using FreeNoise
[FreeNoise: Tuning-Free Longer Video Diffusion via Noise Rescheduling](https://arxiv.org/abs/2310.15169) by Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, Ziwei Liu.
FreeNoise is a sampling mechanism that can generate longer videos with short-video generation models by employing noise-rescheduling, temporal attention over sliding windows, and weighted averaging of latent frames. It also can be used with multiple prompts to allow for interpolated video generations. More details are available in the paper.
The currently supported AnimateDiff pipelines that can be used with FreeNoise are:
- [`AnimateDiffPipeline`]
- [`AnimateDiffControlNetPipeline`]
- [`AnimateDiffVideoToVideoPipeline`]
- [`AnimateDiffVideoToVideoControlNetPipeline`]
In order to use FreeNoise, a single line needs to be added to the inference code after loading your pipelines.
```diff
+ pipe.enable_free_noise()
```
After this, either a single prompt could be used, or multiple prompts can be passed as a dictionary of integer-string pairs. The integer keys of the dictionary correspond to the frame index at which the influence of that prompt would be maximum. Each frame index should map to a single string prompt. The prompts for intermediate frame indices, that are not passed in the dictionary, are created by interpolating between the frame prompts that are passed. By default, simple linear interpolation is used. However, you can customize this behaviour with a callback to the `prompt_interpolation_callback` parameter when enabling FreeNoise.
Full example:
```python
import torch
from diffusers import AutoencoderKL, AnimateDiffPipeline, LCMScheduler, MotionAdapter
from diffusers.utils import export_to_video, load_image
# Load pipeline
dtype = torch.float16
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM", torch_dtype=dtype)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype)
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=motion_adapter, vae=vae, torch_dtype=dtype)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
pipe.load_lora_weights(
"wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm_lora"
)
pipe.set_adapters(["lcm_lora"], [0.8])
# Enable FreeNoise for long prompt generation
pipe.enable_free_noise(context_length=16, context_stride=4)
pipe.to("cuda")
# Can be a single prompt, or a dictionary with frame timesteps
prompt = {
0: "A caterpillar on a leaf, high quality, photorealistic",
40: "A caterpillar transforming into a cocoon, on a leaf, near flowers, photorealistic",
80: "A cocoon on a leaf, flowers in the backgrond, photorealistic",
120: "A cocoon maturing and a butterfly being born, flowers and leaves visible in the background, photorealistic",
160: "A beautiful butterfly, vibrant colors, sitting on a leaf, flowers in the background, photorealistic",
200: "A beautiful butterfly, flying away in a forest, photorealistic",
240: "A cyberpunk butterfly, neon lights, glowing",
}
negative_prompt = "bad quality, worst quality, jpeg artifacts"
# Run inference
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=256,
guidance_scale=2.5,
num_inference_steps=10,
generator=torch.Generator("cpu").manual_seed(0),
)
# Save video
frames = output.frames[0]
export_to_video(frames, "output.mp4", fps=16)
```
### FreeNoise memory savings
Since FreeNoise processes multiple frames together, there are parts in the modeling where the memory required exceeds that available on normal consumer GPUs. The main memory bottlenecks that we identified are spatial and temporal attention blocks, upsampling and downsampling blocks, resnet blocks and feed-forward layers. Since most of these blocks operate effectively only on the channel/embedding dimension, one can perform chunked inference across the batch dimensions. The batch dimension in AnimateDiff are either spatial (`[B x F, H x W, C]`) or temporal (`B x H x W, F, C`) in nature (note that it may seem counter-intuitive, but the batch dimension here are correct, because spatial blocks process across the `B x F` dimension while the temporal blocks process across the `B x H x W` dimension). We introduce a `SplitInferenceModule` that makes it easier to chunk across any dimension and perform inference. This saves a lot of memory but comes at the cost of requiring more time for inference.
```diff
# Load pipeline and adapters
# ...
+ pipe.enable_free_noise_split_inference()
+ pipe.unet.enable_forward_chunking(16)
```
The call to `pipe.enable_free_noise_split_inference` method accepts two parameters: `spatial_split_size` (defaults to `256`) and `temporal_split_size` (defaults to `16`). These can be configured based on how much VRAM you have available. A lower split size results in lower memory usage but slower inference, whereas a larger split size results in faster inference at the cost of more memory.
## Using `from_single_file` with the MotionAdapter
@@ -571,7 +1009,6 @@ ckpt_path = "https://huggingface.co/Lightricks/LongAnimateDiff/blob/main/lt_long
adapter = MotionAdapter.from_single_file(ckpt_path, torch_dtype=torch.float16)
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter)
```
## AnimateDiffPipeline
@@ -580,6 +1017,18 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt
- all
- __call__
## AnimateDiffControlNetPipeline
[[autodoc]] AnimateDiffControlNetPipeline
- all
- __call__
## AnimateDiffSparseControlNetPipeline
[[autodoc]] AnimateDiffSparseControlNetPipeline
- all
- __call__
## AnimateDiffSDXLPipeline
[[autodoc]] AnimateDiffSDXLPipeline
@@ -592,6 +1041,12 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt
- all
- __call__
## AnimateDiffVideoToVideoControlNetPipeline
[[autodoc]] AnimateDiffVideoToVideoControlNetPipeline
- all
- __call__
## AnimateDiffPipelineOutput
[[autodoc]] pipelines.animatediff.AnimateDiffPipelineOutput

View File

@@ -18,7 +18,7 @@ It was developed by the Fal team and more details about it can be found in [this
<Tip>
AuraFlow can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details.
AuraFlow can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details.
</Tip>

View File

@@ -0,0 +1,123 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# CogVideoX
[CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer](https://arxiv.org/abs/2408.06072) from Tsinghua University & ZhipuAI, by Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang, Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, Jie Tang.
The abstract from the paper is:
*We introduce CogVideoX, a large-scale diffusion transformer model designed for generating videos based on text prompts. To efficently model video data, we propose to levearge a 3D Variational Autoencoder (VAE) to compresses videos along both spatial and temporal dimensions. To improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. By employing a progressive training technique, CogVideoX is adept at producing coherent, long-duration videos characterized by significant motion. In addition, we develop an effectively text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method. It significantly helps enhance the performance of CogVideoX, improving both generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of CogVideoX-2B is publicly available at https://github.com/THUDM/CogVideo.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
There are two models available that can be used with the text-to-video and video-to-video CogVideoX pipelines:
- [`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b): The recommended dtype for running this model is `fp16`.
- [`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b): The recommended dtype for running this model is `bf16`.
There is one model available that can be used with the image-to-video CogVideoX pipeline:
- [`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V): The recommended dtype for running this model is `bf16`.
## Inference
Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency.
First, load the pipeline:
```python
import torch
from diffusers import CogVideoXPipeline, CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video,load_image
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b").to("cuda") # or "THUDM/CogVideoX-2b"
```
If you are using the image-to-video pipeline, load it as follows:
```python
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V").to("cuda")
```
Then change the memory layout of the pipelines `transformer` component to `torch.channels_last`:
```python
pipe.transformer.to(memory_format=torch.channels_last)
```
Compile the components and run inference:
```python
pipe.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
# CogVideoX works well with long and well-described prompts
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
```
The [T2V benchmark](https://gist.github.com/a-r-r-o-w/5183d75e452a368fd17448fcc810bd3f) results on an 80GB A100 machine are:
```
Without torch.compile(): Average inference time: 96.89 seconds.
With torch.compile(): Average inference time: 76.27 seconds.
```
### Memory optimization
CogVideoX-2b requires about 19 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/a-r-r-o-w/3959a03f15be5c9bd1fe545b09dfcc93) script.
- `pipe.enable_model_cpu_offload()`:
- Without enabling cpu offloading, memory usage is `33 GB`
- With enabling cpu offloading, memory usage is `19 GB`
- `pipe.enable_sequential_cpu_offload()`:
- Similar to `enable_model_cpu_offload` but can significantly reduce memory usage at the cost of slow inference
- When enabled, memory usage is under `4 GB`
- `pipe.vae.enable_tiling()`:
- With enabling cpu offloading and tiling, memory usage is `11 GB`
- `pipe.vae.enable_slicing()`
### Quantized inference
[torchao](https://github.com/pytorch/ao) and [optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the text encoder, transformer and VAE modules to lower the memory requirements. This makes it possible to run the model on a free-tier T4 Colab or lower VRAM GPUs!
It is also worth noting that torchao quantization is fully compatible with [torch.compile](/optimization/torch2.0#torchcompile), which allows for much faster inference speed. Additionally, models can be serialized and stored in a quantized datatype to save disk space with torchao. Find examples and benchmarks in the gists below.
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
## CogVideoXPipeline
[[autodoc]] CogVideoXPipeline
- all
- __call__
## CogVideoXImageToVideoPipeline
[[autodoc]] CogVideoXImageToVideoPipeline
- all
- __call__
## CogVideoXVideoToVideoPipeline
[[autodoc]] CogVideoXVideoToVideoPipeline
- all
- __call__
## CogVideoXPipelineOutput
[[autodoc]] pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput

View File

@@ -0,0 +1,48 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet with Flux.1
FluxControlNetPipeline is an implementation of ControlNet for Flux.1.
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This controlnet code is implemented by [The InstantX Team](https://huggingface.co/InstantX). You can find pre-trained checkpoints for Flux-ControlNet in the table below:
| ControlNet type | Developer | Link |
| -------- | ---------- | ---- |
| Canny | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny) |
| Depth | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Depth) |
| Union | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union) |
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## FluxControlNetPipeline
[[autodoc]] FluxControlNetPipeline
- all
- __call__
## FluxPipelineOutput
[[autodoc]] pipelines.flux.pipeline_output.FluxPipelineOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2023 The HuggingFace Team and The InstantX Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -22,7 +22,16 @@ The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This code is implemented by [The InstantX Team](https://huggingface.co/InstantX). You can find pre-trained checkpoints for SD3-ControlNet on [The InstantX Team](https://huggingface.co/InstantX) Hub profile.
This controlnet code is mainly implemented by [The InstantX Team](https://huggingface.co/InstantX). The inpainting-related code was developed by [The Alimama Creative Team](https://huggingface.co/alimama-creative). You can find pre-trained checkpoints for SD3-ControlNet in the table below:
| ControlNet type | Developer | Link |
| -------- | ---------- | ---- |
| Canny | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Canny) |
| Pose | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Pose) |
| Tile | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Tile) |
| Inpainting | [The AlimamaCreative Team](https://huggingface.co/alimama-creative) | [link](https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting) |
<Tip>
@@ -35,5 +44,10 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers)
- all
- __call__
## StableDiffusion3ControlNetInpaintingPipeline
[[autodoc]] pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet_inpainting.StableDiffusion3ControlNetInpaintingPipeline
- all
- __call__
## StableDiffusion3PipelineOutput
[[autodoc]] pipelines.stable_diffusion_3.pipeline_output.StableDiffusion3PipelineOutput

View File

@@ -0,0 +1,190 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Flux
Flux is a series of text-to-image generation models based on diffusion transformers. To know more about Flux, check out the original [blog post](https://blackforestlabs.ai/announcing-black-forest-labs/) by the creators of Flux, Black Forest Labs.
Original model checkpoints for Flux can be found [here](https://huggingface.co/black-forest-labs). Original inference code can be found [here](https://github.com/black-forest-labs/flux).
<Tip>
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
</Tip>
Flux comes in two variants:
* Timestep-distilled (`black-forest-labs/FLUX.1-schnell`)
* Guidance-distilled (`black-forest-labs/FLUX.1-dev`)
Both checkpoints have slightly difference usage which we detail below.
### Timestep-distilled
* `max_sequence_length` cannot be more than 256.
* `guidance_scale` needs to be 0.
* As this is a timestep-distilled model, it benefits from fewer sampling steps.
```python
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
out = pipe(
prompt=prompt,
guidance_scale=0.,
height=768,
width=1360,
num_inference_steps=4,
max_sequence_length=256,
).images[0]
out.save("image.png")
```
### Guidance-distilled
* The guidance-distilled variant takes about 50 sampling steps for good-quality generation.
* It doesn't have any limitations around the `max_sequence_length`.
```python
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "a tiny astronaut hatching from an egg on the moon"
out = pipe(
prompt=prompt,
guidance_scale=3.5,
height=768,
width=1360,
num_inference_steps=50,
).images[0]
out.save("image.png")
```
## Running FP16 inference
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.
FP16 inference code:
```python
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) # can replace schnell with dev
# to run on low vram GPUs (i.e. between 4 and 32 GB VRAM)
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.to(torch.float16) # casting here instead of in the pipeline constructor because doing so in the constructor loads all models into CPU memory at once
prompt = "A cat holding a sign that says hello world"
out = pipe(
prompt=prompt,
guidance_scale=0.,
height=768,
width=1360,
num_inference_steps=4,
max_sequence_length=256,
).images[0]
out.save("image.png")
```
## Single File Loading for the `FluxTransformer2DModel`
The `FluxTransformer2DModel` supports loading checkpoints in the original format shipped by Black Forest Labs. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.
<Tip>
`FP8` inference can be brittle depending on the GPU type, CUDA version, and `torch` version that you are using. It is recommended that you use the `optimum-quanto` library in order to run FP8 inference on your machine.
</Tip>
The following example demonstrates how to run Flux with less than 16GB of VRAM.
First install `optimum-quanto`
```shell
pip install optimum-quanto
```
Then run the following example
```python
import torch
from diffusers import FluxTransformer2DModel, FluxPipeline
from transformers import T5EncoderModel, CLIPTextModel
from optimum.quanto import freeze, qfloat8, quantize
bfl_repo = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
transformer = FluxTransformer2DModel.from_single_file("https://huggingface.co/Kijai/flux-fp8/blob/main/flux1-dev-fp8.safetensors", torch_dtype=dtype)
quantize(transformer, weights=qfloat8)
freeze(transformer)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, text_encoder_2=None, torch_dtype=dtype)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt,
guidance_scale=3.5,
output_type="pil",
num_inference_steps=20,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save("flux-fp8-dev.png")
```
## FluxPipeline
[[autodoc]] FluxPipeline
- all
- __call__
## FluxImg2ImgPipeline
[[autodoc]] FluxImg2ImgPipeline
- all
- __call__
## FluxInpaintPipeline
[[autodoc]] FluxInpaintPipeline
- all
- __call__
## FluxControlNetInpaintPipeline
[[autodoc]] FluxControlNetInpaintPipeline
- all
- __call__
## FluxControlNetImg2ImgPipeline
[[autodoc]] FluxControlNetImg2ImgPipeline
- all
- __call__

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/kolors/kolors_header_collage.png)
Kolors is a large-scale text-to-image generation model based on latent diffusion, developed by [the Kuaishou Kolors team](kwai-kolors@kuaishou.com). Trained on billions of text-image pairs, Kolors exhibits significant advantages over both open-source and closed-source models in visual quality, complex semantic accuracy, and text rendering for both Chinese and English characters. Furthermore, Kolors supports both Chinese and English inputs, demonstrating strong performance in understanding and generating Chinese-specific content. For more details, please refer to this [technical report](https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf).
Kolors is a large-scale text-to-image generation model based on latent diffusion, developed by [the Kuaishou Kolors team](https://github.com/Kwai-Kolors/Kolors). Trained on billions of text-image pairs, Kolors exhibits significant advantages over both open-source and closed-source models in visual quality, complex semantic accuracy, and text rendering for both Chinese and English characters. Furthermore, Kolors supports both Chinese and English inputs, demonstrating strong performance in understanding and generating Chinese-specific content. For more details, please refer to this [technical report](https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf).
The abstract from the technical report is:
@@ -41,9 +41,75 @@ image = pipe(
image.save("kolors_sample.png")
```
### IP Adapter
Kolors needs a different IP Adapter to work, and it uses [Openai-CLIP-336](https://huggingface.co/openai/clip-vit-large-patch14-336) as an image encoder.
<Tip>
Using an IP Adapter with Kolors requires more than 24GB of VRAM. To use it, we recommend using [`~DiffusionPipeline.enable_model_cpu_offload`] on consumer GPUs.
</Tip>
<Tip>
While Kolors is integrated in Diffusers, you need to load the image encoder from a revision to use the safetensor files. You can still use the main branch of the original repository if you're comfortable loading pickle checkpoints.
</Tip>
```python
import torch
from transformers import CLIPVisionModelWithProjection
from diffusers import DPMSolverMultistepScheduler, KolorsPipeline
from diffusers.utils import load_image
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"Kwai-Kolors/Kolors-IP-Adapter-Plus",
subfolder="image_encoder",
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
revision="refs/pr/4",
)
pipe = KolorsPipeline.from_pretrained(
"Kwai-Kolors/Kolors-diffusers", image_encoder=image_encoder, torch_dtype=torch.float16, variant="fp16"
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
pipe.load_ip_adapter(
"Kwai-Kolors/Kolors-IP-Adapter-Plus",
subfolder="",
weight_name="ip_adapter_plus_general.safetensors",
revision="refs/pr/4",
image_encoder_folder=None,
)
pipe.enable_model_cpu_offload()
ipa_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/kolors/cat_square.png")
image = pipe(
prompt="best quality, high quality",
negative_prompt="",
guidance_scale=6.5,
num_inference_steps=25,
ip_adapter_image=ipa_image,
).images[0]
image.save("kolors_ipa_sample.png")
```
## KolorsPipeline
[[autodoc]] KolorsPipeline
- all
- __call__
## KolorsImg2ImgPipeline
[[autodoc]] KolorsImg2ImgPipeline
- all
- __call__

View File

@@ -24,6 +24,8 @@ The abstract from the paper is:
**Highlights**: Latte is a latent diffusion transformer proposed as a backbone for modeling different modalities (trained for text-to-video generation here). It achieves state-of-the-art performance across four standard video benchmarks - [FaceForensics](https://arxiv.org/abs/1803.09179), [SkyTimelapse](https://arxiv.org/abs/1709.07592), [UCF101](https://arxiv.org/abs/1212.0402) and [Taichi-HD](https://arxiv.org/abs/2003.00196). To prepare and download the datasets for evaluation, please refer to [this https URL](https://github.com/Vchitect/Latte/blob/main/docs/datasets_evaluation.md).
This pipeline was contributed by [maxin-cn](https://github.com/maxin-cn). The original codebase can be found [here](https://github.com/Vchitect/Latte). The original weights can be found under [hf.co/maxin-cn](https://huggingface.co/maxin-cn).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.

View File

@@ -43,6 +43,8 @@ Lumina-T2X has the following components:
* It uses a Flow-based Large Diffusion Transformer as the backbone
* It supports different any modalities with one backbone and corresponding encoder, decoder.
This pipeline was contributed by [PommesPeter](https://github.com/PommesPeter). The original codebase can be found [here](https://github.com/Alpha-VLLM/Lumina-T2X). The original weights can be found under [hf.co/Alpha-VLLM](https://huggingface.co/Alpha-VLLM).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
@@ -57,7 +59,7 @@ First, load the pipeline:
```python
from diffusers import LuminaText2ImgPipeline
import torch
import torch
pipeline = LuminaText2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16
@@ -85,4 +87,4 @@ image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit w
[[autodoc]] LuminaText2ImgPipeline
- all
- __call__

View File

@@ -30,62 +30,64 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
| Pipeline | Tasks |
|---|---|
| [AltDiffusion](alt_diffusion) | image2image |
| [aMUSEd](amused) | text2image |
| [AnimateDiff](animatediff) | text2video |
| [Attend-and-Excite](attend_and_excite) | text2image |
| [Audio Diffusion](audio_diffusion) | image2audio |
| [AudioLDM](audioldm) | text2audio |
| [AudioLDM2](audioldm2) | text2audio |
| [AuraFlow](auraflow) | text2image |
| [BLIP Diffusion](blip_diffusion) | text2image |
| [CogVideoX](cogvideox) | text2video |
| [Consistency Models](consistency_models) | unconditional image generation |
| [ControlNet](controlnet) | text2image, image2image, inpainting |
| [ControlNet with Flux.1](controlnet_flux) | text2image |
| [ControlNet with Hunyuan-DiT](controlnet_hunyuandit) | text2image |
| [ControlNet with Stable Diffusion 3](controlnet_sd3) | text2image |
| [ControlNet with Stable Diffusion XL](controlnet_sdxl) | text2image |
| [ControlNet-XS](controlnetxs) | text2image |
| [ControlNet-XS with Stable Diffusion XL](controlnetxs_sdxl) | text2image |
| [Cycle Diffusion](cycle_diffusion) | image2image |
| [Dance Diffusion](dance_diffusion) | unconditional audio generation |
| [DDIM](ddim) | unconditional image generation |
| [DDPM](ddpm) | unconditional image generation |
| [DeepFloyd IF](deepfloyd_if) | text2image, image2image, inpainting, super-resolution |
| [DiffEdit](diffedit) | inpainting |
| [DiT](dit) | text2image |
| [GLIGEN](stable_diffusion/gligen) | text2image |
| [Flux](flux) | text2image |
| [Hunyuan-DiT](hunyuandit) | text2image |
| [I2VGen-XL](i2vgenxl) | text2video |
| [InstructPix2Pix](pix2pix) | image editing |
| [Kandinsky 2.1](kandinsky) | text2image, image2image, inpainting, interpolation |
| [Kandinsky 2.2](kandinsky_v22) | text2image, image2image, inpainting |
| [Kandinsky 3](kandinsky3) | text2image, image2image |
| [Kolors](kolors) | text2image |
| [Latent Consistency Models](latent_consistency_models) | text2image |
| [Latent Diffusion](latent_diffusion) | text2image, super-resolution |
| [LDM3D](stable_diffusion/ldm3d_diffusion) | text2image, text-to-3D, text-to-pano, upscaling |
| [Latte](latte) | text2image |
| [LEDITS++](ledits_pp) | image editing |
| [Lumina-T2X](lumina) | text2image |
| [Marigold](marigold) | depth |
| [MultiDiffusion](panorama) | text2image |
| [MusicLDM](musicldm) | text2audio |
| [PAG](pag) | text2image |
| [Paint by Example](paint_by_example) | inpainting |
| [ParaDiGMS](paradigms) | text2image |
| [Pix2Pix Zero](pix2pix_zero) | image editing |
| [PIA](pia) | image2video |
| [PixArt-α](pixart) | text2image |
| [PNDM](pndm) | unconditional image generation |
| [RePaint](repaint) | inpainting |
| [Score SDE VE](score_sde_ve) | unconditional image generation |
| [PixArt-Σ](pixart_sigma) | text2image |
| [Self-Attention Guidance](self_attention_guidance) | text2image |
| [Semantic Guidance](semantic_stable_diffusion) | text2image |
| [Shap-E](shap_e) | text-to-3D, image-to-3D |
| [Spectrogram Diffusion](spectrogram_diffusion) | |
| [Stable Audio](stable_audio) | text2audio |
| [Stable Cascade](stable_cascade) | text2image |
| [Stable Diffusion](stable_diffusion/overview) | text2image, image2image, depth2image, inpainting, image variation, latent upscaler, super-resolution |
| [Stable Diffusion Model Editing](model_editing) | model editing |
| [Stable Diffusion XL](stable_diffusion/stable_diffusion_xl) | text2image, image2image, inpainting |
| [Stable Diffusion XL Turbo](stable_diffusion/sdxl_turbo) | text2image, image2image, inpainting |
| [Stable unCLIP](stable_unclip) | text2image, image variation |
| [Stochastic Karras VE](stochastic_karras_ve) | unconditional image generation |
| [T2I-Adapter](stable_diffusion/adapter) | text2image |
| [Text2Video](text_to_video) | text2video, video2video |
| [Text2Video-Zero](text_to_video_zero) | text2video |
| [unCLIP](unclip) | text2image, image variation |
| [Unconditional Latent Diffusion](latent_diffusion_uncond) | unconditional image generation |
| [UniDiffuser](unidiffuser) | text2image, image2text, image variation, text variation, unconditional image generation, unconditional audio generation |
| [Value-guided planning](value_guided_sampling) | value guided sampling |
| [Versatile Diffusion](versatile_diffusion) | text2image, image variation |
| [VQ Diffusion](vq_diffusion) | text2image |
| [Wuerstchen](wuerstchen) | text2image |
## DiffusionPipeline

View File

@@ -20,6 +20,34 @@ The abstract from the paper is:
*Recent studies have demonstrated that diffusion models are capable of generating high-quality samples, but their quality heavily depends on sampling guidance techniques, such as classifier guidance (CG) and classifier-free guidance (CFG). These techniques are often not applicable in unconditional generation or in various downstream tasks such as image restoration. In this paper, we propose a novel sampling guidance, called Perturbed-Attention Guidance (PAG), which improves diffusion sample quality across both unconditional and conditional settings, achieving this without requiring additional training or the integration of external modules. PAG is designed to progressively enhance the structure of samples throughout the denoising process. It involves generating intermediate samples with degraded structure by substituting selected self-attention maps in diffusion U-Net with an identity matrix, by considering the self-attention mechanisms' ability to capture structural information, and guiding the denoising process away from these degraded samples. In both ADM and Stable Diffusion, PAG surprisingly improves sample quality in conditional and even unconditional scenarios. Moreover, PAG significantly improves the baseline performance in various downstream tasks where existing guidances such as CG or CFG cannot be fully utilized, including ControlNet with empty prompts and image restoration such as inpainting and deblurring.*
PAG can be used by specifying the `pag_applied_layers` as a parameter when instantiating a PAG pipeline. It can be a single string or a list of strings. Each string can be a unique layer identifier or a regular expression to identify one or more layers.
- Full identifier as a normal string: `down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor`
- Full identifier as a RegEx: `down_blocks.2.(attentions|motion_modules).0.transformer_blocks.0.attn1.processor`
- Partial identifier as a RegEx: `down_blocks.2`, or `attn1`
- List of identifiers (can be combo of strings and ReGex): `["blocks.1", "blocks.(14|20)", r"down_blocks\.(2,3)"]`
<Tip warning={true}>
Since RegEx is supported as a way for matching layer identifiers, it is crucial to use it correctly otherwise there might be unexpected behaviour. The recommended way to use PAG is by specifying layers as `blocks.{layer_index}` and `blocks.({layer_index_1|layer_index_2|...})`. Using it in any other way, while doable, may bypass our basic validation checks and give you unexpected results.
</Tip>
## AnimateDiffPAGPipeline
[[autodoc]] AnimateDiffPAGPipeline
- all
- __call__
## HunyuanDiTPAGPipeline
[[autodoc]] HunyuanDiTPAGPipeline
- all
- __call__
## KolorsPAGPipeline
[[autodoc]] KolorsPAGPipeline
- all
- __call__
## StableDiffusionPAGPipeline
[[autodoc]] StableDiffusionPAGPipeline
- all
@@ -49,3 +77,19 @@ The abstract from the paper is:
[[autodoc]] StableDiffusionXLControlNetPAGPipeline
- all
- __call__
## StableDiffusionXLControlNetPAGImg2ImgPipeline
[[autodoc]] StableDiffusionXLControlNetPAGImg2ImgPipeline
- all
- __call__
## StableDiffusion3PAGPipeline
[[autodoc]] StableDiffusion3PAGPipeline
- all
- __call__
## PixArtSigmaPAGPipeline
[[autodoc]] PixArtSigmaPAGPipeline
- all
- __call__

View File

@@ -0,0 +1,42 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Stable Audio
Stable Audio was proposed in [Stable Audio Open](https://arxiv.org/abs/2407.14358) by Zach Evans et al. . it takes a text prompt as input and predicts the corresponding sound or music sample.
Stable Audio Open generates variable-length (up to 47s) stereo audio at 44.1kHz from text prompts. It comprises three components: an autoencoder that compresses waveforms into a manageable sequence length, a T5-based text embedding for text conditioning, and a transformer-based diffusion (DiT) model that operates in the latent space of the autoencoder.
Stable Audio is trained on a corpus of around 48k audio recordings, where around 47k are from Freesound and the rest are from the Free Music Archive (FMA). All audio files are licensed under CC0, CC BY, or CC Sampling+. This data is used to train the autoencoder and the DiT.
The abstract of the paper is the following:
*Open generative models are vitally important for the community, allowing for fine-tunes and serving as baselines when presenting new models. However, most current text-to-audio models are private and not accessible for artists and researchers to build upon. Here we describe the architecture and training process of a new open-weights text-to-audio model trained with Creative Commons data. Our evaluation shows that the model's performance is competitive with the state-of-the-art across various metrics. Notably, the reported FDopenl3 results (measuring the realism of the generations) showcase its potential for high-quality stereo sound synthesis at 44.1kHz.*
This pipeline was contributed by [Yoach Lacombe](https://huggingface.co/ylacombe). The original codebase can be found at [Stability-AI/stable-audio-tools](https://github.com/Stability-AI/stable-audio-tools).
## Tips
When constructing a prompt, keep in mind:
* Descriptive prompt inputs work best; use adjectives to describe the sound (for example, "high quality" or "clear") and make the prompt context specific where possible (e.g. "melodic techno with a fast beat and synths" works better than "techno").
* Using a *negative prompt* can significantly improve the quality of the generated audio. Try using a negative prompt of "low quality, average quality".
During inference:
* The _quality_ of the generated audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1 to enable. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
## StableAudioPipeline
[[autodoc]] StableAudioPipeline
- all
- __call__

View File

@@ -19,7 +19,7 @@ The Stable Diffusion model can also be applied to inpainting which lets you edit
It is recommended to use this pipeline with checkpoints that have been specifically fine-tuned for inpainting, such
as [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting). Default
text-to-image Stable Diffusion checkpoints, such as
[runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) are also compatible but they might be less performant.
[stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) are also compatible but they might be less performant.
<Tip>

View File

@@ -203,7 +203,7 @@ from diffusers import StableDiffusionImg2ImgPipeline
import gradio as gr
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
gr.Interface.from_pipeline(pipe).launch()
```

View File

@@ -40,8 +40,9 @@ To generate a video from prompt, run the following Python code:
```python
import torch
from diffusers import TextToVideoZeroPipeline
import imageio
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
prompt = "A panda is playing guitar on times square"
@@ -63,7 +64,7 @@ import torch
from diffusers import TextToVideoZeroPipeline
import numpy as np
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
seed = 0
video_length = 24 #24 ÷ 4fps = 6 seconds
@@ -137,7 +138,7 @@ To generate a video from prompt with additional pose control
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16

View File

@@ -0,0 +1,24 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# CosineDPMSolverMultistepScheduler
The [`CosineDPMSolverMultistepScheduler`] is a variant of [`DPMSolverMultistepScheduler`] with cosine schedule, proposed by Nichol and Dhariwal (2021).
It is being used in the [Stable Audio Open](https://arxiv.org/abs/2407.14358) paper and the [Stability-AI/stable-audio-tool](https://github.com/Stability-AI/stable-audio-tool) codebase.
This scheduler was contributed by [Yoach Lacombe](https://huggingface.co/ylacombe).
## CosineDPMSolverMultistepScheduler
[[autodoc]] CosineDPMSolverMultistepScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -45,6 +45,14 @@ Many schedulers are implemented from the [k-diffusion](https://github.com/crowso
| N/A | [`DEISMultistepScheduler`] | |
| N/A | [`UniPCMultistepScheduler`] | |
## Noise schedules and schedule types
| A1111/k-diffusion | 🤗 Diffusers |
|--------------------------|----------------------------------------------------------------------------|
| Karras | init with `use_karras_sigmas=True` |
| sgm_uniform | init with `timestep_spacing="trailing"` |
| simple | init with `timestep_spacing="trailing"` |
| exponential | init with `timestep_spacing="linspace"`, `use_exponential_sigmas=True` |
All schedulers are built from the base [`SchedulerMixin`] class which implements low level utilities shared by all schedulers.
## SchedulerMixin

View File

@@ -0,0 +1,82 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Community Projects
Welcome to Community Projects. This space is dedicated to showcasing the incredible work and innovative applications created by our vibrant community using the `diffusers` library.
This section aims to:
- Highlight diverse and inspiring projects built with `diffusers`
- Foster knowledge sharing within our community
- Provide real-world examples of how `diffusers` can be leveraged
Happy exploring, and thank you for being part of the Diffusers community!
<table>
<tr>
<th>Project Name</th>
<th>Description</th>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/carson-katri/dream-textures"> dream-textures </a></td>
<td>Stable Diffusion built-in to Blender</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/megvii-research/HiDiffusion"> HiDiffusion </a></td>
<td>Increases the resolution and speed of your diffusion model by only adding a single line of code</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/lllyasviel/IC-Light"> IC-Light </a></td>
<td>IC-Light is a project to manipulate the illumination of images</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/InstantID/InstantID"> InstantID </a></td>
<td>InstantID : Zero-shot Identity-Preserving Generation in Seconds</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/Sanster/IOPaint"> IOPaint </a></td>
<td>Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/bmaltais/kohya_ss"> Kohya </a></td>
<td>Gradio GUI for Kohya's Stable Diffusion trainers</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/magic-research/magic-animate"> MagicAnimate </a></td>
<td>MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/levihsu/OOTDiffusion"> OOTDiffusion </a></td>
<td>Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/vladmandic/automatic"> SD.Next </a></td>
<td>SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/ashawkey/stable-dreamfusion"> stable-dreamfusion </a></td>
<td>Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/HVision-NKU/StoryDiffusion"> StoryDiffusion </a></td>
<td>StoryDiffusion can create a magic story by generating consistent images and videos.</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/cumulo-autumn/StreamDiffusion"> StreamDiffusion </a></td>
<td>A Pipeline-Level Solution for Real-Time Interactive Generation</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/Netwrck/stable-diffusion-server"> Stable Diffusion Server </a></td>
<td>A server configured for Inpainting/Generation/img2img with one stable diffusion model</td>
</tr>
</table>

View File

@@ -92,7 +92,7 @@ images = sd_pipeline(sample_prompts, num_images_per_prompt=1, generator=generato
![parti-prompts-14](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts-14.png)
We can also set `num_images_per_prompt` accordingly to compare different images for the same prompt. Running the same pipeline but with a different checkpoint ([v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)), yields:
We can also set `num_images_per_prompt` accordingly to compare different images for the same prompt. Running the same pipeline but with a different checkpoint ([v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)), yields:
![parti-prompts-15](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts-15.png)
@@ -177,10 +177,10 @@ generator = torch.manual_seed(seed)
images = sd_pipeline(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images
```
Then we load the [v1-5 checkpoint](https://huggingface.co/runwayml/stable-diffusion-v1-5) to generate images:
Then we load the [v1-5 checkpoint](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) to generate images:
```python
model_ckpt_1_5 = "runwayml/stable-diffusion-v1-5"
model_ckpt_1_5 = "stable-diffusion-v1-5/stable-diffusion-v1-5"
sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(model_ckpt_1_5, torch_dtype=weight_dtype).to(device)
images_1_5 = sd_pipeline_1_5(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images
@@ -198,7 +198,7 @@ print(f"CLIP Score with v-1-5: {sd_clip_score_1_5}")
# CLIP Score with v-1-5: 36.2137
```
It seems like the [v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) checkpoint performs better than its predecessor. Note, however, that the number of prompts we used to compute the CLIP scores is quite low. For a more practical evaluation, this number should be way higher, and the prompts should be diverse.
It seems like the [v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) checkpoint performs better than its predecessor. Note, however, that the number of prompts we used to compute the CLIP scores is quite low. For a more practical evaluation, this number should be way higher, and the prompts should be diverse.
<Tip warning={true}>

View File

@@ -65,7 +65,7 @@ Pipelines are designed to be easy to use (therefore do not follow [*Simple over
The following design principles are followed:
- Pipelines follow the single-file policy. All pipelines can be found in individual directories under src/diffusers/pipelines. One pipeline folder corresponds to one diffusion paper/project/release. Multiple pipeline files can be gathered in one pipeline folder, as its done for [`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion). If pipelines share similar functionality, one can make use of the [# Copied from mechanism](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251).
- Pipelines all inherit from [`DiffusionPipeline`].
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline consists of different model and scheduler components, that are documented in the [`model_index.json` file](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/model_index.json), are accessible under the same name as attributes of the pipeline and can be shared between pipelines with [`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components) function.
- Every pipeline should be loadable via the [`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained) function.
- Pipelines should be used **only** for inference.
- Pipelines should be very readable, self-explanatory, and easy to tweak.

View File

@@ -95,17 +95,17 @@ print(f"Model downloaded at {model_path}")
Once you have downloaded a snapshot of the model, you can test it using Apple's Python script.
```shell
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" -i models/coreml-stable-diffusion-v1-4_original_packages -o </path/to/output/image> --compute-unit CPU_AND_GPU --seed 93
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" -i ./models/coreml-stable-diffusion-v1-4_original_packages/original/packages -o </path/to/output/image> --compute-unit CPU_AND_GPU --seed 93
```
Pass the path of the downloaded checkpoint with `-i` flag to the script. `--compute-unit` indicates the hardware you want to allow for inference. It must be one of the following options: `ALL`, `CPU_AND_GPU`, `CPU_ONLY`, `CPU_AND_NE`. You may also provide an optional output path, and a seed for reproducibility.
The inference script assumes you're using the original version of the Stable Diffusion model, `CompVis/stable-diffusion-v1-4`. If you use another model, you *have* to specify its Hub id in the inference command line, using the `--model-version` option. This works for models already supported and custom models you trained or fine-tuned yourself.
For example, if you want to use [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5):
For example, if you want to use [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5):
```shell
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" --compute-unit ALL -o output --seed 93 -i models/coreml-stable-diffusion-v1-5_original_packages --model-version runwayml/stable-diffusion-v1-5
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" --compute-unit ALL -o output --seed 93 -i models/coreml-stable-diffusion-v1-5_original_packages --model-version stable-diffusion-v1-5/stable-diffusion-v1-5
```
## Core ML inference in Swift

View File

@@ -23,7 +23,7 @@ Then load and enable the [`DeepCacheSDHelper`](https://github.com/horseee/DeepCa
```diff
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionPipeline.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', torch_dtype=torch.float16).to("cuda")
+ from DeepCache import DeepCacheSDHelper
+ helper = DeepCacheSDHelper(pipe=pipe)

View File

@@ -47,7 +47,7 @@ import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -125,3 +125,5 @@ image
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion + Tiny AutoEncoder</figcaption>
</div>
</div>
More tiny autoencoder models for other Stable Diffusion models, like Stable Diffusion 3, are available from [madebyollin](https://huggingface.co/madebyollin).

View File

@@ -61,7 +61,7 @@ For more information, check out 🤗 Optimum Habana's [documentation](https://hu
We benchmarked Habana's first-generation Gaudi and Gaudi2 with the [Habana/stable-diffusion](https://huggingface.co/Habana/stable-diffusion) and [Habana/stable-diffusion-2](https://huggingface.co/Habana/stable-diffusion-2) Gaudi configurations (mixed precision bf16/fp32) to demonstrate their performance.
For [Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on 512x512 images:
For [Stable Diffusion v1.5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) on 512x512 images:
| | Latency (batch size = 1) | Throughput |
| ---------------------- |:------------------------:|:---------------------------:|

View File

@@ -41,7 +41,7 @@ import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -66,7 +66,7 @@ import torch
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -92,7 +92,7 @@ import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -140,7 +140,7 @@ import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
@@ -201,7 +201,7 @@ def generate_inputs():
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
@@ -265,7 +265,7 @@ class UNet2DConditionOutput:
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
@@ -315,7 +315,7 @@ from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")

View File

@@ -24,7 +24,7 @@ The `mps` backend uses PyTorch's `.to()` interface to move the Stable Diffusion
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipe = pipe.to("mps")
# Recommended if your computer has < 64 GB of RAM
@@ -46,7 +46,7 @@ If you're using **PyTorch 1.13**, you need to "prime" the pipeline with an addit
```diff
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("mps")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5").to("mps")
pipe.enable_attention_slicing()
prompt = "a photo of an astronaut riding a horse on mars"
@@ -67,7 +67,7 @@ To prevent this from happening, we recommend *attention slicing* to reduce memor
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("mps")
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("mps")
pipeline.enable_attention_slicing()
```

View File

@@ -27,7 +27,7 @@ To load and run inference, use the [`~optimum.onnxruntime.ORTStableDiffusionPipe
```python
from optimum.onnxruntime import ORTStableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipeline = ORTStableDiffusionPipeline.from_pretrained(model_id, export=True)
prompt = "sailing ship in storm by Leonardo da Vinci"
image = pipeline(prompt).images[0]
@@ -44,7 +44,7 @@ To export the pipeline in the ONNX format offline and use it later for inference
use the [`optimum-cli export`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli) command:
```bash
optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 sd_v15_onnx/
optimum-cli export onnx --model stable-diffusion-v1-5/stable-diffusion-v1-5 sd_v15_onnx/
```
Then to perform inference (you don't have to specify `export=True` again):

View File

@@ -29,7 +29,7 @@ To load and run inference, use the [`~optimum.intel.OVStableDiffusionPipeline`].
```python
from optimum.intel import OVStableDiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipeline = OVStableDiffusionPipeline.from_pretrained(model_id, export=True)
prompt = "sailing ship in storm by Rembrandt"
image = pipeline(prompt).images[0]

View File

@@ -28,7 +28,7 @@ You can use ToMe from the [`tomesd`](https://github.com/dbolya/tomesd) library w
import tomesd
pipeline = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True,
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True,
).to("cuda")
+ tomesd.apply_patch(pipeline, ratio=0.5)

View File

@@ -34,7 +34,7 @@ However, if you want to explicitly enable it, you can set a [`DiffusionPipeline`
from diffusers import DiffusionPipeline
+ from diffusers.models.attention_processor import AttnProcessor2_0
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
+ pipe.unet.set_attn_processor(AttnProcessor2_0())
prompt = "a photo of an astronaut riding a horse on mars"
@@ -49,7 +49,7 @@ In some cases - such as making the pipeline more deterministic or converting it
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
+ pipe.unet.set_default_attn_processor()
prompt = "a photo of an astronaut riding a horse on mars"
@@ -64,7 +64,7 @@ The `torch.compile` function can often provide an additional speed-up to your Py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images[0]
```
@@ -92,7 +92,7 @@ Expand the dropdown below to find the code used to benchmark each pipeline:
from diffusers import DiffusionPipeline
import torch
path = "runwayml/stable-diffusion-v1-5"
path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
run_compile = True # Set True / False
@@ -122,7 +122,7 @@ url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/st
init_image = load_image(url)
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
run_compile = True # Set True / False
@@ -183,7 +183,7 @@ url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/st
init_image = load_image(url)
init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
run_compile = True # Set True / False
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16, use_safetensors=True)

View File

@@ -0,0 +1,122 @@
# xDiT
[xDiT](https://github.com/xdit-project/xDiT) is an inference engine designed for the large scale parallel deployment of Diffusion Transformers (DiTs). xDiT provides a suite of efficient parallel approaches for Diffusion Models, as well as GPU kernel accelerations.
There are four parallel methods supported in xDiT, including [Unified Sequence Parallelism](https://arxiv.org/abs/2405.07719), [PipeFusion](https://arxiv.org/abs/2405.14430), CFG parallelism and data parallelism. The four parallel methods in xDiT can be configured in a hybrid manner, optimizing communication patterns to best suit the underlying network hardware.
Optimization orthogonal to parallelization focuses on accelerating single GPU performance. In addition to utilizing well-known Attention optimization libraries, we leverage compilation acceleration technologies such as torch.compile and onediff.
The overview of xDiT is shown as follows.
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/methods/xdit_overview.png">
</div>
You can install xDiT using the following command:
```bash
pip install xfuser
```
Here's an example of using xDiT to accelerate inference of a Diffusers model.
```diff
import torch
from diffusers import StableDiffusion3Pipeline
from xfuser import xFuserArgs, xDiTParallel
from xfuser.config import FlexibleArgumentParser
from xfuser.core.distributed import get_world_group
def main():
+ parser = FlexibleArgumentParser(description="xFuser Arguments")
+ args = xFuserArgs.add_cli_args(parser).parse_args()
+ engine_args = xFuserArgs.from_cli_args(args)
+ engine_config, input_config = engine_args.create_config()
local_rank = get_world_group().local_rank
pipe = StableDiffusion3Pipeline.from_pretrained(
pretrained_model_name_or_path=engine_config.model_config.model,
torch_dtype=torch.float16,
).to(f"cuda:{local_rank}")
# do anything you want with pipeline here
+ pipe = xDiTParallel(pipe, engine_config, input_config)
pipe(
height=input_config.height,
width=input_config.height,
prompt=input_config.prompt,
num_inference_steps=input_config.num_inference_steps,
output_type=input_config.output_type,
generator=torch.Generator(device="cuda").manual_seed(input_config.seed),
)
+ if input_config.output_type == "pil":
+ pipe.save("results", "stable_diffusion_3")
if __name__ == "__main__":
main()
```
As you can see, we only need to use xFuserArgs from xDiT to get configuration parameters, and pass these parameters along with the pipeline object from the Diffusers library into xDiTParallel to complete the parallelization of a specific pipeline in Diffusers.
xDiT runtime parameters can be viewed in the command line using `-h`, and you can refer to this [usage](https://github.com/xdit-project/xDiT?tab=readme-ov-file#2-usage) example for more details.
xDiT needs to be launched using torchrun to support its multi-node, multi-GPU parallel capabilities. For example, the following command can be used for 8-GPU parallel inference:
```bash
torchrun --nproc_per_node=8 ./inference.py --model models/FLUX.1-dev --data_parallel_degree 2 --ulysses_degree 2 --ring_degree 2 --prompt "A snowy mountain" "A small dog" --num_inference_steps 50
```
## Supported models
A subset of Diffusers models are supported in xDiT, such as Flux.1, Stable Diffusion 3, etc. The latest supported models can be found [here](https://github.com/xdit-project/xDiT?tab=readme-ov-file#-supported-dits).
## Benchmark
We tested different models on various machines, and here is some of the benchmark data.
### Flux.1-schnell
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/flux/Flux-2k-L40.png">
</div>
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/flux/Flux-2K-A100.png">
</div>
### Stable Diffusion 3
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/sd3/L40-SD3.png">
</div>
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/sd3/A100-SD3.png">
</div>
### HunyuanDiT
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/hunuyuandit/L40-HunyuanDiT.png">
</div>
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/hunuyuandit/A100-HunyuanDiT.png">
</div>
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/hunuyuandit/T4-HunyuanDiT.png">
</div>
More detailed performance metric can be found on our [github page](https://github.com/xdit-project/xDiT?tab=readme-ov-file#perf).
## Reference
[xDiT-project](https://github.com/xdit-project/xDiT)
[USP: A Unified Sequence Parallelism Approach for Long Context Generative AI](https://arxiv.org/abs/2405.07719)
[PipeFusion: Displaced Patch Pipeline Parallelism for Inference of Diffusion Transformer Models](https://arxiv.org/abs/2405.14430)

View File

@@ -54,7 +54,7 @@ The [`DiffusionPipeline`] is the easiest way to use a pretrained diffusion syste
Start by creating an instance of a [`DiffusionPipeline`] and specify which pipeline checkpoint you would like to download.
You can use the [`DiffusionPipeline`] for any [checkpoint](https://huggingface.co/models?library=diffusers&sort=downloads) stored on the Hugging Face Hub.
In this quicktour, you'll load the [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) checkpoint for text-to-image generation.
In this quicktour, you'll load the [`stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) checkpoint for text-to-image generation.
<Tip warning={true}>
@@ -67,7 +67,7 @@ Load the model with the [`~DiffusionPipeline.from_pretrained`] method:
```python
>>> from diffusers import DiffusionPipeline
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
>>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
```
The [`DiffusionPipeline`] downloads and caches all modeling, tokenization, and scheduling components. You'll see that the Stable Diffusion pipeline is composed of the [`UNet2DConditionModel`] and [`PNDMScheduler`] among other things:
@@ -124,7 +124,7 @@ You can also use the pipeline locally. The only difference is you need to downlo
```bash
!git lfs install
!git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
!git clone https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
```
Then load the saved weights into the pipeline:
@@ -142,7 +142,7 @@ Different schedulers come with different denoising speeds and quality trade-offs
```py
>>> from diffusers import EulerDiscreteScheduler
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
>>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
```

View File

@@ -20,12 +20,12 @@ This is why it's important to get the most *computational* (speed) and *memory*
This tutorial walks you through how to generate faster and better with the [`DiffusionPipeline`].
Begin by loading the [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) model:
Begin by loading the [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) model:
```python
from diffusers import DiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
```
@@ -238,7 +238,7 @@ Pretty impressive! Let's tweak the second image - corresponding to the `Generato
```python
prompts = [
"portrait photo of the oldest warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of an old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a young warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
]

View File

@@ -6,12 +6,12 @@ This guide will show you how to adapt a pretrained text-to-image model for inpai
## Configure UNet2DConditionModel parameters
A [`UNet2DConditionModel`] by default accepts 4 channels in the [input sample](https://huggingface.co/docs/diffusers/v0.16.0/en/api/models#diffusers.UNet2DConditionModel.in_channels). For example, load a pretrained text-to-image model like [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) and take a look at the number of `in_channels`:
A [`UNet2DConditionModel`] by default accepts 4 channels in the [input sample](https://huggingface.co/docs/diffusers/v0.16.0/en/api/models#diffusers.UNet2DConditionModel.in_channels). For example, load a pretrained text-to-image model like [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) and take a look at the number of `in_channels`:
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
pipeline.unet.config["in_channels"]
4
```
@@ -33,7 +33,7 @@ Initialize a [`UNet2DConditionModel`] with the pretrained text-to-image model we
```py
from diffusers import UNet2DConditionModel
model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",

View File

@@ -276,7 +276,7 @@ That's it! You don't need to add any additional parameters to your training comm
<hfoption id="PyTorch">
```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export MODEL_DIR="stable-diffusion-v1-5/stable-diffusion-v1-5"
export OUTPUT_DIR="path/to/save/model"
accelerate launch train_controlnet.py \

View File

@@ -78,7 +78,7 @@ Now the dataset is available for training by passing the dataset name to the `--
```bash
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \
--pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5" \
--dataset_name="name_of_your_dataset" \
<other-arguments>
```

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Distributed inference with multiple GPUs
# Distributed inference
On distributed setups, you can run inference across multiple GPUs with 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index) or [PyTorch Distributed](https://pytorch.org/tutorials/beginner/dist_overview.html), which is useful for generating with multiple prompts in parallel.
@@ -30,7 +30,7 @@ from accelerate import PartialState
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
distributed_state = PartialState()
pipeline.to(distributed_state.device)
@@ -48,7 +48,7 @@ accelerate launch run_distributed.py --num_processes=2
<Tip>
To learn more, take a look at the [Distributed Inference with 🤗 Accelerate](https://huggingface.co/docs/accelerate/en/usage_guides/distributed_inference#distributed-inference-with-accelerate) guide.
Refer to this minimal example [script](https://gist.github.com/sayakpaul/cfaebd221820d7b43fae638b4dfa01ba) for running inference across multiple GPUs. To learn more, take a look at the [Distributed Inference with 🤗 Accelerate](https://huggingface.co/docs/accelerate/en/usage_guides/distributed_inference#distributed-inference-with-accelerate) guide.
</Tip>
@@ -66,7 +66,7 @@ import torch.multiprocessing as mp
from diffusers import DiffusionPipeline
sd = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
```
@@ -108,4 +108,132 @@ torchrun run_distributed.py --nproc_per_node=2
```
> [!TIP]
> You can use `device_map` within a [`DiffusionPipeline`] to distribute its model-level components on multiple devices. Refer to the [Device placement](../tutorials/inference_with_big_models#device-placement) guide to learn more.
> You can use `device_map` within a [`DiffusionPipeline`] to distribute its model-level components on multiple devices. Refer to the [Device placement](../tutorials/inference_with_big_models#device-placement) guide to learn more.
## Model sharding
Modern diffusion systems such as [Flux](../api/pipelines/flux) are very large and have multiple models. For example, [Flux.1-Dev](https://hf.co/black-forest-labs/FLUX.1-dev) is made up of two text encoders - [T5-XXL](https://hf.co/google/t5-v1_1-xxl) and [CLIP-L](https://hf.co/openai/clip-vit-large-patch14) - a [diffusion transformer](../api/models/flux_transformer), and a [VAE](../api/models/autoencoderkl). With a model this size, it can be challenging to run inference on consumer GPUs.
Model sharding is a technique that distributes models across GPUs when the models don't fit on a single GPU. The example below assumes two 16GB GPUs are available for inference.
Start by computing the text embeddings with the text encoders. Keep the text encoders on two GPUs by setting `device_map="balanced"`. The `balanced` strategy evenly distributes the model on all available GPUs. Use the `max_memory` parameter to allocate the maximum amount of memory for each text encoder on each GPU.
> [!TIP]
> **Only** load the text encoders for this step! The diffusion transformer and VAE are loaded in a later step to preserve memory.
```py
from diffusers import FluxPipeline
import torch
prompt = "a photo of a dog with cat-like look"
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=None,
vae=None,
device_map="balanced",
max_memory={0: "16GB", 1: "16GB"},
torch_dtype=torch.bfloat16
)
with torch.no_grad():
print("Encoding prompts.")
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt(
prompt=prompt, prompt_2=None, max_sequence_length=512
)
```
Once the text embeddings are computed, remove them from the GPU to make space for the diffusion transformer.
```py
import gc
def flush():
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
del pipeline.text_encoder
del pipeline.text_encoder_2
del pipeline.tokenizer
del pipeline.tokenizer_2
del pipeline
flush()
```
Load the diffusion transformer next which has 12.5B parameters. This time, set `device_map="auto"` to automatically distribute the model across two 16GB GPUs. The `auto` strategy is backed by [Accelerate](https://hf.co/docs/accelerate/index) and available as a part of the [Big Model Inference](https://hf.co/docs/accelerate/concept_guides/big_model_inference) feature. It starts by distributing a model across the fastest device first (GPU) before moving to slower devices like the CPU and hard drive if needed. The trade-off of storing model parameters on slower devices is slower inference latency.
```py
from diffusers import FluxTransformer2DModel
import torch
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
device_map="auto",
torch_dtype=torch.bfloat16
)
```
> [!TIP]
> At any point, you can try `print(pipeline.hf_device_map)` to see how the various models are distributed across devices. This is useful for tracking the device placement of the models.
Add the transformer model to the pipeline for denoising, but set the other model-level components like the text encoders and VAE to `None` because you don't need them yet.
```py
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", ,
text_encoder=None,
text_encoder_2=None,
tokenizer=None,
tokenizer_2=None,
vae=None,
transformer=transformer,
torch_dtype=torch.bfloat16
)
print("Running denoising.")
height, width = 768, 1360
latents = pipeline(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=50,
guidance_scale=3.5,
height=height,
width=width,
output_type="latent",
).images
```
Remove the pipeline and transformer from memory as they're no longer needed.
```py
del pipeline.transformer
del pipeline
flush()
```
Finally, decode the latents with the VAE into an image. The VAE is typically small enough to be loaded on a single GPU.
```py
from diffusers import AutoencoderKL
from diffusers.image_processor import VaeImageProcessor
import torch
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=torch.bfloat16).to("cuda")
vae_scale_factor = 2 ** (len(vae.config.block_out_channels))
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
with torch.no_grad():
print("Running decoding.")
latents = FluxPipeline._unpack_latents(latents, height, width, vae_scale_factor)
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
image = vae.decode(latents, return_dict=False)[0]
image = image_processor.postprocess(image, output_type="pil")
image[0].save("split_transformer.png")
```
By selectively loading and unloading the models you need at a given stage and sharding the largest models across multiple GPUs, it is possible to run inference with large models on consumer GPUs.

View File

@@ -315,7 +315,7 @@ That's it! You don't need to add any additional parameters to your training comm
<hfoption id="PyTorch">
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export INSTANCE_DIR="./dog"
export OUTPUT_DIR="path_to_saved_model"
@@ -374,7 +374,7 @@ unet = UNet2DConditionModel.from_pretrained("path/to/model/checkpoint-100/unet")
text_encoder = CLIPTextModel.from_pretrained("path/to/model/checkpoint-100/checkpoint-100/text_encoder")
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", unet=unet, text_encoder=text_encoder, dtype=torch.float16,
"stable-diffusion-v1-5/stable-diffusion-v1-5", unet=unet, text_encoder=text_encoder, dtype=torch.float16,
).to("cuda")
image = pipeline("A photo of sks dog in a bucket", num_inference_steps=50, guidance_scale=7.5).images[0]

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
[InstructPix2Pix](https://hf.co/papers/2211.09800) is a Stable Diffusion model trained to edit images from human-provided instructions. For example, your prompt can be "turn the clouds rainy" and the model will edit the input image accordingly. This model is conditioned on the text prompt (or editing instruction) and the input image.
This guide will explore the [train_instruct_pix2pix.py](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py) training script to help you become familiar with it, and how you can adapt it for your own use-case.
This guide will explore the [train_instruct_pix2pix.py](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py) training script to help you become familiar with it, and how you can adapt it for your own use case.
Before running the script, make sure you install the library from source:
@@ -117,7 +117,7 @@ optimizer = optimizer_cls(
)
```
Next, the edited images and and edit instructions are [preprocessed](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L624) and [tokenized](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L610C24-L610C24). It is important the same image transformations are applied to the original and edited images.
Next, the edited images and edit instructions are [preprocessed](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L624) and [tokenized](https://github.com/huggingface/diffusers/blob/64603389da01082055a901f2883c4810d1144edb/examples/instruct_pix2pix/train_instruct_pix2pix.py#L610C24-L610C24). It is important the same image transformations are applied to the original and edited images.
```py
def preprocess_train(examples):
@@ -249,4 +249,4 @@ The SDXL training script is discussed in more detail in the [SDXL training](sdxl
Congratulations on training your own InstructPix2Pix model! 🥳 To learn more about the model, it may be helpful to:
- Read the [Instruction-tuning Stable Diffusion with InstructPix2Pix](https://huggingface.co/blog/instruction-tuning-sd) blog post to learn more about some experiments we've done with InstructPix2Pix, dataset preparation, and results for different instructions.
- Read the [Instruction-tuning Stable Diffusion with InstructPix2Pix](https://huggingface.co/blog/instruction-tuning-sd) blog post to learn more about some experiments we've done with InstructPix2Pix, dataset preparation, and results for different instructions.

View File

@@ -193,7 +193,7 @@ Now you're ready to launch the training script and start distilling!
For this guide, you'll use the `--train_shards_path_or_url` to specify the path to the [Conceptual Captions 12M](https://github.com/google-research-datasets/conceptual-12m) dataset stored on the Hub [here](https://huggingface.co/datasets/laion/conceptual-captions-12m-webdataset). Set the `MODEL_DIR` environment variable to the name of the teacher model and `OUTPUT_DIR` to where you want to save the model.
```bash
export MODEL_DIR="runwayml/stable-diffusion-v1-5"
export MODEL_DIR="stable-diffusion-v1-5/stable-diffusion-v1-5"
export OUTPUT_DIR="path/to/saved/model"
accelerate launch train_lcm_distill_sd_wds.py \
@@ -225,7 +225,7 @@ from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
import torch
unet = UNet2DConditionModel.from_pretrained("your-username/your-model", torch_dtype=torch.float16, variant="fp16")
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", unet=unet, torch_dtype=torch.float16, variant="fp16")
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", unet=unet, torch_dtype=torch.float16, variant="fp16")
pipeline.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipeline.to("cuda")

View File

@@ -184,7 +184,7 @@ A full training run takes ~5 hours on a 2080 Ti GPU with 11GB of VRAM.
</Tip>
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export OUTPUT_DIR="/sddata/finetune/lora/naruto"
export HUB_MODEL_ID="naruto-lora"
export DATASET_NAME="lambdalabs/naruto-blip-captions"
@@ -218,7 +218,7 @@ Once training has been completed, you can use your model for inference:
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("path/to/lora/model", weight_name="pytorch_lora_weights.safetensors")
image = pipeline("A naruto with blue eyes").images[0]
```

View File

@@ -167,7 +167,7 @@ To train on a local dataset, set the `TRAIN_DIR` and `OUTPUT_DIR` environment va
</Tip>
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export dataset_name="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
@@ -201,7 +201,7 @@ To train on a local dataset, set the `TRAIN_DIR` and `OUTPUT_DIR` environment va
</Tip>
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export dataset_name="lambdalabs/naruto-blip-captions"
python train_text_to_image_flax.py \

View File

@@ -193,7 +193,7 @@ One more thing before you launch the script. If you're interested in following a
<hfoption id="PyTorch">
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export DATA_DIR="./cat"
accelerate launch textual_inversion.py \
@@ -248,7 +248,7 @@ After training is complete, you can use your newly trained model for inference l
from diffusers import StableDiffusionPipeline
import torch
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_textual_inversion("sd-concepts-library/cat-toy")
image = pipeline("A <cat-toy> train", num_inference_steps=50).images[0]
image.save("cat-train.png")

View File

@@ -340,7 +340,8 @@ Now you can wrap all these components together in a training loop with 🤗 Acce
... loss = F.mse_loss(noise_pred, noise)
... accelerator.backward(loss)
... accelerator.clip_grad_norm_(model.parameters(), 1.0)
... if accelerator.sync_gradients:
... accelerator.clip_grad_norm_(model.parameters(), 1.0)
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()

View File

@@ -35,7 +35,7 @@ pip3 install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu
```
> [!TIP]
> The results reported below are from a 80GB 400W A100 with its clock rate set to the maximum.
> The results reported below are from a 80GB 400W A100 with its clock rate set to the maximum.
> If you're interested in the full benchmarking code, take a look at [huggingface/diffusion-fast](https://github.com/huggingface/diffusion-fast).
@@ -168,7 +168,7 @@ Using SDPA attention and compiling both the UNet and VAE cuts the latency from 3
</div>
> [!TIP]
> From PyTorch 2.3.1, you can control the caching behavior of `torch.compile()`. This is particularly beneficial for compilation modes like `"max-autotune"` which performs a grid-search over several compilation flags to find the optimal configuration. Learn more in the [Compile Time Caching in torch.compile](https://pytorch.org/tutorials/recipes/torch_compile_caching_tutorial.html) tutorial.
> From PyTorch 2.3.1, you can control the caching behavior of `torch.compile()`. This is particularly beneficial for compilation modes like `"max-autotune"` which performs a grid-search over several compilation flags to find the optimal configuration. Learn more in the [Compile Time Caching in torch.compile](https://pytorch.org/tutorials/recipes/torch_compile_caching_tutorial.html) tutorial.
### Prevent graph breaks

View File

@@ -18,13 +18,13 @@ A modern diffusion model, like [Stable Diffusion XL (SDXL)](../using-diffusers/s
* Two text encoders
* A UNet for denoising
Usually, the text encoders and the denoiser are much larger compared to the VAE.
Usually, the text encoders and the denoiser are much larger compared to the VAE.
As models get bigger and better, its possible your model is so big that even a single copy wont fit in memory. But that doesnt mean it cant be loaded. If you have more than one GPU, there is more memory available to store your model. In this case, its better to split your model checkpoint into several smaller *checkpoint shards*.
When a text encoder checkpoint has multiple shards, like [T5-xxl for SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers/tree/main/text_encoder_3), it is automatically handled by the [Transformers](https://huggingface.co/docs/transformers/index) library as it is a required dependency of Diffusers when using the [`StableDiffusion3Pipeline`]. More specifically, Transformers will automatically handle the loading of multiple shards within the requested model class and get it ready so that inference can be performed.
The denoiser checkpoint can also have multiple shards and supports inference thanks to the [Accelerate](https://huggingface.co/docs/accelerate/index) library.
The denoiser checkpoint can also have multiple shards and supports inference thanks to the [Accelerate](https://huggingface.co/docs/accelerate/index) library.
> [!TIP]
> Refer to the [Handling big models for inference](https://huggingface.co/docs/accelerate/main/en/concept_guides/big_model_inference) guide for general guidance when working with big models that are hard to fit into memory.
@@ -43,7 +43,7 @@ unet.save_pretrained("sdxl-unet-sharded", max_shard_size="5GB")
The size of the fp32 variant of the SDXL UNet checkpoint is ~10.4GB. Set the `max_shard_size` parameter to 5GB to create 3 shards. After saving, you can load them in [`StableDiffusionXLPipeline`]:
```python
from diffusers import UNet2DConditionModel, StableDiffusionXLPipeline
from diffusers import UNet2DConditionModel, StableDiffusionXLPipeline
import torch
unet = UNet2DConditionModel.from_pretrained(
@@ -57,14 +57,14 @@ image = pipeline("a cute dog running on the grass", num_inference_steps=30).imag
image.save("dog.png")
```
If placing all the model-level components on the GPU at once is not feasible, use [`~DiffusionPipeline.enable_model_cpu_offload`] to help you:
If placing all the model-level components on the GPU at once is not feasible, use [`~DiffusionPipeline.enable_model_cpu_offload`] to help you:
```diff
- pipeline.to("cuda")
+ pipeline.enable_model_cpu_offload()
```
In general, we recommend sharding when a checkpoint is more than 5GB (in fp32).
In general, we recommend sharding when a checkpoint is more than 5GB (in fp32).
## Device placement
@@ -90,8 +90,8 @@ from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
- "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True,
+ "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, device_map="balanced"
- "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True,
+ "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, device_map="balanced"
)
image = pipeline("a dog").images[0]
image
@@ -105,7 +105,7 @@ import torch
max_memory = {0:"1GB", 1:"1GB"}
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
device_map="balanced",

View File

@@ -34,7 +34,7 @@ pipe_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(pipe_id, torch_dtype=torch.float16).to("cuda")
```
Next, load a [CiroN2022/toy-face](https://huggingface.co/CiroN2022/toy-face) adapter with the [`~diffusers.loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] method. With the 🤗 PEFT integration, you can assign a specific `adapter_name` to the checkpoint, which let's you easily switch between different LoRA checkpoints. Let's call this adapter `"toy"`.
Next, load a [CiroN2022/toy-face](https://huggingface.co/CiroN2022/toy-face) adapter with the [`~diffusers.loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] method. With the 🤗 PEFT integration, you can assign a specific `adapter_name` to the checkpoint, which lets you easily switch between different LoRA checkpoints. Let's call this adapter `"toy"`.
```python
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
@@ -191,7 +191,7 @@ image
## Manage active adapters
You have attached multiple adapters in this tutorial, and if you're feeling a bit lost on what adapters have been attached to the pipeline's components, use the [`~diffusers.loaders.LoraLoaderMixin.get_active_adapters`] method to check the list of active adapters:
You have attached multiple adapters in this tutorial, and if you're feeling a bit lost on what adapters have been attached to the pipeline's components, use the [`~diffusers.loaders.StableDiffusionLoraLoaderMixin.get_active_adapters`] method to check the list of active adapters:
```py
active_adapters = pipe.get_active_adapters()
@@ -199,7 +199,7 @@ active_adapters
["toy", "pixel"]
```
You can also get the active adapters of each pipeline component with [`~diffusers.loaders.LoraLoaderMixin.get_list_adapters`]:
You can also get the active adapters of each pipeline component with [`~diffusers.loaders.StableDiffusionLoraLoaderMixin.get_list_adapters`]:
```py
list_adapters_component_wise = pipe.get_list_adapters()

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# Pipeline callbacks
The denoising loop of a pipeline can be modified with custom defined functions using the `callback_on_step_end` parameter. The callback function is executed at the end of each step, and modifies the pipeline attributes and variables for the next step. This is really useful for *dynamically* adjusting certain pipeline attributes or modifying tensor variables. This versatility allows for interesting use-cases such as changing the prompt embeddings at each timestep, assigning different weights to the prompt embeddings, and editing the guidance scale. With callbacks, you can implement new features without modifying the underlying code!
The denoising loop of a pipeline can be modified with custom defined functions using the `callback_on_step_end` parameter. The callback function is executed at the end of each step, and modifies the pipeline attributes and variables for the next step. This is really useful for *dynamically* adjusting certain pipeline attributes or modifying tensor variables. This versatility allows for interesting use cases such as changing the prompt embeddings at each timestep, assigning different weights to the prompt embeddings, and editing the guidance scale. With callbacks, you can implement new features without modifying the underlying code!
> [!TIP]
> 🤗 Diffusers currently only supports `callback_on_step_end`, but feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you have a cool use-case and require a callback function with a different execution point!
@@ -75,7 +75,7 @@ out.images[0].save("official_callback.png")
<figcaption class="mt-2 text-center text-sm text-gray-500">without SDXLCFGCutoffCallback</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/with_cfg_callback.png" alt="generated image of a a sports car at the road with cfg callback" />
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/with_cfg_callback.png" alt="generated image of a sports car at the road with cfg callback" />
<figcaption class="mt-2 text-center text-sm text-gray-500">with SDXLCFGCutoffCallback</figcaption>
</div>
</div>
@@ -109,7 +109,7 @@ Now, you can pass the callback function to the `callback_on_step_end` parameter
import torch
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
@@ -139,7 +139,7 @@ In this example, the diffusion process is stopped after 10 steps even though `nu
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipeline.enable_model_cpu_offload()
num_inference_steps = 50
@@ -171,14 +171,13 @@ def latents_to_rgb(latents):
weights = (
(60, -60, 25, -70),
(60, -5, 15, -50),
(60, 10, -5, -35)
(60, 10, -5, -35),
)
weights_tensor = torch.t(torch.tensor(weights, dtype=latents.dtype).to(latents.device))
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(latents.device)
rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
image_array = image_array.transpose(1, 2, 0)
image_array = rgb_tensor.clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
return Image.fromarray(image_array)
```
@@ -189,7 +188,7 @@ def latents_to_rgb(latents):
def decode_tensors(pipe, step, timestep, callback_kwargs):
latents = callback_kwargs["latents"]
image = latents_to_rgb(latents)
image = latents_to_rgb(latents[0])
image.save(f"{step}.png")
return callback_kwargs

View File

@@ -33,7 +33,7 @@ from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
```
@@ -52,18 +52,18 @@ image
## Popular models
The most common text-to-image models are [Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5), [Stable Diffusion XL (SDXL)](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), and [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder). There are also ControlNet models or adapters that can be used with text-to-image models for more direct control in generating images. The results from each model are slightly different because of their architecture and training process, but no matter which model you choose, their usage is more or less the same. Let's use the same prompt for each model and compare their results.
The most common text-to-image models are [Stable Diffusion v1.5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5), [Stable Diffusion XL (SDXL)](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), and [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder). There are also ControlNet models or adapters that can be used with text-to-image models for more direct control in generating images. The results from each model are slightly different because of their architecture and training process, but no matter which model you choose, their usage is more or less the same. Let's use the same prompt for each model and compare their results.
### Stable Diffusion v1.5
[Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) is a latent diffusion model initialized from [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4), and finetuned for 595K steps on 512x512 images from the LAION-Aesthetics V2 dataset. You can use this model like:
[Stable Diffusion v1.5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) is a latent diffusion model initialized from [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4), and finetuned for 595K steps on 512x512 images from the LAION-Aesthetics V2 dataset. You can use this model like:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
generator = torch.Generator("cuda").manual_seed(31)
image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", generator=generator).images[0]
@@ -106,7 +106,7 @@ image
### ControlNet
ControlNet models are auxiliary models or adapters that are finetuned on top of text-to-image models, such as [Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5). Using ControlNet models in combination with text-to-image models offers diverse options for more explicit control over how to generate an image. With ControlNet, you add an additional conditioning input image to the model. For example, if you provide an image of a human pose (usually represented as multiple keypoints that are connected into a skeleton) as a conditioning input, the model generates an image that follows the pose of the image. Check out the more in-depth [ControlNet](controlnet) guide to learn more about other conditioning inputs and how to use them.
ControlNet models are auxiliary models or adapters that are finetuned on top of text-to-image models, such as [Stable Diffusion v1.5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5). Using ControlNet models in combination with text-to-image models offers diverse options for more explicit control over how to generate an image. With ControlNet, you add an additional conditioning input image to the model. For example, if you provide an image of a human pose (usually represented as multiple keypoints that are connected into a skeleton) as a conditioning input, the model generates an image that follows the pose of the image. Check out the more in-depth [ControlNet](controlnet) guide to learn more about other conditioning inputs and how to use them.
In this example, let's condition the ControlNet with a human pose estimation image. Load the ControlNet model pretrained on human pose estimations:
@@ -125,7 +125,7 @@ Pass the `controlnet` to the [`AutoPipelineForText2Image`], and provide the prom
```py
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16"
).to("cuda")
generator = torch.Generator("cuda").manual_seed(31)
image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", image=pose_image, generator=generator).images[0]
@@ -164,7 +164,7 @@ from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
image = pipeline(
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", height=768, width=512
@@ -191,7 +191,7 @@ from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
).to("cuda")
image = pipeline(
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", guidance_scale=3.5
@@ -223,7 +223,7 @@ from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
).to("cuda")
image = pipeline(
prompt="Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
@@ -254,7 +254,7 @@ from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
).to("cuda")
generator = torch.Generator(device="cuda").manual_seed(30)
image = pipeline(
@@ -285,7 +285,7 @@ from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
).to("cuda")
image = pipeline(
prompt_embeds=prompt_embeds, # generated from Compel
@@ -309,7 +309,7 @@ PyTorch 2.0 also supports a more memory-efficient attention mechanism called [*s
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16").to("cuda")
pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16").to("cuda")
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
```

View File

@@ -84,7 +84,7 @@ import torch
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
@@ -144,7 +144,7 @@ import torch
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11f1p_sd15_depth", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
@@ -229,7 +229,7 @@ from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel,
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
@@ -256,7 +256,7 @@ make_image_grid([init_image, mask_image, output], rows=1, cols=3)
## Guess mode
[Guess mode](https://github.com/lllyasviel/ControlNet/discussions/188) does not require supplying a prompt to a ControlNet at all! This forces the ControlNet encoder to do it's best to "guess" the contents of the input control map (depth map, pose estimation, canny edge, etc.).
[Guess mode](https://github.com/lllyasviel/ControlNet/discussions/188) does not require supplying a prompt to a ControlNet at all! This forces the ControlNet encoder to do its best to "guess" the contents of the input control map (depth map, pose estimation, canny edge, etc.).
Guess mode adjusts the scale of the output residuals from a ControlNet by a fixed ratio depending on the block depth. The shallowest `DownBlock` corresponds to 0.1, and as the blocks get deeper, the scale increases exponentially such that the scale of the `MidBlock` output becomes 1.0.
@@ -277,7 +277,7 @@ from PIL import Image
import cv2
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", use_safetensors=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, use_safetensors=True).to("cuda")
pipe = StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, use_safetensors=True).to("cuda")
original_image = load_image("https://huggingface.co/takuma104/controlnet_dev/resolve/main/bird_512x512.png")
@@ -454,7 +454,7 @@ image = base(
<Tip>
Replace the SDXL model with a model like [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) to use multiple conditioning inputs with Stable Diffusion models.
Replace the SDXL model with a model like [stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) to use multiple conditioning inputs with Stable Diffusion models.
</Tip>

View File

@@ -61,7 +61,7 @@ feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id)
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
@@ -78,7 +78,7 @@ Community pipelines can also be loaded from a local file if you pass a file path
```py
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
custom_pipeline="./path/to/pipeline_directory/",
clip_model=clip_model,
feature_extractor=feature_extractor,
@@ -97,7 +97,7 @@ For example, to load from the main branch:
```py
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
custom_pipeline="clip_guided_stable_diffusion",
custom_revision="main",
clip_model=clip_model,
@@ -113,7 +113,7 @@ For example, to load from a previous version of Diffusers like v0.25.0:
```py
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
custom_pipeline="clip_guided_stable_diffusion",
custom_revision="v0.25.0",
clip_model=clip_model,
@@ -235,7 +235,7 @@ from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image
pipeline = DiffusionPipeline.from_pretrained(
"Lykon/dreamshaper-8-inpainting",
"stable-diffusion-v1-5/stable-diffusion-v1-5-inpainting",
custom_pipeline="hd_painter"
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
@@ -289,9 +289,9 @@ scheduler = DPMSolverMultistepScheduler.from_pretrained(pipe_id, subfolder="sche
3. Load an image processor:
```python
from transformers import CLIPFeatureExtractor
from transformers import CLIPImageProcessor
feature_extractor = CLIPFeatureExtractor.from_pretrained(pipe_id, subfolder="feature_extractor")
feature_extractor = CLIPImageProcessor.from_pretrained(pipe_id, subfolder="feature_extractor")
```
<Tip warning={true}>

View File

@@ -30,7 +30,7 @@ import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, safety_checker=None
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, safety_checker=None
).to("cuda")
pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.5, b2=1.6)
generator = torch.Generator(device="cpu").manual_seed(33)

View File

@@ -66,7 +66,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
## Popular models
The most popular image-to-image models are [Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5), [Stable Diffusion XL (SDXL)](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), and [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder). The results from the Stable Diffusion and Kandinsky models vary due to their architecture differences and training process; you can generally expect SDXL to produce higher quality images than Stable Diffusion v1.5. Let's take a quick look at how to use each of these models and compare their results.
The most popular image-to-image models are [Stable Diffusion v1.5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5), [Stable Diffusion XL (SDXL)](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), and [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder). The results from the Stable Diffusion and Kandinsky models vary due to their architecture differences and training process; you can generally expect SDXL to produce higher quality images than Stable Diffusion v1.5. Let's take a quick look at how to use each of these models and compare their results.
### Stable Diffusion v1.5
@@ -78,7 +78,7 @@ from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -203,7 +203,7 @@ from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -247,7 +247,7 @@ from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -334,7 +334,7 @@ import torch
from diffusers.utils import make_image_grid
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -370,7 +370,7 @@ from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -433,7 +433,7 @@ from diffusers import AutoPipelineForImage2Image
from diffusers.utils import make_image_grid, load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -499,7 +499,7 @@ from diffusers import AutoPipelineForImage2Image
import torch
pipeline = AutoPipelineForImage2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
@@ -536,7 +536,7 @@ import torch
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11f1p_sd15_depth", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipeline = AutoPipelineForImage2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
"stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed

View File

@@ -64,7 +64,7 @@ image
</hfoption>
<hfoption id="LCM-LoRA">
To use LCM-LoRAs, you need to replace the scheduler with the [`LCMScheduler`] and load the LCM-LoRA weights with the [`~loaders.LoraLoaderMixin.load_lora_weights`] method. Then you can use the pipeline as usual, and pass a text prompt to generate an image in just 4 steps.
To use LCM-LoRAs, you need to replace the scheduler with the [`LCMScheduler`] and load the LCM-LoRA weights with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method. Then you can use the pipeline as usual, and pass a text prompt to generate an image in just 4 steps.
A couple of notes to keep in mind when using LCM-LoRAs are:
@@ -156,7 +156,7 @@ image
</hfoption>
<hfoption id="LCM-LoRA">
To use LCM-LoRAs for image-to-image, you need to replace the scheduler with the [`LCMScheduler`] and load the LCM-LoRA weights with the [`~loaders.LoraLoaderMixin.load_lora_weights`] method. Then you can use the pipeline as usual, and pass a text prompt and initial image to generate an image in just 4 steps.
To use LCM-LoRAs for image-to-image, you need to replace the scheduler with the [`LCMScheduler`] and load the LCM-LoRA weights with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method. Then you can use the pipeline as usual, and pass a text prompt and initial image to generate an image in just 4 steps.
> [!TIP]
> Experiment with different values for `num_inference_steps`, `strength`, and `guidance_scale` to get the best results.
@@ -207,7 +207,7 @@ image
## Inpainting
To use LCM-LoRAs for inpainting, you need to replace the scheduler with the [`LCMScheduler`] and load the LCM-LoRA weights with the [`~loaders.LoraLoaderMixin.load_lora_weights`] method. Then you can use the pipeline as usual, and pass a text prompt, initial image, and mask image to generate an image in just 4 steps.
To use LCM-LoRAs for inpainting, you need to replace the scheduler with the [`LCMScheduler`] and load the LCM-LoRA weights with the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method. Then you can use the pipeline as usual, and pass a text prompt, initial image, and mask image to generate an image in just 4 steps.
```py
import torch
@@ -262,7 +262,7 @@ LCMs are compatible with adapters like LoRA, ControlNet, T2I-Adapter, and Animat
<hfoptions id="lcm-lora">
<hfoption id="LCM">
Load the LCM checkpoint for your supported model into [`UNet2DConditionModel`] and replace the scheduler with the [`LCMScheduler`]. Then you can use the [`~loaders.LoraLoaderMixin.load_lora_weights`] method to load the LoRA weights into the LCM and generate a styled image in a few steps.
Load the LCM checkpoint for your supported model into [`UNet2DConditionModel`] and replace the scheduler with the [`LCMScheduler`]. Then you can use the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method to load the LoRA weights into the LCM and generate a styled image in a few steps.
```python
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, LCMScheduler
@@ -294,7 +294,7 @@ image
</hfoption>
<hfoption id="LCM-LoRA">
Replace the scheduler with the [`LCMScheduler`]. Then you can use the [`~loaders.LoraLoaderMixin.load_lora_weights`] method to load the LCM-LoRA weights and the style LoRA you want to use. Combine both LoRA adapters with the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method and generate a styled image in a few steps.
Replace the scheduler with the [`LCMScheduler`]. Then you can use the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method to load the LCM-LoRA weights and the style LoRA you want to use. Combine both LoRA adapters with the [`~loaders.UNet2DConditionLoadersMixin.set_adapters`] method and generate a styled image in a few steps.
```py
import torch
@@ -389,7 +389,7 @@ make_image_grid([canny_image, image], rows=1, cols=2)
</hfoption>
<hfoption id="LCM-LoRA">
Load a ControlNet model trained on canny images and pass it to the [`ControlNetModel`]. Then you can load a Stable Diffusion v1.5 model into [`StableDiffusionControlNetPipeline`] and replace the scheduler with the [`LCMScheduler`]. Use the [`~loaders.LoraLoaderMixin.load_lora_weights`] method to load the LCM-LoRA weights, and pass the canny image to the pipeline and generate an image.
Load a ControlNet model trained on canny images and pass it to the [`ControlNetModel`]. Then you can load a Stable Diffusion v1.5 model into [`StableDiffusionControlNetPipeline`] and replace the scheduler with the [`LCMScheduler`]. Use the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method to load the LCM-LoRA weights, and pass the canny image to the pipeline and generate an image.
> [!TIP]
> Experiment with different values for `num_inference_steps`, `controlnet_conditioning_scale`, `cross_attention_kwargs`, and `guidance_scale` to get the best results.
@@ -419,7 +419,7 @@ canny_image = Image.fromarray(image)
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
"stable-diffusion-v1-5/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
@@ -525,7 +525,7 @@ image = pipe(
</hfoption>
<hfoption id="LCM-LoRA">
Load a T2IAdapter trained on canny images and pass it to the [`StableDiffusionXLAdapterPipeline`]. Replace the scheduler with the [`LCMScheduler`], and use the [`~loaders.LoraLoaderMixin.load_lora_weights`] method to load the LCM-LoRA weights. Pass the canny image to the pipeline and generate an image.
Load a T2IAdapter trained on canny images and pass it to the [`StableDiffusionXLAdapterPipeline`]. Replace the scheduler with the [`LCMScheduler`], and use the [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method to load the LCM-LoRA weights. Pass the canny image to the pipeline and generate an image.
```py
import torch

View File

@@ -35,7 +35,7 @@ This guide will show you how to perform inference with TCD-LoRAs for a variety o
| Base model | TCD-LoRA checkpoint |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) | [TCD-SD15](https://huggingface.co/h1t/TCD-SD15-LoRA) |
| [stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) | [TCD-SD15](https://huggingface.co/h1t/TCD-SD15-LoRA) |
| [stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) | [TCD-SD21-base](https://huggingface.co/h1t/TCD-SD21-base-LoRA) |
| [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | [TCD-SDXL](https://huggingface.co/h1t/TCD-SDXL-LoRA) |
@@ -212,14 +212,14 @@ TCD-LoRA is very versatile, and it can be combined with other adapter types like
import torch
import numpy as np
from PIL import Image
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from transformers import DPTImageProcessor, DPTForDepthEstimation
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
from diffusers.utils import load_image, make_image_grid
from scheduling_tcd import TCDScheduler
device = "cuda"
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
def get_depth_map(image):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)

Some files were not shown because too many files have changed in this diff Show More