mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-08 21:44:27 +08:00
Compare commits
15 Commits
pipe-fetch
...
freenoise-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5a60a62c47 | ||
|
|
691facfc2e | ||
|
|
dc96a8d5cd | ||
|
|
1b7bc007d8 | ||
|
|
1bb09845bf | ||
|
|
024e2da864 | ||
|
|
f6897ae46a | ||
|
|
a41f843dba | ||
|
|
10b65b310c | ||
|
|
610f433d1c | ||
|
|
690dad693f | ||
|
|
2e97ba7ccb | ||
|
|
5d0f4c3407 | ||
|
|
441d321152 | ||
|
|
80e530fbfa |
6
.github/workflows/build_docker_images.yml
vendored
6
.github/workflows/build_docker_images.yml
vendored
@@ -20,8 +20,7 @@ env:
|
||||
|
||||
jobs:
|
||||
test-build-docker-images:
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
if: github.event_name == 'pull_request'
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
@@ -51,8 +50,7 @@ jobs:
|
||||
if: steps.file_changes.outputs.all != ''
|
||||
|
||||
build-and-push-docker-images:
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
if: github.event_name != 'pull_request'
|
||||
|
||||
permissions:
|
||||
|
||||
14
.github/workflows/nightly_tests.yml
vendored
14
.github/workflows/nightly_tests.yml
vendored
@@ -19,8 +19,7 @@ env:
|
||||
jobs:
|
||||
setup_torch_cuda_pipeline_matrix:
|
||||
name: Setup Torch Pipelines CUDA Slow Tests Matrix
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
outputs:
|
||||
@@ -32,7 +31,7 @@ jobs:
|
||||
fetch-depth: 2
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install -e .[test]
|
||||
pip install -e .
|
||||
pip install huggingface_hub
|
||||
- name: Fetch Pipeline Matrix
|
||||
id: fetch_pipeline_matrix
|
||||
@@ -56,8 +55,7 @@ jobs:
|
||||
max-parallel: 8
|
||||
matrix:
|
||||
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
options: --shm-size "16gb" --ipc host --gpus 0
|
||||
@@ -107,8 +105,7 @@ jobs:
|
||||
|
||||
run_nightly_tests_for_other_torch_modules:
|
||||
name: Nightly Torch CUDA Tests
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
options: --shm-size "16gb" --ipc host --gpus 0
|
||||
@@ -237,8 +234,7 @@ jobs:
|
||||
|
||||
run_nightly_onnx_tests:
|
||||
name: Nightly ONNXRuntime CUDA tests on Ubuntu
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-onnxruntime-cuda
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host
|
||||
|
||||
11
.github/workflows/pr_test_fetcher.yml
vendored
11
.github/workflows/pr_test_fetcher.yml
vendored
@@ -15,8 +15,7 @@ concurrency:
|
||||
jobs:
|
||||
setup_pr_tests:
|
||||
name: Setup PR Tests
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
|
||||
@@ -74,8 +73,7 @@ jobs:
|
||||
max-parallel: 2
|
||||
matrix:
|
||||
modules: ${{ fromJson(needs.setup_pr_tests.outputs.matrix) }}
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
|
||||
@@ -125,13 +123,12 @@ jobs:
|
||||
config:
|
||||
- name: Hub tests for models, schedulers, and pipelines
|
||||
framework: hub_tests_pytorch
|
||||
runner: aws-general-8-plus
|
||||
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_hub
|
||||
|
||||
name: ${{ matrix.config.name }}
|
||||
runs-on:
|
||||
group: ${{ matrix.config.runner }}
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
container:
|
||||
image: ${{ matrix.config.image }}
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
|
||||
|
||||
3
.github/workflows/pr_test_peft_backend.yml
vendored
3
.github/workflows/pr_test_peft_backend.yml
vendored
@@ -71,8 +71,7 @@ jobs:
|
||||
|
||||
name: LoRA - ${{ matrix.lib-versions }}
|
||||
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
|
||||
14
.github/workflows/pr_tests.yml
vendored
14
.github/workflows/pr_tests.yml
vendored
@@ -77,29 +77,28 @@ jobs:
|
||||
config:
|
||||
- name: Fast PyTorch Pipeline CPU tests
|
||||
framework: pytorch_pipelines
|
||||
runner: aws-highmemory-32-plus
|
||||
runner: [ self-hosted, intel-cpu, 32-cpu, 256-ram, ci ]
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_cpu_pipelines
|
||||
- name: Fast PyTorch Models & Schedulers CPU tests
|
||||
framework: pytorch_models
|
||||
runner: aws-general-8-plus
|
||||
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_cpu_models_schedulers
|
||||
- name: Fast Flax CPU tests
|
||||
framework: flax
|
||||
runner: aws-general-8-plus
|
||||
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
image: diffusers/diffusers-flax-cpu
|
||||
report: flax_cpu
|
||||
- name: PyTorch Example CPU tests
|
||||
framework: pytorch_examples
|
||||
runner: aws-general-8-plus
|
||||
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_example_cpu
|
||||
|
||||
name: ${{ matrix.config.name }}
|
||||
|
||||
runs-on:
|
||||
group: ${{ matrix.config.runner }}
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
|
||||
container:
|
||||
image: ${{ matrix.config.image }}
|
||||
@@ -181,8 +180,7 @@ jobs:
|
||||
config:
|
||||
- name: Hub tests for models, schedulers, and pipelines
|
||||
framework: hub_tests_pytorch
|
||||
runner:
|
||||
group: aws-general-8-plus
|
||||
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_hub
|
||||
|
||||
|
||||
21
.github/workflows/push_tests.yml
vendored
21
.github/workflows/push_tests.yml
vendored
@@ -19,8 +19,7 @@ env:
|
||||
jobs:
|
||||
setup_torch_cuda_pipeline_matrix:
|
||||
name: Setup Torch Pipelines CUDA Slow Tests Matrix
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
runs-on: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
outputs:
|
||||
@@ -58,8 +57,7 @@ jobs:
|
||||
max-parallel: 8
|
||||
matrix:
|
||||
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
options: --shm-size "16gb" --ipc host --gpus 0
|
||||
@@ -103,8 +101,7 @@ jobs:
|
||||
|
||||
torch_cuda_tests:
|
||||
name: Torch CUDA Tests
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
options: --shm-size "16gb" --ipc host --gpus 0
|
||||
@@ -204,8 +201,7 @@ jobs:
|
||||
|
||||
onnx_cuda_tests:
|
||||
name: ONNX CUDA Tests
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-onnxruntime-cuda
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --gpus 0
|
||||
@@ -253,8 +249,7 @@ jobs:
|
||||
run_torch_compile_tests:
|
||||
name: PyTorch Compile CUDA tests
|
||||
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-compile-cuda
|
||||
@@ -296,8 +291,7 @@ jobs:
|
||||
run_xformers_tests:
|
||||
name: PyTorch xformers CUDA tests
|
||||
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-xformers-cuda
|
||||
@@ -338,8 +332,7 @@ jobs:
|
||||
run_examples_tests:
|
||||
name: Examples PyTorch CUDA tests on Ubuntu
|
||||
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
|
||||
11
.github/workflows/push_tests_fast.yml
vendored
11
.github/workflows/push_tests_fast.yml
vendored
@@ -29,29 +29,28 @@ jobs:
|
||||
config:
|
||||
- name: Fast PyTorch CPU tests on Ubuntu
|
||||
framework: pytorch
|
||||
runner: aws-general-8-plus
|
||||
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_cpu
|
||||
- name: Fast Flax CPU tests on Ubuntu
|
||||
framework: flax
|
||||
runner: aws-general-8-plus
|
||||
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
image: diffusers/diffusers-flax-cpu
|
||||
report: flax_cpu
|
||||
- name: Fast ONNXRuntime CPU tests on Ubuntu
|
||||
framework: onnxruntime
|
||||
runner: aws-general-8-plus
|
||||
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
image: diffusers/diffusers-onnxruntime-cpu
|
||||
report: onnx_cpu
|
||||
- name: PyTorch Example CPU tests on Ubuntu
|
||||
framework: pytorch_examples
|
||||
runner: aws-general-8-plus
|
||||
runner: [ self-hosted, intel-cpu, 8-cpu, ci ]
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_example_cpu
|
||||
|
||||
name: ${{ matrix.config.name }}
|
||||
|
||||
runs-on:
|
||||
group: ${{ matrix.config.runner }}
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
|
||||
container:
|
||||
image: ${{ matrix.config.image }}
|
||||
|
||||
3
.github/workflows/run_tests_from_a_pr.yml
vendored
3
.github/workflows/run_tests_from_a_pr.yml
vendored
@@ -26,8 +26,7 @@ env:
|
||||
jobs:
|
||||
run_tests:
|
||||
name: "Run a test on our runner from a PR"
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: ${{ github.event.inputs.docker_image }}
|
||||
options: --gpus 0 --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
|
||||
3
.github/workflows/ssh-pr-runner.yml
vendored
3
.github/workflows/ssh-pr-runner.yml
vendored
@@ -19,8 +19,7 @@ env:
|
||||
jobs:
|
||||
ssh_runner:
|
||||
name: "SSH"
|
||||
runs-on:
|
||||
group: aws-highmemory-32-plus
|
||||
runs-on: [self-hosted, intel-cpu, 32-cpu, 256-ram, ci]
|
||||
container:
|
||||
image: ${{ github.event.inputs.docker_image }}
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --privileged
|
||||
|
||||
3
.github/workflows/ssh-runner.yml
vendored
3
.github/workflows/ssh-runner.yml
vendored
@@ -22,8 +22,7 @@ env:
|
||||
jobs:
|
||||
ssh_runner:
|
||||
name: "SSH"
|
||||
runs-on:
|
||||
group: "${{ github.event.inputs.runner_type }}"
|
||||
runs-on: [single-gpu, nvidia-gpu, "${{ github.event.inputs.runner_type }}", ci]
|
||||
container:
|
||||
image: ${{ github.event.inputs.docker_image }}
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
|
||||
|
||||
@@ -239,8 +239,6 @@
|
||||
title: AsymmetricAutoencoderKL
|
||||
- local: api/models/autoencoder_tiny
|
||||
title: Tiny AutoEncoder
|
||||
- local: api/models/autoencoder_oobleck
|
||||
title: Oobleck AutoEncoder
|
||||
- local: api/models/consistency_decoder_vae
|
||||
title: ConsistencyDecoderVAE
|
||||
- local: api/models/transformer2d
|
||||
@@ -261,8 +259,6 @@
|
||||
title: TransformerTemporalModel
|
||||
- local: api/models/sd3_transformer2d
|
||||
title: SD3Transformer2DModel
|
||||
- local: api/models/stable_audio_transformer
|
||||
title: StableAudioDiTModel
|
||||
- local: api/models/prior_transformer
|
||||
title: PriorTransformer
|
||||
- local: api/models/controlnet
|
||||
@@ -366,8 +362,6 @@
|
||||
title: Semantic Guidance
|
||||
- local: api/pipelines/shap_e
|
||||
title: Shap-E
|
||||
- local: api/pipelines/stable_audio
|
||||
title: Stable Audio
|
||||
- local: api/pipelines/stable_cascade
|
||||
title: Stable Cascade
|
||||
- sections:
|
||||
@@ -431,8 +425,6 @@
|
||||
title: CMStochasticIterativeScheduler
|
||||
- local: api/schedulers/consistency_decoder
|
||||
title: ConsistencyDecoderScheduler
|
||||
- local: api/schedulers/cosine_dpm
|
||||
title: CosineDPMSolverMultistepScheduler
|
||||
- local: api/schedulers/ddim_inverse
|
||||
title: DDIMInverseScheduler
|
||||
- local: api/schedulers/ddim
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# AutoencoderOobleck
|
||||
|
||||
The Oobleck variational autoencoder (VAE) model with KL loss was introduced in [Stability-AI/stable-audio-tools](https://github.com/Stability-AI/stable-audio-tools) and [Stable Audio Open](https://huggingface.co/papers/2407.14358) by Stability AI. The model is used in 🤗 Diffusers to encode audio waveforms into latents and to decode latent representations into audio waveforms.
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*Open generative models are vitally important for the community, allowing for fine-tunes and serving as baselines when presenting new models. However, most current text-to-audio models are private and not accessible for artists and researchers to build upon. Here we describe the architecture and training process of a new open-weights text-to-audio model trained with Creative Commons data. Our evaluation shows that the model's performance is competitive with the state-of-the-art across various metrics. Notably, the reported FDopenl3 results (measuring the realism of the generations) showcase its potential for high-quality stereo sound synthesis at 44.1kHz.*
|
||||
|
||||
## AutoencoderOobleck
|
||||
|
||||
[[autodoc]] AutoencoderOobleck
|
||||
- decode
|
||||
- encode
|
||||
- all
|
||||
|
||||
## OobleckDecoderOutput
|
||||
|
||||
[[autodoc]] models.autoencoders.autoencoder_oobleck.OobleckDecoderOutput
|
||||
|
||||
## OobleckDecoderOutput
|
||||
|
||||
[[autodoc]] models.autoencoders.autoencoder_oobleck.OobleckDecoderOutput
|
||||
|
||||
## AutoencoderOobleckOutput
|
||||
|
||||
[[autodoc]] models.autoencoders.autoencoder_oobleck.AutoencoderOobleckOutput
|
||||
@@ -1,19 +0,0 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# StableAudioDiTModel
|
||||
|
||||
A Transformer model for audio waveforms from [Stable Audio Open](https://huggingface.co/papers/2407.14358).
|
||||
|
||||
## StableAudioDiTModel
|
||||
|
||||
[[autodoc]] StableAudioDiTModel
|
||||
@@ -25,9 +25,6 @@ The abstract of the paper is the following:
|
||||
| Pipeline | Tasks | Demo
|
||||
|---|---|:---:|
|
||||
| [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* |
|
||||
| [AnimateDiffControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py) | *Controlled Video-to-Video Generation with AnimateDiff using ControlNet* |
|
||||
| [AnimateDiffSparseControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py) | *Controlled Video-to-Video Generation with AnimateDiff using SparseCtrl* |
|
||||
| [AnimateDiffSDXLPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py) | *Video-to-Video Generation with AnimateDiff* |
|
||||
| [AnimateDiffVideoToVideoPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py) | *Video-to-Video Generation with AnimateDiff* |
|
||||
|
||||
## Available checkpoints
|
||||
@@ -103,83 +100,6 @@ AnimateDiff tends to work better with finetuned Stable Diffusion models. If you
|
||||
|
||||
</Tip>
|
||||
|
||||
### AnimateDiffControlNetPipeline
|
||||
|
||||
AnimateDiff can also be used with ControlNets ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide depth maps, the ControlNet model generates a video that'll preserve the spatial information from the depth maps. It is a more flexible and accurate way to control the video generation process.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import AnimateDiffControlNetPipeline, AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler
|
||||
from diffusers.utils import export_to_gif, load_video
|
||||
|
||||
# Additionally, you will need a preprocess videos before they can be used with the ControlNet
|
||||
# HF maintains just the right package for it: `pip install controlnet_aux`
|
||||
from controlnet_aux.processor import ZoeDetector
|
||||
|
||||
# Download controlnets from https://huggingface.co/lllyasviel/ControlNet-v1-1 to use .from_single_file
|
||||
# Download Diffusers-format controlnets, such as https://huggingface.co/lllyasviel/sd-controlnet-depth, to use .from_pretrained()
|
||||
controlnet = ControlNetModel.from_single_file("control_v11f1p_sd15_depth.pth", torch_dtype=torch.float16)
|
||||
|
||||
# We use AnimateLCM for this example but one can use the original motion adapters as well (for example, https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3)
|
||||
motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
|
||||
|
||||
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
|
||||
pipe: AnimateDiffControlNetPipeline = AnimateDiffControlNetPipeline.from_pretrained(
|
||||
"SG161222/Realistic_Vision_V5.1_noVAE",
|
||||
motion_adapter=motion_adapter,
|
||||
controlnet=controlnet,
|
||||
vae=vae,
|
||||
).to(device="cuda", dtype=torch.float16)
|
||||
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
|
||||
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora")
|
||||
pipe.set_adapters(["lcm-lora"], [0.8])
|
||||
|
||||
depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
|
||||
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif")
|
||||
conditioning_frames = []
|
||||
|
||||
with pipe.progress_bar(total=len(video)) as progress_bar:
|
||||
for frame in video:
|
||||
conditioning_frames.append(depth_detector(frame))
|
||||
progress_bar.update()
|
||||
|
||||
prompt = "a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality"
|
||||
negative_prompt = "bad quality, worst quality"
|
||||
|
||||
video = pipe(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
num_frames=len(video),
|
||||
num_inference_steps=10,
|
||||
guidance_scale=2.0,
|
||||
conditioning_frames=conditioning_frames,
|
||||
generator=torch.Generator().manual_seed(42),
|
||||
).frames[0]
|
||||
|
||||
export_to_gif(video, "animatediff_controlnet.gif", fps=8)
|
||||
```
|
||||
|
||||
Here are some sample outputs:
|
||||
|
||||
<table align="center">
|
||||
<tr>
|
||||
<th align="center">Source Video</th>
|
||||
<th align="center">Output Video</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">
|
||||
raccoon playing a guitar
|
||||
<br />
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif" alt="racoon playing a guitar" />
|
||||
</td>
|
||||
<td align="center">
|
||||
a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality
|
||||
<br/>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-controlnet-output.gif" alt="a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality" />
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
### AnimateDiffSparseControlNetPipeline
|
||||
|
||||
[SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
|
||||
@@ -842,12 +762,6 @@ pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapt
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## AnimateDiffControlNetPipeline
|
||||
|
||||
[[autodoc]] AnimateDiffControlNetPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
## AnimateDiffSparseControlNetPipeline
|
||||
|
||||
[[autodoc]] AnimateDiffSparseControlNetPipeline
|
||||
|
||||
@@ -24,8 +24,6 @@ The abstract from the paper is:
|
||||
|
||||
**Highlights**: Latte is a latent diffusion transformer proposed as a backbone for modeling different modalities (trained for text-to-video generation here). It achieves state-of-the-art performance across four standard video benchmarks - [FaceForensics](https://arxiv.org/abs/1803.09179), [SkyTimelapse](https://arxiv.org/abs/1709.07592), [UCF101](https://arxiv.org/abs/1212.0402) and [Taichi-HD](https://arxiv.org/abs/2003.00196). To prepare and download the datasets for evaluation, please refer to [this https URL](https://github.com/Vchitect/Latte/blob/main/docs/datasets_evaluation.md).
|
||||
|
||||
This pipeline was contributed by [maxin-cn](https://github.com/maxin-cn). The original codebase can be found [here](https://github.com/Vchitect/Latte). The original weights can be found under [hf.co/maxin-cn](https://huggingface.co/maxin-cn).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
@@ -43,8 +43,6 @@ Lumina-T2X has the following components:
|
||||
* It uses a Flow-based Large Diffusion Transformer as the backbone
|
||||
* It supports different any modalities with one backbone and corresponding encoder, decoder.
|
||||
|
||||
This pipeline was contributed by [PommesPeter](https://github.com/PommesPeter). The original codebase can be found [here](https://github.com/Alpha-VLLM/Lumina-T2X). The original weights can be found under [hf.co/Alpha-VLLM](https://huggingface.co/Alpha-VLLM).
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
@@ -71,7 +71,6 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
|
||||
| [Semantic Guidance](semantic_stable_diffusion) | text2image |
|
||||
| [Shap-E](shap_e) | text-to-3D, image-to-3D |
|
||||
| [Spectrogram Diffusion](spectrogram_diffusion) | |
|
||||
| [Stable Audio](stable_audio) | text2audio |
|
||||
| [Stable Diffusion](stable_diffusion/overview) | text2image, image2image, depth2image, inpainting, image variation, latent upscaler, super-resolution |
|
||||
| [Stable Diffusion Model Editing](model_editing) | model editing |
|
||||
| [Stable Diffusion XL](stable_diffusion/stable_diffusion_xl) | text2image, image2image, inpainting |
|
||||
|
||||
@@ -1,42 +0,0 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Stable Audio
|
||||
|
||||
Stable Audio was proposed in [Stable Audio Open](https://arxiv.org/abs/2407.14358) by Zach Evans et al. . it takes a text prompt as input and predicts the corresponding sound or music sample.
|
||||
|
||||
Stable Audio Open generates variable-length (up to 47s) stereo audio at 44.1kHz from text prompts. It comprises three components: an autoencoder that compresses waveforms into a manageable sequence length, a T5-based text embedding for text conditioning, and a transformer-based diffusion (DiT) model that operates in the latent space of the autoencoder.
|
||||
|
||||
Stable Audio is trained on a corpus of around 48k audio recordings, where around 47k are from Freesound and the rest are from the Free Music Archive (FMA). All audio files are licensed under CC0, CC BY, or CC Sampling+. This data is used to train the autoencoder and the DiT.
|
||||
|
||||
The abstract of the paper is the following:
|
||||
*Open generative models are vitally important for the community, allowing for fine-tunes and serving as baselines when presenting new models. However, most current text-to-audio models are private and not accessible for artists and researchers to build upon. Here we describe the architecture and training process of a new open-weights text-to-audio model trained with Creative Commons data. Our evaluation shows that the model's performance is competitive with the state-of-the-art across various metrics. Notably, the reported FDopenl3 results (measuring the realism of the generations) showcase its potential for high-quality stereo sound synthesis at 44.1kHz.*
|
||||
|
||||
This pipeline was contributed by [Yoach Lacombe](https://huggingface.co/ylacombe). The original codebase can be found at [Stability-AI/stable-audio-tool](https://github.com/Stability-AI/stable-audio-tool).
|
||||
|
||||
## Tips
|
||||
|
||||
When constructing a prompt, keep in mind:
|
||||
|
||||
* Descriptive prompt inputs work best; use adjectives to describe the sound (for example, "high quality" or "clear") and make the prompt context specific where possible (e.g. "melodic techno with a fast beat and synths" works better than "techno").
|
||||
* Using a *negative prompt* can significantly improve the quality of the generated audio. Try using a negative prompt of "low quality, average quality".
|
||||
|
||||
During inference:
|
||||
|
||||
* The _quality_ of the generated audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
|
||||
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1 to enable. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
|
||||
|
||||
|
||||
## StableAudioPipeline
|
||||
[[autodoc]] StableAudioPipeline
|
||||
- all
|
||||
- __call__
|
||||
@@ -1,24 +0,0 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# CosineDPMSolverMultistepScheduler
|
||||
|
||||
The [`CosineDPMSolverMultistepScheduler`] is a variant of [`DPMSolverMultistepScheduler`] with cosine schedule, proposed by Nichol and Dhariwal (2021).
|
||||
It is being used in the [Stable Audio Open](https://arxiv.org/abs/2407.14358) paper and the [Stability-AI/stable-audio-tool](https://github.com/Stability-AI/stable-audio-tool) codebase.
|
||||
|
||||
This scheduler was contributed by [Yoach Lacombe](https://huggingface.co/ylacombe).
|
||||
|
||||
## CosineDPMSolverMultistepScheduler
|
||||
[[autodoc]] CosineDPMSolverMultistepScheduler
|
||||
|
||||
## SchedulerOutput
|
||||
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput
|
||||
@@ -13,17 +13,13 @@ from diffusers.configuration_utils import FrozenDict
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
||||
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
||||
from diffusers.schedulers import KarrasDiffusionSchedulers
|
||||
from diffusers.utils import (
|
||||
PIL_INTERPOLATION,
|
||||
USE_PEFT_BACKEND,
|
||||
deprecate,
|
||||
logging,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
@@ -203,7 +199,6 @@ def get_unweighted_text_embeddings(
|
||||
text_input: torch.Tensor,
|
||||
chunk_length: int,
|
||||
no_boseos_middle: Optional[bool] = True,
|
||||
clip_skip: Optional[int] = None,
|
||||
):
|
||||
"""
|
||||
When the length of tokens is a multiple of the capacity of the text encoder,
|
||||
@@ -219,20 +214,7 @@ def get_unweighted_text_embeddings(
|
||||
# cover the head and the tail by the starting and the ending tokens
|
||||
text_input_chunk[:, 0] = text_input[0, 0]
|
||||
text_input_chunk[:, -1] = text_input[0, -1]
|
||||
if clip_skip is None:
|
||||
prompt_embeds = pipe.text_encoder(text_input_chunk.to(pipe.device))
|
||||
text_embedding = prompt_embeds[0]
|
||||
else:
|
||||
prompt_embeds = pipe.text_encoder(text_input_chunk.to(pipe.device), output_hidden_states=True)
|
||||
# Access the `hidden_states` first, that contains a tuple of
|
||||
# all the hidden states from the encoder layers. Then index into
|
||||
# the tuple to access the hidden states from the desired layer.
|
||||
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
||||
# We also need to apply the final LayerNorm here to not mess with the
|
||||
# representations. The `last_hidden_states` that we typically use for
|
||||
# obtaining the final prompt representations passes through the LayerNorm
|
||||
# layer.
|
||||
text_embedding = pipe.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
||||
text_embedding = pipe.text_encoder(text_input_chunk)[0]
|
||||
|
||||
if no_boseos_middle:
|
||||
if i == 0:
|
||||
@@ -248,10 +230,7 @@ def get_unweighted_text_embeddings(
|
||||
text_embeddings.append(text_embedding)
|
||||
text_embeddings = torch.concat(text_embeddings, axis=1)
|
||||
else:
|
||||
if clip_skip is None:
|
||||
clip_skip = 0
|
||||
prompt_embeds = pipe.text_encoder(text_input, output_hidden_states=True)[-1][-(clip_skip + 1)]
|
||||
text_embeddings = pipe.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
||||
text_embeddings = pipe.text_encoder(text_input)[0]
|
||||
return text_embeddings
|
||||
|
||||
|
||||
@@ -263,8 +242,6 @@ def get_weighted_text_embeddings(
|
||||
no_boseos_middle: Optional[bool] = False,
|
||||
skip_parsing: Optional[bool] = False,
|
||||
skip_weighting: Optional[bool] = False,
|
||||
clip_skip=None,
|
||||
lora_scale=None,
|
||||
):
|
||||
r"""
|
||||
Prompts can be assigned with local weights using brackets. For example,
|
||||
@@ -291,16 +268,6 @@ def get_weighted_text_embeddings(
|
||||
skip_weighting (`bool`, *optional*, defaults to `False`):
|
||||
Skip the weighting. When the parsing is skipped, it is forced True.
|
||||
"""
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(pipe, StableDiffusionLoraLoaderMixin):
|
||||
pipe._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if not USE_PEFT_BACKEND:
|
||||
adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
|
||||
else:
|
||||
scale_lora_layers(pipe.text_encoder, lora_scale)
|
||||
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
||||
if isinstance(prompt, str):
|
||||
prompt = [prompt]
|
||||
@@ -367,7 +334,10 @@ def get_weighted_text_embeddings(
|
||||
|
||||
# get the embeddings
|
||||
text_embeddings = get_unweighted_text_embeddings(
|
||||
pipe, prompt_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle, clip_skip=clip_skip
|
||||
pipe,
|
||||
prompt_tokens,
|
||||
pipe.tokenizer.model_max_length,
|
||||
no_boseos_middle=no_boseos_middle,
|
||||
)
|
||||
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=text_embeddings.device)
|
||||
if uncond_prompt is not None:
|
||||
@@ -376,7 +346,6 @@ def get_weighted_text_embeddings(
|
||||
uncond_tokens,
|
||||
pipe.tokenizer.model_max_length,
|
||||
no_boseos_middle=no_boseos_middle,
|
||||
clip_skip=clip_skip,
|
||||
)
|
||||
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=uncond_embeddings.device)
|
||||
|
||||
@@ -393,11 +362,6 @@ def get_weighted_text_embeddings(
|
||||
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
|
||||
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
||||
|
||||
if pipe.text_encoder is not None:
|
||||
if isinstance(pipe, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(pipe.text_encoder, lora_scale)
|
||||
|
||||
if uncond_prompt is not None:
|
||||
return text_embeddings, uncond_embeddings
|
||||
return text_embeddings, None
|
||||
@@ -585,8 +549,6 @@ class StableDiffusionLongPromptWeightingPipeline(
|
||||
max_embeddings_multiples=3,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
clip_skip: Optional[int] = None,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
@@ -635,8 +597,6 @@ class StableDiffusionLongPromptWeightingPipeline(
|
||||
prompt=prompt,
|
||||
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
clip_skip=clip_skip,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds = prompt_embeds1
|
||||
@@ -830,7 +790,6 @@ class StableDiffusionLongPromptWeightingPipeline(
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
||||
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
||||
clip_skip: Optional[int] = None,
|
||||
callback_steps: int = 1,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
@@ -906,9 +865,6 @@ class StableDiffusionLongPromptWeightingPipeline(
|
||||
is_cancelled_callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. If the function returns
|
||||
`True`, the inference will be cancelled.
|
||||
clip_skip (`int`, *optional*):
|
||||
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
||||
the output of the pre-final layer will be used for computing the prompt embeddings.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
@@ -947,7 +903,6 @@ class StableDiffusionLongPromptWeightingPipeline(
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds = self._encode_prompt(
|
||||
@@ -959,8 +914,6 @@ class StableDiffusionLongPromptWeightingPipeline(
|
||||
max_embeddings_multiples,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
clip_skip=clip_skip,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
dtype = prompt_embeds.dtype
|
||||
|
||||
@@ -1091,7 +1044,6 @@ class StableDiffusionLongPromptWeightingPipeline(
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
||||
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
||||
clip_skip=None,
|
||||
callback_steps: int = 1,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
@@ -1149,9 +1101,6 @@ class StableDiffusionLongPromptWeightingPipeline(
|
||||
is_cancelled_callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. If the function returns
|
||||
`True`, the inference will be cancelled.
|
||||
clip_skip (`int`, *optional*):
|
||||
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
||||
the output of the pre-final layer will be used for computing the prompt embeddings.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
@@ -1186,7 +1135,6 @@ class StableDiffusionLongPromptWeightingPipeline(
|
||||
return_dict=return_dict,
|
||||
callback=callback,
|
||||
is_cancelled_callback=is_cancelled_callback,
|
||||
clip_skip=clip_skip,
|
||||
callback_steps=callback_steps,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
)
|
||||
|
||||
@@ -25,25 +25,21 @@ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from diffusers.loaders import (
|
||||
FromSingleFileMixin,
|
||||
IPAdapterMixin,
|
||||
StableDiffusionXLLoraLoaderMixin,
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
TextualInversionLoaderMixin,
|
||||
)
|
||||
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
||||
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
|
||||
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
||||
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
||||
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
||||
from diffusers.schedulers import KarrasDiffusionSchedulers
|
||||
from diffusers.utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
deprecate,
|
||||
is_accelerate_available,
|
||||
is_accelerate_version,
|
||||
is_invisible_watermark_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
@@ -265,7 +261,6 @@ def get_weighted_text_embeddings_sdxl(
|
||||
num_images_per_prompt: int = 1,
|
||||
device: Optional[torch.device] = None,
|
||||
clip_skip: Optional[int] = None,
|
||||
lora_scale: Optional[int] = None,
|
||||
):
|
||||
"""
|
||||
This function can process long prompt with weights, no length limitation
|
||||
@@ -286,24 +281,6 @@ def get_weighted_text_embeddings_sdxl(
|
||||
"""
|
||||
device = device or pipe._execution_device
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(pipe, StableDiffusionXLLoraLoaderMixin):
|
||||
pipe._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if pipe.text_encoder is not None:
|
||||
if not USE_PEFT_BACKEND:
|
||||
adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
|
||||
else:
|
||||
scale_lora_layers(pipe.text_encoder, lora_scale)
|
||||
|
||||
if pipe.text_encoder_2 is not None:
|
||||
if not USE_PEFT_BACKEND:
|
||||
adjust_lora_scale_text_encoder(pipe.text_encoder_2, lora_scale)
|
||||
else:
|
||||
scale_lora_layers(pipe.text_encoder_2, lora_scale)
|
||||
|
||||
if prompt_2:
|
||||
prompt = f"{prompt} {prompt_2}"
|
||||
|
||||
@@ -452,16 +429,6 @@ def get_weighted_text_embeddings_sdxl(
|
||||
bs_embed * num_images_per_prompt, -1
|
||||
)
|
||||
|
||||
if pipe.text_encoder is not None:
|
||||
if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(pipe.text_encoder, lora_scale)
|
||||
|
||||
if pipe.text_encoder_2 is not None:
|
||||
if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(pipe.text_encoder_2, lora_scale)
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
||||
|
||||
|
||||
@@ -582,7 +549,7 @@ class SDXLLongPromptWeightingPipeline(
|
||||
StableDiffusionMixin,
|
||||
FromSingleFileMixin,
|
||||
IPAdapterMixin,
|
||||
StableDiffusionXLLoraLoaderMixin,
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
TextualInversionLoaderMixin,
|
||||
):
|
||||
r"""
|
||||
@@ -594,8 +561,8 @@ class SDXLLongPromptWeightingPipeline(
|
||||
The pipeline also inherits the following loading methods:
|
||||
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
||||
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
||||
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
||||
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
||||
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
||||
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
||||
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
||||
|
||||
Args:
|
||||
@@ -776,7 +743,7 @@ class SDXLLongPromptWeightingPipeline(
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
||||
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
@@ -1645,9 +1612,7 @@ class SDXLLongPromptWeightingPipeline(
|
||||
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
||||
|
||||
# 3. Encode input prompt
|
||||
lora_scale = (
|
||||
self._cross_attention_kwargs.get("scale", None) if self._cross_attention_kwargs is not None else None
|
||||
)
|
||||
(self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None)
|
||||
|
||||
negative_prompt = negative_prompt if negative_prompt is not None else ""
|
||||
|
||||
@@ -1662,7 +1627,6 @@ class SDXLLongPromptWeightingPipeline(
|
||||
neg_prompt=negative_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
clip_skip=clip_skip,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
dtype = prompt_embeds.dtype
|
||||
|
||||
|
||||
@@ -1,279 +0,0 @@
|
||||
# Run this script to convert the Stable Cascade model weights to a diffusers pipeline.
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderOobleck,
|
||||
CosineDPMSolverMultistepScheduler,
|
||||
StableAudioDiTModel,
|
||||
StableAudioPipeline,
|
||||
StableAudioProjectionModel,
|
||||
)
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.utils import is_accelerate_available
|
||||
|
||||
|
||||
if is_accelerate_available():
|
||||
from accelerate import init_empty_weights
|
||||
|
||||
|
||||
def convert_stable_audio_state_dict_to_diffusers(state_dict, num_autoencoder_layers=5):
|
||||
projection_model_state_dict = {
|
||||
k.replace("conditioner.conditioners.", "").replace("embedder.embedding", "time_positional_embedding"): v
|
||||
for (k, v) in state_dict.items()
|
||||
if "conditioner.conditioners" in k
|
||||
}
|
||||
|
||||
# NOTE: we assume here that there's no projection layer from the text encoder to the latent space, script should be adapted a bit if there is.
|
||||
for key, value in list(projection_model_state_dict.items()):
|
||||
new_key = key.replace("seconds_start", "start_number_conditioner").replace(
|
||||
"seconds_total", "end_number_conditioner"
|
||||
)
|
||||
projection_model_state_dict[new_key] = projection_model_state_dict.pop(key)
|
||||
|
||||
model_state_dict = {k.replace("model.model.", ""): v for (k, v) in state_dict.items() if "model.model." in k}
|
||||
for key, value in list(model_state_dict.items()):
|
||||
# attention layers
|
||||
new_key = (
|
||||
key.replace("transformer.", "")
|
||||
.replace("layers", "transformer_blocks")
|
||||
.replace("self_attn", "attn1")
|
||||
.replace("cross_attn", "attn2")
|
||||
.replace("ff.ff", "ff.net")
|
||||
)
|
||||
new_key = (
|
||||
new_key.replace("pre_norm", "norm1")
|
||||
.replace("cross_attend_norm", "norm2")
|
||||
.replace("ff_norm", "norm3")
|
||||
.replace("to_out", "to_out.0")
|
||||
)
|
||||
new_key = new_key.replace("gamma", "weight").replace("beta", "bias") # replace layernorm
|
||||
|
||||
# other layers
|
||||
new_key = (
|
||||
new_key.replace("project", "proj")
|
||||
.replace("to_timestep_embed", "timestep_proj")
|
||||
.replace("timestep_features", "time_proj")
|
||||
.replace("to_global_embed", "global_proj")
|
||||
.replace("to_cond_embed", "cross_attention_proj")
|
||||
)
|
||||
|
||||
# we're using diffusers implementation of time_proj (GaussianFourierProjection) which creates a 1D tensor
|
||||
if new_key == "time_proj.weight":
|
||||
model_state_dict[key] = model_state_dict[key].squeeze(1)
|
||||
|
||||
if "to_qkv" in new_key:
|
||||
q, k, v = torch.chunk(model_state_dict.pop(key), 3, dim=0)
|
||||
model_state_dict[new_key.replace("qkv", "q")] = q
|
||||
model_state_dict[new_key.replace("qkv", "k")] = k
|
||||
model_state_dict[new_key.replace("qkv", "v")] = v
|
||||
elif "to_kv" in new_key:
|
||||
k, v = torch.chunk(model_state_dict.pop(key), 2, dim=0)
|
||||
model_state_dict[new_key.replace("kv", "k")] = k
|
||||
model_state_dict[new_key.replace("kv", "v")] = v
|
||||
else:
|
||||
model_state_dict[new_key] = model_state_dict.pop(key)
|
||||
|
||||
autoencoder_state_dict = {
|
||||
k.replace("pretransform.model.", "").replace("coder.layers.0", "coder.conv1"): v
|
||||
for (k, v) in state_dict.items()
|
||||
if "pretransform.model." in k
|
||||
}
|
||||
|
||||
for key, _ in list(autoencoder_state_dict.items()):
|
||||
new_key = key
|
||||
if "coder.layers" in new_key:
|
||||
# get idx of the layer
|
||||
idx = int(new_key.split("coder.layers.")[1].split(".")[0])
|
||||
|
||||
new_key = new_key.replace(f"coder.layers.{idx}", f"coder.block.{idx-1}")
|
||||
|
||||
if "encoder" in new_key:
|
||||
for i in range(3):
|
||||
new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i+1}")
|
||||
new_key = new_key.replace(f"block.{idx-1}.layers.3", f"block.{idx-1}.snake1")
|
||||
new_key = new_key.replace(f"block.{idx-1}.layers.4", f"block.{idx-1}.conv1")
|
||||
else:
|
||||
for i in range(2, 5):
|
||||
new_key = new_key.replace(f"block.{idx-1}.layers.{i}", f"block.{idx-1}.res_unit{i-1}")
|
||||
new_key = new_key.replace(f"block.{idx-1}.layers.0", f"block.{idx-1}.snake1")
|
||||
new_key = new_key.replace(f"block.{idx-1}.layers.1", f"block.{idx-1}.conv_t1")
|
||||
|
||||
new_key = new_key.replace("layers.0.beta", "snake1.beta")
|
||||
new_key = new_key.replace("layers.0.alpha", "snake1.alpha")
|
||||
new_key = new_key.replace("layers.2.beta", "snake2.beta")
|
||||
new_key = new_key.replace("layers.2.alpha", "snake2.alpha")
|
||||
new_key = new_key.replace("layers.1.bias", "conv1.bias")
|
||||
new_key = new_key.replace("layers.1.weight_", "conv1.weight_")
|
||||
new_key = new_key.replace("layers.3.bias", "conv2.bias")
|
||||
new_key = new_key.replace("layers.3.weight_", "conv2.weight_")
|
||||
|
||||
if idx == num_autoencoder_layers + 1:
|
||||
new_key = new_key.replace(f"block.{idx-1}", "snake1")
|
||||
elif idx == num_autoencoder_layers + 2:
|
||||
new_key = new_key.replace(f"block.{idx-1}", "conv2")
|
||||
|
||||
else:
|
||||
new_key = new_key
|
||||
|
||||
value = autoencoder_state_dict.pop(key)
|
||||
if "snake" in new_key:
|
||||
value = value.unsqueeze(0).unsqueeze(-1)
|
||||
if new_key in autoencoder_state_dict:
|
||||
raise ValueError(f"{new_key} already in state dict.")
|
||||
autoencoder_state_dict[new_key] = value
|
||||
|
||||
return model_state_dict, projection_model_state_dict, autoencoder_state_dict
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description="Convert Stable Audio 1.0 model weights to a diffusers pipeline")
|
||||
parser.add_argument("--model_folder_path", type=str, help="Location of Stable Audio weights and config")
|
||||
parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion")
|
||||
parser.add_argument(
|
||||
"--save_directory",
|
||||
type=str,
|
||||
default="./tmp/stable-audio-1.0",
|
||||
help="Directory to save a pipeline to. Will be created if it doesn't exist.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo_id",
|
||||
type=str,
|
||||
default="stable-audio-1.0",
|
||||
help="Hub organization to save the pipelines to",
|
||||
)
|
||||
parser.add_argument("--push_to_hub", action="store_true", help="Push to hub")
|
||||
parser.add_argument("--variant", type=str, help="Set to bf16 to save bfloat16 weights")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
checkpoint_path = (
|
||||
os.path.join(args.model_folder_path, "model.safetensors")
|
||||
if args.use_safetensors
|
||||
else os.path.join(args.model_folder_path, "model.ckpt")
|
||||
)
|
||||
config_path = os.path.join(args.model_folder_path, "model_config.json")
|
||||
|
||||
device = "cpu"
|
||||
if args.variant == "bf16":
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
dtype = torch.float32
|
||||
|
||||
with open(config_path) as f_in:
|
||||
config_dict = json.load(f_in)
|
||||
|
||||
conditioning_dict = {
|
||||
conditioning["id"]: conditioning["config"] for conditioning in config_dict["model"]["conditioning"]["configs"]
|
||||
}
|
||||
|
||||
t5_model_config = conditioning_dict["prompt"]
|
||||
|
||||
# T5 Text encoder
|
||||
text_encoder = T5EncoderModel.from_pretrained(t5_model_config["t5_model_name"])
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
t5_model_config["t5_model_name"], truncation=True, model_max_length=t5_model_config["max_length"]
|
||||
)
|
||||
|
||||
|
||||
# scheduler
|
||||
scheduler = CosineDPMSolverMultistepScheduler(
|
||||
sigma_min=0.3,
|
||||
sigma_max=500,
|
||||
solver_order=2,
|
||||
prediction_type="v_prediction",
|
||||
sigma_data=1.0,
|
||||
sigma_schedule="exponential",
|
||||
)
|
||||
ctx = init_empty_weights if is_accelerate_available() else nullcontext
|
||||
|
||||
|
||||
if args.use_safetensors:
|
||||
orig_state_dict = load_file(checkpoint_path, device=device)
|
||||
else:
|
||||
orig_state_dict = torch.load(checkpoint_path, map_location=device)
|
||||
|
||||
|
||||
model_config = config_dict["model"]["diffusion"]["config"]
|
||||
|
||||
model_state_dict, projection_model_state_dict, autoencoder_state_dict = convert_stable_audio_state_dict_to_diffusers(
|
||||
orig_state_dict
|
||||
)
|
||||
|
||||
|
||||
with ctx():
|
||||
projection_model = StableAudioProjectionModel(
|
||||
text_encoder_dim=text_encoder.config.d_model,
|
||||
conditioning_dim=config_dict["model"]["conditioning"]["cond_dim"],
|
||||
min_value=conditioning_dict["seconds_start"][
|
||||
"min_val"
|
||||
], # assume `seconds_start` and `seconds_total` have the same min / max values.
|
||||
max_value=conditioning_dict["seconds_start"][
|
||||
"max_val"
|
||||
], # assume `seconds_start` and `seconds_total` have the same min / max values.
|
||||
)
|
||||
if is_accelerate_available():
|
||||
load_model_dict_into_meta(projection_model, projection_model_state_dict)
|
||||
else:
|
||||
projection_model.load_state_dict(projection_model_state_dict)
|
||||
|
||||
attention_head_dim = model_config["embed_dim"] // model_config["num_heads"]
|
||||
with ctx():
|
||||
model = StableAudioDiTModel(
|
||||
sample_size=int(config_dict["sample_size"])
|
||||
/ int(config_dict["model"]["pretransform"]["config"]["downsampling_ratio"]),
|
||||
in_channels=model_config["io_channels"],
|
||||
num_layers=model_config["depth"],
|
||||
attention_head_dim=attention_head_dim,
|
||||
num_key_value_attention_heads=model_config["cond_token_dim"] // attention_head_dim,
|
||||
num_attention_heads=model_config["num_heads"],
|
||||
out_channels=model_config["io_channels"],
|
||||
cross_attention_dim=model_config["cond_token_dim"],
|
||||
time_proj_dim=256,
|
||||
global_states_input_dim=model_config["global_cond_dim"],
|
||||
cross_attention_input_dim=model_config["cond_token_dim"],
|
||||
)
|
||||
if is_accelerate_available():
|
||||
load_model_dict_into_meta(model, model_state_dict)
|
||||
else:
|
||||
model.load_state_dict(model_state_dict)
|
||||
|
||||
|
||||
autoencoder_config = config_dict["model"]["pretransform"]["config"]
|
||||
with ctx():
|
||||
autoencoder = AutoencoderOobleck(
|
||||
encoder_hidden_size=autoencoder_config["encoder"]["config"]["channels"],
|
||||
downsampling_ratios=autoencoder_config["encoder"]["config"]["strides"],
|
||||
decoder_channels=autoencoder_config["decoder"]["config"]["channels"],
|
||||
decoder_input_channels=autoencoder_config["decoder"]["config"]["latent_dim"],
|
||||
audio_channels=autoencoder_config["io_channels"],
|
||||
channel_multiples=autoencoder_config["encoder"]["config"]["c_mults"],
|
||||
sampling_rate=config_dict["sample_rate"],
|
||||
)
|
||||
|
||||
if is_accelerate_available():
|
||||
load_model_dict_into_meta(autoencoder, autoencoder_state_dict)
|
||||
else:
|
||||
autoencoder.load_state_dict(autoencoder_state_dict)
|
||||
|
||||
|
||||
# Prior pipeline
|
||||
pipeline = StableAudioPipeline(
|
||||
transformer=model,
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
scheduler=scheduler,
|
||||
vae=autoencoder,
|
||||
projection_model=projection_model,
|
||||
)
|
||||
pipeline.to(dtype).save_pretrained(
|
||||
args.save_directory, repo_id=args.repo_id, push_to_hub=args.push_to_hub, variant=args.variant
|
||||
)
|
||||
@@ -79,7 +79,6 @@ else:
|
||||
"AuraFlowTransformer2DModel",
|
||||
"AutoencoderKL",
|
||||
"AutoencoderKLTemporalDecoder",
|
||||
"AutoencoderOobleck",
|
||||
"AutoencoderTiny",
|
||||
"ConsistencyDecoderVAE",
|
||||
"ControlNetModel",
|
||||
@@ -101,7 +100,6 @@ else:
|
||||
"SD3MultiControlNetModel",
|
||||
"SD3Transformer2DModel",
|
||||
"SparseControlNetModel",
|
||||
"StableAudioDiTModel",
|
||||
"StableCascadeUNet",
|
||||
"T2IAdapter",
|
||||
"T5FilmDecoder",
|
||||
@@ -212,7 +210,7 @@ except OptionalDependencyNotAvailable:
|
||||
]
|
||||
|
||||
else:
|
||||
_import_structure["schedulers"].extend(["CosineDPMSolverMultistepScheduler", "DPMSolverSDEScheduler"])
|
||||
_import_structure["schedulers"].extend(["DPMSolverSDEScheduler"])
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available()):
|
||||
@@ -232,7 +230,6 @@ else:
|
||||
"AmusedImg2ImgPipeline",
|
||||
"AmusedInpaintPipeline",
|
||||
"AmusedPipeline",
|
||||
"AnimateDiffControlNetPipeline",
|
||||
"AnimateDiffPipeline",
|
||||
"AnimateDiffSDXLPipeline",
|
||||
"AnimateDiffSparseControlNetPipeline",
|
||||
@@ -296,8 +293,6 @@ else:
|
||||
"SemanticStableDiffusionPipeline",
|
||||
"ShapEImg2ImgPipeline",
|
||||
"ShapEPipeline",
|
||||
"StableAudioPipeline",
|
||||
"StableAudioProjectionModel",
|
||||
"StableCascadeCombinedPipeline",
|
||||
"StableCascadeDecoderPipeline",
|
||||
"StableCascadePriorPipeline",
|
||||
@@ -520,7 +515,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AuraFlowTransformer2DModel,
|
||||
AutoencoderKL,
|
||||
AutoencoderKLTemporalDecoder,
|
||||
AutoencoderOobleck,
|
||||
AutoencoderTiny,
|
||||
ConsistencyDecoderVAE,
|
||||
ControlNetModel,
|
||||
@@ -542,7 +536,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
SD3MultiControlNetModel,
|
||||
SD3Transformer2DModel,
|
||||
SparseControlNetModel,
|
||||
StableAudioDiTModel,
|
||||
T2IAdapter,
|
||||
T5FilmDecoder,
|
||||
Transformer2DModel,
|
||||
@@ -639,7 +632,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
except OptionalDependencyNotAvailable:
|
||||
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
|
||||
else:
|
||||
from .schedulers import CosineDPMSolverMultistepScheduler, DPMSolverSDEScheduler
|
||||
from .schedulers import DPMSolverSDEScheduler
|
||||
|
||||
try:
|
||||
if not (is_torch_available() and is_transformers_available()):
|
||||
@@ -653,7 +646,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AmusedImg2ImgPipeline,
|
||||
AmusedInpaintPipeline,
|
||||
AmusedPipeline,
|
||||
AnimateDiffControlNetPipeline,
|
||||
AnimateDiffPipeline,
|
||||
AnimateDiffSDXLPipeline,
|
||||
AnimateDiffSparseControlNetPipeline,
|
||||
@@ -715,8 +707,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
SemanticStableDiffusionPipeline,
|
||||
ShapEImg2ImgPipeline,
|
||||
ShapEPipeline,
|
||||
StableAudioPipeline,
|
||||
StableAudioProjectionModel,
|
||||
StableCascadeCombinedPipeline,
|
||||
StableCascadeDecoderPipeline,
|
||||
StableCascadePriorPipeline,
|
||||
|
||||
@@ -30,7 +30,6 @@ from .unet_loader_utils import _maybe_expand_lora_scales
|
||||
|
||||
_SET_ADAPTER_SCALE_FN_MAPPING = {
|
||||
"UNet2DConditionModel": _maybe_expand_lora_scales,
|
||||
"UNetMotionModel": _maybe_expand_lora_scales,
|
||||
"SD3Transformer2DModel": lambda model_cls, weights: weights,
|
||||
}
|
||||
|
||||
|
||||
@@ -29,7 +29,6 @@ if is_torch_available():
|
||||
_import_structure["autoencoders.autoencoder_asym_kl"] = ["AsymmetricAutoencoderKL"]
|
||||
_import_structure["autoencoders.autoencoder_kl"] = ["AutoencoderKL"]
|
||||
_import_structure["autoencoders.autoencoder_kl_temporal_decoder"] = ["AutoencoderKLTemporalDecoder"]
|
||||
_import_structure["autoencoders.autoencoder_oobleck"] = ["AutoencoderOobleck"]
|
||||
_import_structure["autoencoders.autoencoder_tiny"] = ["AutoencoderTiny"]
|
||||
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
|
||||
_import_structure["autoencoders.vq_model"] = ["VQModel"]
|
||||
@@ -48,7 +47,6 @@ if is_torch_available():
|
||||
_import_structure["transformers.lumina_nextdit2d"] = ["LuminaNextDiT2DModel"]
|
||||
_import_structure["transformers.pixart_transformer_2d"] = ["PixArtTransformer2DModel"]
|
||||
_import_structure["transformers.prior_transformer"] = ["PriorTransformer"]
|
||||
_import_structure["transformers.stable_audio_transformer"] = ["StableAudioDiTModel"]
|
||||
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
|
||||
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"]
|
||||
@@ -77,7 +75,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AsymmetricAutoencoderKL,
|
||||
AutoencoderKL,
|
||||
AutoencoderKLTemporalDecoder,
|
||||
AutoencoderOobleck,
|
||||
AutoencoderTiny,
|
||||
ConsistencyDecoderVAE,
|
||||
VQModel,
|
||||
@@ -99,7 +96,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
PixArtTransformer2DModel,
|
||||
PriorTransformer,
|
||||
SD3Transformer2DModel,
|
||||
StableAudioDiTModel,
|
||||
T5FilmDecoder,
|
||||
Transformer2DModel,
|
||||
TransformerTemporalModel,
|
||||
|
||||
@@ -123,28 +123,6 @@ class GEGLU(nn.Module):
|
||||
return hidden_states * self.gelu(gate)
|
||||
|
||||
|
||||
class SwiGLU(nn.Module):
|
||||
r"""
|
||||
A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. It's similar to `GEGLU`
|
||||
but uses SiLU / Swish instead of GeLU.
|
||||
|
||||
Parameters:
|
||||
dim_in (`int`): The number of channels in the input.
|
||||
dim_out (`int`): The number of channels in the output.
|
||||
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
||||
"""
|
||||
|
||||
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
|
||||
self.activation = nn.SiLU()
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.proj(hidden_states)
|
||||
hidden_states, gate = hidden_states.chunk(2, dim=-1)
|
||||
return hidden_states * self.activation(gate)
|
||||
|
||||
|
||||
class ApproximateGELU(nn.Module):
|
||||
r"""
|
||||
The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this
|
||||
|
||||
@@ -19,7 +19,7 @@ from torch import nn
|
||||
|
||||
from ..utils import deprecate, logging
|
||||
from ..utils.torch_utils import maybe_allow_in_graph
|
||||
from .activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU
|
||||
from .activations import GEGLU, GELU, ApproximateGELU, FP32SiLU
|
||||
from .attention_processor import Attention, JointAttnProcessor2_0
|
||||
from .embeddings import SinusoidalPositionalEmbedding
|
||||
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
|
||||
@@ -272,6 +272,17 @@ class BasicTransformerBlock(nn.Module):
|
||||
attention_out_bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.attention_head_dim = attention_head_dim
|
||||
self.dropout = dropout
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
self.activation_fn = activation_fn
|
||||
self.attention_bias = attention_bias
|
||||
self.double_self_attention = double_self_attention
|
||||
self.norm_elementwise_affine = norm_elementwise_affine
|
||||
self.positional_embeddings = positional_embeddings
|
||||
self.num_positional_embeddings = num_positional_embeddings
|
||||
self.only_cross_attention = only_cross_attention
|
||||
|
||||
# We keep these boolean flags for backward-compatibility.
|
||||
@@ -820,8 +831,6 @@ class FeedForward(nn.Module):
|
||||
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
||||
elif activation_fn == "geglu-approximate":
|
||||
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
||||
elif activation_fn == "swiglu":
|
||||
act_fn = SwiGLU(dim, inner_dim, bias=bias)
|
||||
|
||||
self.net = nn.ModuleList([])
|
||||
# project in
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
import inspect
|
||||
import math
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
@@ -49,10 +49,6 @@ class Attention(nn.Module):
|
||||
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
||||
heads (`int`, *optional*, defaults to 8):
|
||||
The number of heads to use for multi-head attention.
|
||||
kv_heads (`int`, *optional*, defaults to `None`):
|
||||
The number of key and value heads to use for multi-head attention. Defaults to `heads`. If
|
||||
`kv_heads=heads`, the model will use Multi Head Attention (MHA), if `kv_heads=1` the model will use Multi
|
||||
Query Attention (MQA) otherwise GQA is used.
|
||||
dim_head (`int`, *optional*, defaults to 64):
|
||||
The number of channels in each head.
|
||||
dropout (`float`, *optional*, defaults to 0.0):
|
||||
@@ -1628,137 +1624,6 @@ class AttnProcessor2_0:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class StableAudioAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
|
||||
used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError(
|
||||
"StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
||||
)
|
||||
|
||||
def apply_partial_rotary_emb(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
freqs_cis: Tuple[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
rot_dim = freqs_cis[0].shape[-1]
|
||||
x_to_rotate, x_unrotated = x[..., :rot_dim], x[..., rot_dim:]
|
||||
|
||||
x_rotated = apply_rotary_emb(x_to_rotate, freqs_cis, use_real=True, use_real_unbind_dim=-2)
|
||||
|
||||
out = torch.cat((x_rotated, x_unrotated), dim=-1)
|
||||
return out
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
input_ndim = hidden_states.ndim
|
||||
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
elif attn.norm_cross:
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
head_dim = query.shape[-1] // attn.heads
|
||||
kv_heads = key.shape[-1] // head_dim
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
|
||||
|
||||
if kv_heads != attn.heads:
|
||||
# if GQA or MQA, repeat the key/value heads to reach the number of query heads.
|
||||
heads_per_kv_head = attn.heads // kv_heads
|
||||
key = torch.repeat_interleave(key, heads_per_kv_head, dim=1)
|
||||
value = torch.repeat_interleave(value, heads_per_kv_head, dim=1)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# Apply RoPE if needed
|
||||
if rotary_emb is not None:
|
||||
query_dtype = query.dtype
|
||||
key_dtype = key.dtype
|
||||
query = query.to(torch.float32)
|
||||
key = key.to(torch.float32)
|
||||
|
||||
rot_dim = rotary_emb[0].shape[-1]
|
||||
query_to_rotate, query_unrotated = query[..., :rot_dim], query[..., rot_dim:]
|
||||
query_rotated = apply_rotary_emb(query_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2)
|
||||
|
||||
query = torch.cat((query_rotated, query_unrotated), dim=-1)
|
||||
|
||||
if not attn.is_cross_attention:
|
||||
key_to_rotate, key_unrotated = key[..., :rot_dim], key[..., rot_dim:]
|
||||
key_rotated = apply_rotary_emb(key_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2)
|
||||
|
||||
key = torch.cat((key_rotated, key_unrotated), dim=-1)
|
||||
|
||||
query = query.to(query_dtype)
|
||||
key = key.to(key_dtype)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
if attn.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class HunyuanAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
from .autoencoder_asym_kl import AsymmetricAutoencoderKL
|
||||
from .autoencoder_kl import AutoencoderKL
|
||||
from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder
|
||||
from .autoencoder_oobleck import AutoencoderOobleck
|
||||
from .autoencoder_tiny import AutoencoderTiny
|
||||
from .consistency_decoder_vae import ConsistencyDecoderVAE
|
||||
from .vq_model import VQModel
|
||||
|
||||
@@ -1,464 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...utils import BaseOutput
|
||||
from ...utils.accelerate_utils import apply_forward_hook
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..modeling_utils import ModelMixin
|
||||
|
||||
|
||||
class Snake1d(nn.Module):
|
||||
"""
|
||||
A 1-dimensional Snake activation function module.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim, logscale=True):
|
||||
super().__init__()
|
||||
self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1))
|
||||
self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1))
|
||||
|
||||
self.alpha.requires_grad = True
|
||||
self.beta.requires_grad = True
|
||||
self.logscale = logscale
|
||||
|
||||
def forward(self, hidden_states):
|
||||
shape = hidden_states.shape
|
||||
|
||||
alpha = self.alpha if not self.logscale else torch.exp(self.alpha)
|
||||
beta = self.beta if not self.logscale else torch.exp(self.beta)
|
||||
|
||||
hidden_states = hidden_states.reshape(shape[0], shape[1], -1)
|
||||
hidden_states = hidden_states + (beta + 1e-9).reciprocal() * torch.sin(alpha * hidden_states).pow(2)
|
||||
hidden_states = hidden_states.reshape(shape)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class OobleckResidualUnit(nn.Module):
|
||||
"""
|
||||
A residual unit composed of Snake1d and weight-normalized Conv1d layers with dilations.
|
||||
"""
|
||||
|
||||
def __init__(self, dimension: int = 16, dilation: int = 1):
|
||||
super().__init__()
|
||||
pad = ((7 - 1) * dilation) // 2
|
||||
|
||||
self.snake1 = Snake1d(dimension)
|
||||
self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad))
|
||||
self.snake2 = Snake1d(dimension)
|
||||
self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1))
|
||||
|
||||
def forward(self, hidden_state):
|
||||
"""
|
||||
Forward pass through the residual unit.
|
||||
|
||||
Args:
|
||||
hidden_state (`torch.Tensor` of shape `(batch_size, channels, time_steps)`):
|
||||
Input tensor .
|
||||
|
||||
Returns:
|
||||
output_tensor (`torch.Tensor` of shape `(batch_size, channels, time_steps)`)
|
||||
Input tensor after passing through the residual unit.
|
||||
"""
|
||||
output_tensor = hidden_state
|
||||
output_tensor = self.conv1(self.snake1(output_tensor))
|
||||
output_tensor = self.conv2(self.snake2(output_tensor))
|
||||
|
||||
padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2
|
||||
if padding > 0:
|
||||
hidden_state = hidden_state[..., padding:-padding]
|
||||
output_tensor = hidden_state + output_tensor
|
||||
return output_tensor
|
||||
|
||||
|
||||
class OobleckEncoderBlock(nn.Module):
|
||||
"""Encoder block used in Oobleck encoder."""
|
||||
|
||||
def __init__(self, input_dim, output_dim, stride: int = 1):
|
||||
super().__init__()
|
||||
|
||||
self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1)
|
||||
self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3)
|
||||
self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9)
|
||||
self.snake1 = Snake1d(input_dim)
|
||||
self.conv1 = weight_norm(
|
||||
nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2))
|
||||
)
|
||||
|
||||
def forward(self, hidden_state):
|
||||
hidden_state = self.res_unit1(hidden_state)
|
||||
hidden_state = self.res_unit2(hidden_state)
|
||||
hidden_state = self.snake1(self.res_unit3(hidden_state))
|
||||
hidden_state = self.conv1(hidden_state)
|
||||
|
||||
return hidden_state
|
||||
|
||||
|
||||
class OobleckDecoderBlock(nn.Module):
|
||||
"""Decoder block used in Oobleck decoder."""
|
||||
|
||||
def __init__(self, input_dim, output_dim, stride: int = 1):
|
||||
super().__init__()
|
||||
|
||||
self.snake1 = Snake1d(input_dim)
|
||||
self.conv_t1 = weight_norm(
|
||||
nn.ConvTranspose1d(
|
||||
input_dim,
|
||||
output_dim,
|
||||
kernel_size=2 * stride,
|
||||
stride=stride,
|
||||
padding=math.ceil(stride / 2),
|
||||
)
|
||||
)
|
||||
self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1)
|
||||
self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3)
|
||||
self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9)
|
||||
|
||||
def forward(self, hidden_state):
|
||||
hidden_state = self.snake1(hidden_state)
|
||||
hidden_state = self.conv_t1(hidden_state)
|
||||
hidden_state = self.res_unit1(hidden_state)
|
||||
hidden_state = self.res_unit2(hidden_state)
|
||||
hidden_state = self.res_unit3(hidden_state)
|
||||
|
||||
return hidden_state
|
||||
|
||||
|
||||
class OobleckDiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.scale = parameters.chunk(2, dim=1)
|
||||
self.std = nn.functional.softplus(self.scale) + 1e-4
|
||||
self.var = self.std * self.std
|
||||
self.logvar = torch.log(self.var)
|
||||
self.deterministic = deterministic
|
||||
|
||||
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
||||
# make sure sample is on the same device as the parameters and has same dtype
|
||||
sample = randn_tensor(
|
||||
self.mean.shape,
|
||||
generator=generator,
|
||||
device=self.parameters.device,
|
||||
dtype=self.parameters.dtype,
|
||||
)
|
||||
x = self.mean + self.std * sample
|
||||
return x
|
||||
|
||||
def kl(self, other: "OobleckDiagonalGaussianDistribution" = None) -> torch.Tensor:
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.0])
|
||||
else:
|
||||
if other is None:
|
||||
return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean()
|
||||
else:
|
||||
normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var
|
||||
var_ratio = self.var / other.var
|
||||
logvar_diff = self.logvar - other.logvar
|
||||
|
||||
kl = normalized_diff + var_ratio + logvar_diff - 1
|
||||
|
||||
kl = kl.sum(1).mean()
|
||||
return kl
|
||||
|
||||
def mode(self) -> torch.Tensor:
|
||||
return self.mean
|
||||
|
||||
|
||||
@dataclass
|
||||
class AutoencoderOobleckOutput(BaseOutput):
|
||||
"""
|
||||
Output of AutoencoderOobleck encoding method.
|
||||
|
||||
Args:
|
||||
latent_dist (`OobleckDiagonalGaussianDistribution`):
|
||||
Encoded outputs of `Encoder` represented as the mean and standard deviation of
|
||||
`OobleckDiagonalGaussianDistribution`. `OobleckDiagonalGaussianDistribution` allows for sampling latents
|
||||
from the distribution.
|
||||
"""
|
||||
|
||||
latent_dist: "OobleckDiagonalGaussianDistribution" # noqa: F821
|
||||
|
||||
|
||||
@dataclass
|
||||
class OobleckDecoderOutput(BaseOutput):
|
||||
r"""
|
||||
Output of decoding method.
|
||||
|
||||
Args:
|
||||
sample (`torch.Tensor` of shape `(batch_size, audio_channels, sequence_length)`):
|
||||
The decoded output sample from the last layer of the model.
|
||||
"""
|
||||
|
||||
sample: torch.Tensor
|
||||
|
||||
|
||||
class OobleckEncoder(nn.Module):
|
||||
"""Oobleck Encoder"""
|
||||
|
||||
def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples):
|
||||
super().__init__()
|
||||
|
||||
strides = downsampling_ratios
|
||||
channel_multiples = [1] + channel_multiples
|
||||
|
||||
# Create first convolution
|
||||
self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3))
|
||||
|
||||
self.block = []
|
||||
# Create EncoderBlocks that double channels as they downsample by `stride`
|
||||
for stride_index, stride in enumerate(strides):
|
||||
self.block += [
|
||||
OobleckEncoderBlock(
|
||||
input_dim=encoder_hidden_size * channel_multiples[stride_index],
|
||||
output_dim=encoder_hidden_size * channel_multiples[stride_index + 1],
|
||||
stride=stride,
|
||||
)
|
||||
]
|
||||
|
||||
self.block = nn.ModuleList(self.block)
|
||||
d_model = encoder_hidden_size * channel_multiples[-1]
|
||||
self.snake1 = Snake1d(d_model)
|
||||
self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1))
|
||||
|
||||
def forward(self, hidden_state):
|
||||
hidden_state = self.conv1(hidden_state)
|
||||
|
||||
for module in self.block:
|
||||
hidden_state = module(hidden_state)
|
||||
|
||||
hidden_state = self.snake1(hidden_state)
|
||||
hidden_state = self.conv2(hidden_state)
|
||||
|
||||
return hidden_state
|
||||
|
||||
|
||||
class OobleckDecoder(nn.Module):
|
||||
"""Oobleck Decoder"""
|
||||
|
||||
def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples):
|
||||
super().__init__()
|
||||
|
||||
strides = upsampling_ratios
|
||||
channel_multiples = [1] + channel_multiples
|
||||
|
||||
# Add first conv layer
|
||||
self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3))
|
||||
|
||||
# Add upsampling + MRF blocks
|
||||
block = []
|
||||
for stride_index, stride in enumerate(strides):
|
||||
block += [
|
||||
OobleckDecoderBlock(
|
||||
input_dim=channels * channel_multiples[len(strides) - stride_index],
|
||||
output_dim=channels * channel_multiples[len(strides) - stride_index - 1],
|
||||
stride=stride,
|
||||
)
|
||||
]
|
||||
|
||||
self.block = nn.ModuleList(block)
|
||||
output_dim = channels
|
||||
self.snake1 = Snake1d(output_dim)
|
||||
self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False))
|
||||
|
||||
def forward(self, hidden_state):
|
||||
hidden_state = self.conv1(hidden_state)
|
||||
|
||||
for layer in self.block:
|
||||
hidden_state = layer(hidden_state)
|
||||
|
||||
hidden_state = self.snake1(hidden_state)
|
||||
hidden_state = self.conv2(hidden_state)
|
||||
|
||||
return hidden_state
|
||||
|
||||
|
||||
class AutoencoderOobleck(ModelMixin, ConfigMixin):
|
||||
r"""
|
||||
An autoencoder for encoding waveforms into latents and decoding latent representations into waveforms. First
|
||||
introduced in Stable Audio.
|
||||
|
||||
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
||||
for all models (such as downloading or saving).
|
||||
|
||||
Parameters:
|
||||
encoder_hidden_size (`int`, *optional*, defaults to 128):
|
||||
Intermediate representation dimension for the encoder.
|
||||
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`):
|
||||
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
|
||||
channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`):
|
||||
Multiples used to determine the hidden sizes of the hidden layers.
|
||||
decoder_channels (`int`, *optional*, defaults to 128):
|
||||
Intermediate representation dimension for the decoder.
|
||||
decoder_input_channels (`int`, *optional*, defaults to 64):
|
||||
Input dimension for the decoder. Corresponds to the latent dimension.
|
||||
audio_channels (`int`, *optional*, defaults to 2):
|
||||
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
|
||||
sampling_rate (`int`, *optional*, defaults to 44100):
|
||||
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = False
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
encoder_hidden_size=128,
|
||||
downsampling_ratios=[2, 4, 4, 8, 8],
|
||||
channel_multiples=[1, 2, 4, 8, 16],
|
||||
decoder_channels=128,
|
||||
decoder_input_channels=64,
|
||||
audio_channels=2,
|
||||
sampling_rate=44100,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.encoder_hidden_size = encoder_hidden_size
|
||||
self.downsampling_ratios = downsampling_ratios
|
||||
self.decoder_channels = decoder_channels
|
||||
self.upsampling_ratios = downsampling_ratios[::-1]
|
||||
self.hop_length = int(np.prod(downsampling_ratios))
|
||||
self.sampling_rate = sampling_rate
|
||||
|
||||
self.encoder = OobleckEncoder(
|
||||
encoder_hidden_size=encoder_hidden_size,
|
||||
audio_channels=audio_channels,
|
||||
downsampling_ratios=downsampling_ratios,
|
||||
channel_multiples=channel_multiples,
|
||||
)
|
||||
|
||||
self.decoder = OobleckDecoder(
|
||||
channels=decoder_channels,
|
||||
input_channels=decoder_input_channels,
|
||||
audio_channels=audio_channels,
|
||||
upsampling_ratios=self.upsampling_ratios,
|
||||
channel_multiples=channel_multiples,
|
||||
)
|
||||
|
||||
self.use_slicing = False
|
||||
|
||||
def enable_slicing(self):
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.use_slicing = True
|
||||
|
||||
def disable_slicing(self):
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
||||
decoding in one step.
|
||||
"""
|
||||
self.use_slicing = False
|
||||
|
||||
@apply_forward_hook
|
||||
def encode(
|
||||
self, x: torch.Tensor, return_dict: bool = True
|
||||
) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]:
|
||||
"""
|
||||
Encode a batch of images into latents.
|
||||
|
||||
Args:
|
||||
x (`torch.Tensor`): Input batch of images.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
The latent representations of the encoded images. If `return_dict` is True, a
|
||||
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
||||
"""
|
||||
if self.use_slicing and x.shape[0] > 1:
|
||||
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
||||
h = torch.cat(encoded_slices)
|
||||
else:
|
||||
h = self.encoder(x)
|
||||
|
||||
posterior = OobleckDiagonalGaussianDistribution(h)
|
||||
|
||||
if not return_dict:
|
||||
return (posterior,)
|
||||
|
||||
return AutoencoderOobleckOutput(latent_dist=posterior)
|
||||
|
||||
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]:
|
||||
dec = self.decoder(z)
|
||||
|
||||
if not return_dict:
|
||||
return (dec,)
|
||||
|
||||
return OobleckDecoderOutput(sample=dec)
|
||||
|
||||
@apply_forward_hook
|
||||
def decode(
|
||||
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
|
||||
) -> Union[OobleckDecoderOutput, torch.FloatTensor]:
|
||||
"""
|
||||
Decode a batch of images.
|
||||
|
||||
Args:
|
||||
z (`torch.Tensor`): Input batch of latent vectors.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
[`~models.vae.OobleckDecoderOutput`] or `tuple`:
|
||||
If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple`
|
||||
is returned.
|
||||
|
||||
"""
|
||||
if self.use_slicing and z.shape[0] > 1:
|
||||
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
||||
decoded = torch.cat(decoded_slices)
|
||||
else:
|
||||
decoded = self._decode(z).sample
|
||||
|
||||
if not return_dict:
|
||||
return (decoded,)
|
||||
|
||||
return OobleckDecoderOutput(sample=decoded)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
sample: torch.Tensor,
|
||||
sample_posterior: bool = False,
|
||||
return_dict: bool = True,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
) -> Union[OobleckDecoderOutput, torch.Tensor]:
|
||||
r"""
|
||||
Args:
|
||||
sample (`torch.Tensor`): Input sample.
|
||||
sample_posterior (`bool`, *optional*, defaults to `False`):
|
||||
Whether to sample from the posterior.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple.
|
||||
"""
|
||||
x = sample
|
||||
posterior = self.encode(x).latent_dist
|
||||
if sample_posterior:
|
||||
z = posterior.sample(generator=generator)
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z).sample
|
||||
|
||||
if not return_dict:
|
||||
return (dec,)
|
||||
|
||||
return OobleckDecoderOutput(sample=dec)
|
||||
@@ -352,13 +352,7 @@ def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, n
|
||||
|
||||
|
||||
def get_1d_rotary_pos_embed(
|
||||
dim: int,
|
||||
pos: Union[np.ndarray, int],
|
||||
theta: float = 10000.0,
|
||||
use_real=False,
|
||||
linear_factor=1.0,
|
||||
ntk_factor=1.0,
|
||||
repeat_interleave_real=True,
|
||||
dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False, linear_factor=1.0, ntk_factor=1.0
|
||||
):
|
||||
"""
|
||||
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
||||
@@ -378,9 +372,6 @@ def get_1d_rotary_pos_embed(
|
||||
Scaling factor for the context extrapolation. Defaults to 1.0.
|
||||
ntk_factor (`float`, *optional*, defaults to 1.0):
|
||||
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
|
||||
repeat_interleave_real (`bool`, *optional*, defaults to `True`):
|
||||
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
|
||||
Otherwise, they are concateanted with themselves.
|
||||
Returns:
|
||||
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
||||
"""
|
||||
@@ -392,14 +383,10 @@ def get_1d_rotary_pos_embed(
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) / linear_factor # [D/2]
|
||||
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
|
||||
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
|
||||
if use_real and repeat_interleave_real:
|
||||
if use_real:
|
||||
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
|
||||
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
|
||||
return freqs_cos, freqs_sin
|
||||
elif use_real:
|
||||
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1) # [S, D]
|
||||
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1) # [S, D]
|
||||
return freqs_cos, freqs_sin
|
||||
else:
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
||||
return freqs_cis
|
||||
@@ -409,7 +396,6 @@ def apply_rotary_emb(
|
||||
x: torch.Tensor,
|
||||
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
||||
use_real: bool = True,
|
||||
use_real_unbind_dim: int = -1,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
||||
@@ -431,17 +417,8 @@ def apply_rotary_emb(
|
||||
sin = sin[None, None]
|
||||
cos, sin = cos.to(x.device), sin.to(x.device)
|
||||
|
||||
if use_real_unbind_dim == -1:
|
||||
# Use for example in Lumina
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
||||
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
||||
elif use_real_unbind_dim == -2:
|
||||
# Use for example in Stable Audio
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
|
||||
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
|
||||
else:
|
||||
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
|
||||
|
||||
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
||||
|
||||
return out
|
||||
|
||||
@@ -10,7 +10,6 @@ if is_torch_available():
|
||||
from .lumina_nextdit2d import LuminaNextDiT2DModel
|
||||
from .pixart_transformer_2d import PixArtTransformer2DModel
|
||||
from .prior_transformer import PriorTransformer
|
||||
from .stable_audio_transformer import StableAudioDiTModel
|
||||
from .t5_film_transformer import T5FilmDecoder
|
||||
from .transformer_2d import Transformer2DModel
|
||||
from .transformer_sd3 import SD3Transformer2DModel
|
||||
|
||||
@@ -1,458 +0,0 @@
|
||||
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...models.attention import FeedForward
|
||||
from ...models.attention_processor import (
|
||||
Attention,
|
||||
AttentionProcessor,
|
||||
StableAudioAttnProcessor2_0,
|
||||
)
|
||||
from ...models.modeling_utils import ModelMixin
|
||||
from ...models.transformers.transformer_2d import Transformer2DModelOutput
|
||||
from ...utils import is_torch_version, logging
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class StableAudioGaussianFourierProjection(nn.Module):
|
||||
"""Gaussian Fourier embeddings for noise levels."""
|
||||
|
||||
# Copied from diffusers.models.embeddings.GaussianFourierProjection.__init__
|
||||
def __init__(
|
||||
self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
|
||||
):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
|
||||
self.log = log
|
||||
self.flip_sin_to_cos = flip_sin_to_cos
|
||||
|
||||
if set_W_to_weight:
|
||||
# to delete later
|
||||
del self.weight
|
||||
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
|
||||
self.weight = self.W
|
||||
del self.W
|
||||
|
||||
def forward(self, x):
|
||||
if self.log:
|
||||
x = torch.log(x)
|
||||
|
||||
x_proj = 2 * np.pi * x[:, None] @ self.weight[None, :]
|
||||
|
||||
if self.flip_sin_to_cos:
|
||||
out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
|
||||
else:
|
||||
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
|
||||
return out
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class StableAudioDiTBlock(nn.Module):
|
||||
r"""
|
||||
Transformer block used in Stable Audio model (https://github.com/Stability-AI/stable-audio-tools). Allow skip
|
||||
connection and QKNorm
|
||||
|
||||
Parameters:
|
||||
dim (`int`): The number of channels in the input and output.
|
||||
num_attention_heads (`int`): The number of heads to use for the query states.
|
||||
num_key_value_attention_heads (`int`): The number of heads to use for the key and value states.
|
||||
attention_head_dim (`int`): The number of channels in each head.
|
||||
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||||
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
||||
upcast_attention (`bool`, *optional*):
|
||||
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
num_key_value_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
dropout=0.0,
|
||||
cross_attention_dim: Optional[int] = None,
|
||||
upcast_attention: bool = False,
|
||||
norm_eps: float = 1e-5,
|
||||
ff_inner_dim: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
# Define 3 blocks. Each block has its own normalization layer.
|
||||
# 1. Self-Attn
|
||||
self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=norm_eps)
|
||||
self.attn1 = Attention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
dropout=dropout,
|
||||
bias=False,
|
||||
upcast_attention=upcast_attention,
|
||||
out_bias=False,
|
||||
processor=StableAudioAttnProcessor2_0(),
|
||||
)
|
||||
|
||||
# 2. Cross-Attn
|
||||
self.norm2 = nn.LayerNorm(dim, norm_eps, True)
|
||||
|
||||
self.attn2 = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
kv_heads=num_key_value_attention_heads,
|
||||
dropout=dropout,
|
||||
bias=False,
|
||||
upcast_attention=upcast_attention,
|
||||
out_bias=False,
|
||||
processor=StableAudioAttnProcessor2_0(),
|
||||
) # is self-attn if encoder_hidden_states is none
|
||||
|
||||
# 3. Feed-forward
|
||||
self.norm3 = nn.LayerNorm(dim, norm_eps, True)
|
||||
self.ff = FeedForward(
|
||||
dim,
|
||||
dropout=dropout,
|
||||
activation_fn="swiglu",
|
||||
final_dropout=False,
|
||||
inner_dim=ff_inner_dim,
|
||||
bias=True,
|
||||
)
|
||||
|
||||
# let chunk size default to None
|
||||
self._chunk_size = None
|
||||
self._chunk_dim = 0
|
||||
|
||||
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
||||
# Sets chunk feed-forward
|
||||
self._chunk_size = chunk_size
|
||||
self._chunk_dim = dim
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
rotary_embedding: Optional[torch.FloatTensor] = None,
|
||||
) -> torch.Tensor:
|
||||
# Notice that normalization is always applied before the real computation in the following blocks.
|
||||
# 0. Self-Attention
|
||||
norm_hidden_states = self.norm1(hidden_states)
|
||||
|
||||
attn_output = self.attn1(
|
||||
norm_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
rotary_emb=rotary_embedding,
|
||||
)
|
||||
|
||||
hidden_states = attn_output + hidden_states
|
||||
|
||||
# 2. Cross-Attention
|
||||
norm_hidden_states = self.norm2(hidden_states)
|
||||
|
||||
attn_output = self.attn2(
|
||||
norm_hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=encoder_attention_mask,
|
||||
)
|
||||
hidden_states = attn_output + hidden_states
|
||||
|
||||
# 3. Feed-forward
|
||||
norm_hidden_states = self.norm3(hidden_states)
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
|
||||
hidden_states = ff_output + hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class StableAudioDiTModel(ModelMixin, ConfigMixin):
|
||||
"""
|
||||
The Diffusion Transformer model introduced in Stable Audio.
|
||||
|
||||
Reference: https://github.com/Stability-AI/stable-audio-tools
|
||||
|
||||
Parameters:
|
||||
sample_size ( `int`, *optional*, defaults to 1024): The size of the input sample.
|
||||
in_channels (`int`, *optional*, defaults to 64): The number of channels in the input.
|
||||
num_layers (`int`, *optional*, defaults to 24): The number of layers of Transformer blocks to use.
|
||||
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
||||
num_attention_heads (`int`, *optional*, defaults to 24): The number of heads to use for the query states.
|
||||
num_key_value_attention_heads (`int`, *optional*, defaults to 12):
|
||||
The number of heads to use for the key and value states.
|
||||
out_channels (`int`, defaults to 64): Number of output channels.
|
||||
cross_attention_dim ( `int`, *optional*, defaults to 768): Dimension of the cross-attention projection.
|
||||
time_proj_dim ( `int`, *optional*, defaults to 256): Dimension of the timestep inner projection.
|
||||
global_states_input_dim ( `int`, *optional*, defaults to 1536):
|
||||
Input dimension of the global hidden states projection.
|
||||
cross_attention_input_dim ( `int`, *optional*, defaults to 768):
|
||||
Input dimension of the cross-attention projection
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
sample_size: int = 1024,
|
||||
in_channels: int = 64,
|
||||
num_layers: int = 24,
|
||||
attention_head_dim: int = 64,
|
||||
num_attention_heads: int = 24,
|
||||
num_key_value_attention_heads: int = 12,
|
||||
out_channels: int = 64,
|
||||
cross_attention_dim: int = 768,
|
||||
time_proj_dim: int = 256,
|
||||
global_states_input_dim: int = 1536,
|
||||
cross_attention_input_dim: int = 768,
|
||||
):
|
||||
super().__init__()
|
||||
self.sample_size = sample_size
|
||||
self.out_channels = out_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.time_proj = StableAudioGaussianFourierProjection(
|
||||
embedding_size=time_proj_dim // 2,
|
||||
flip_sin_to_cos=True,
|
||||
log=False,
|
||||
set_W_to_weight=False,
|
||||
)
|
||||
|
||||
self.timestep_proj = nn.Sequential(
|
||||
nn.Linear(time_proj_dim, self.inner_dim, bias=True),
|
||||
nn.SiLU(),
|
||||
nn.Linear(self.inner_dim, self.inner_dim, bias=True),
|
||||
)
|
||||
|
||||
self.global_proj = nn.Sequential(
|
||||
nn.Linear(global_states_input_dim, self.inner_dim, bias=False),
|
||||
nn.SiLU(),
|
||||
nn.Linear(self.inner_dim, self.inner_dim, bias=False),
|
||||
)
|
||||
|
||||
self.cross_attention_proj = nn.Sequential(
|
||||
nn.Linear(cross_attention_input_dim, cross_attention_dim, bias=False),
|
||||
nn.SiLU(),
|
||||
nn.Linear(cross_attention_dim, cross_attention_dim, bias=False),
|
||||
)
|
||||
|
||||
self.preprocess_conv = nn.Conv1d(in_channels, in_channels, 1, bias=False)
|
||||
self.proj_in = nn.Linear(in_channels, self.inner_dim, bias=False)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
StableAudioDiTBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
num_key_value_attention_heads=num_key_value_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=False)
|
||||
self.postprocess_conv = nn.Conv1d(self.out_channels, self.out_channels, 1, bias=False)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "get_processor"):
|
||||
processors[f"{name}.processor"] = module.get_processor()
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
# Copied from diffusers.models.transformers.hunyuan_transformer_2d.HunyuanDiT2DModel.set_default_attn_processor with Hunyuan->StableAudio
|
||||
def set_default_attn_processor(self):
|
||||
"""
|
||||
Disables custom attention processors and sets the default attention implementation.
|
||||
"""
|
||||
self.set_attn_processor(StableAudioAttnProcessor2_0())
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if hasattr(module, "gradient_checkpointing"):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
timestep: torch.LongTensor = None,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
global_hidden_states: torch.FloatTensor = None,
|
||||
rotary_embedding: torch.FloatTensor = None,
|
||||
return_dict: bool = True,
|
||||
attention_mask: Optional[torch.LongTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.LongTensor] = None,
|
||||
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
The [`StableAudioDiTModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor` of shape `(batch size, in_channels, sequence_len)`):
|
||||
Input `hidden_states`.
|
||||
timestep ( `torch.LongTensor`):
|
||||
Used to indicate denoising step.
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, encoder_sequence_len, cross_attention_input_dim)`):
|
||||
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
||||
global_hidden_states (`torch.FloatTensor` of shape `(batch size, global_sequence_len, global_states_input_dim)`):
|
||||
Global embeddings that will be prepended to the hidden states.
|
||||
rotary_embedding (`torch.Tensor`):
|
||||
The rotary embeddings to apply on query and key tensors during attention calculation.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
||||
tuple.
|
||||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
|
||||
Mask to avoid performing attention on padding token indices, formed by concatenating the attention
|
||||
masks
|
||||
for the two text encoders together. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
|
||||
Mask to avoid performing attention on padding token cross-attention indices, formed by concatenating
|
||||
the attention masks
|
||||
for the two text encoders together. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
Returns:
|
||||
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
||||
`tuple` where the first element is the sample tensor.
|
||||
"""
|
||||
cross_attention_hidden_states = self.cross_attention_proj(encoder_hidden_states)
|
||||
global_hidden_states = self.global_proj(global_hidden_states)
|
||||
time_hidden_states = self.timestep_proj(self.time_proj(timestep.to(self.dtype)))
|
||||
|
||||
global_hidden_states = global_hidden_states + time_hidden_states.unsqueeze(1)
|
||||
|
||||
hidden_states = self.preprocess_conv(hidden_states) + hidden_states
|
||||
# (batch_size, dim, sequence_length) -> (batch_size, sequence_length, dim)
|
||||
hidden_states = hidden_states.transpose(1, 2)
|
||||
|
||||
hidden_states = self.proj_in(hidden_states)
|
||||
|
||||
# prepend global states to hidden states
|
||||
hidden_states = torch.cat([global_hidden_states, hidden_states], dim=-2)
|
||||
if attention_mask is not None:
|
||||
prepend_mask = torch.ones((hidden_states.shape[0], 1), device=hidden_states.device, dtype=torch.bool)
|
||||
attention_mask = torch.cat([prepend_mask, attention_mask], dim=-1)
|
||||
|
||||
for block in self.transformer_blocks:
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
cross_attention_hidden_states,
|
||||
encoder_attention_mask,
|
||||
rotary_embedding,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
encoder_hidden_states=cross_attention_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
rotary_embedding=rotary_embedding,
|
||||
)
|
||||
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
# (batch_size, sequence_length, dim) -> (batch_size, dim, sequence_length)
|
||||
# remove prepend length that has been added by global hidden states
|
||||
hidden_states = hidden_states.transpose(1, 2)[:, :, 1:]
|
||||
hidden_states = self.postprocess_conv(hidden_states) + hidden_states
|
||||
|
||||
if not return_dict:
|
||||
return (hidden_states,)
|
||||
|
||||
return Transformer2DModelOutput(sample=hidden_states)
|
||||
@@ -11,7 +11,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -19,8 +19,10 @@ import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
|
||||
from ...configuration_utils import ConfigMixin, FrozenDict, register_to_config
|
||||
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin, UNet2DConditionLoadersMixin
|
||||
from ...loaders import FromOriginalModelMixin, UNet2DConditionLoadersMixin
|
||||
from ...utils import logging
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
from ..attention import FeedForward, _chunked_feed_forward
|
||||
from ..attention_processor import (
|
||||
ADDED_KV_ATTENTION_PROCESSORS,
|
||||
CROSS_ATTENTION_PROCESSORS,
|
||||
@@ -33,7 +35,7 @@ from ..attention_processor import (
|
||||
IPAdapterAttnProcessor,
|
||||
IPAdapterAttnProcessor2_0,
|
||||
)
|
||||
from ..embeddings import TimestepEmbedding, Timesteps
|
||||
from ..embeddings import SinusoidalPositionalEmbedding, TimestepEmbedding, Timesteps
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..transformers.transformer_temporal import TransformerTemporalModel
|
||||
from .unet_2d_blocks import UNetMidBlock2DCrossAttn
|
||||
@@ -53,6 +55,302 @@ from .unet_3d_condition import UNet3DConditionOutput
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class FreeNoiseTransformerBlock(nn.Module):
|
||||
r"""
|
||||
A FreeNoise Transformer block.
|
||||
|
||||
Parameters:
|
||||
dim (`int`): The number of channels in the input and output.
|
||||
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`): The number of channels in each head.
|
||||
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||||
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
||||
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
||||
num_embeds_ada_norm (:
|
||||
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
||||
attention_bias (:
|
||||
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
||||
only_cross_attention (`bool`, *optional*):
|
||||
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
||||
double_self_attention (`bool`, *optional*):
|
||||
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
||||
upcast_attention (`bool`, *optional*):
|
||||
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
||||
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use learnable elementwise affine parameters for normalization.
|
||||
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
||||
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
||||
final_dropout (`bool` *optional*, defaults to False):
|
||||
Whether to apply a final dropout after the last feed-forward layer.
|
||||
attention_type (`str`, *optional*, defaults to `"default"`):
|
||||
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
||||
positional_embeddings (`str`, *optional*, defaults to `None`):
|
||||
The type of positional embeddings to apply to.
|
||||
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
||||
The maximum number of positional embeddings to apply.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
dropout: float = 0.0,
|
||||
cross_attention_dim: Optional[int] = None,
|
||||
activation_fn: str = "geglu",
|
||||
num_embeds_ada_norm: Optional[int] = None,
|
||||
attention_bias: bool = False,
|
||||
only_cross_attention: bool = False,
|
||||
double_self_attention: bool = False,
|
||||
upcast_attention: bool = False,
|
||||
norm_elementwise_affine: bool = True,
|
||||
norm_type: str = "layer_norm",
|
||||
norm_eps: float = 1e-5,
|
||||
final_dropout: bool = False,
|
||||
positional_embeddings: Optional[str] = None,
|
||||
num_positional_embeddings: Optional[int] = None,
|
||||
ff_inner_dim: Optional[int] = None,
|
||||
ff_bias: bool = True,
|
||||
attention_out_bias: bool = True,
|
||||
context_length: int = 16,
|
||||
context_stride: int = 4,
|
||||
weighting_scheme: str = "pyramid",
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.attention_head_dim = attention_head_dim
|
||||
self.dropout = dropout
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
self.activation_fn = activation_fn
|
||||
self.attention_bias = attention_bias
|
||||
self.double_self_attention = double_self_attention
|
||||
self.norm_elementwise_affine = norm_elementwise_affine
|
||||
self.positional_embeddings = positional_embeddings
|
||||
self.num_positional_embeddings = num_positional_embeddings
|
||||
self.only_cross_attention = only_cross_attention
|
||||
|
||||
self.set_free_noise_properties(context_length, context_stride, weighting_scheme)
|
||||
|
||||
# We keep these boolean flags for backward-compatibility.
|
||||
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
||||
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
||||
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
||||
self.use_layer_norm = norm_type == "layer_norm"
|
||||
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
||||
|
||||
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
||||
raise ValueError(
|
||||
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
||||
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
||||
)
|
||||
|
||||
self.norm_type = norm_type
|
||||
self.num_embeds_ada_norm = num_embeds_ada_norm
|
||||
|
||||
if positional_embeddings and (num_positional_embeddings is None):
|
||||
raise ValueError(
|
||||
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
||||
)
|
||||
|
||||
if positional_embeddings == "sinusoidal":
|
||||
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
||||
else:
|
||||
self.pos_embed = None
|
||||
|
||||
# Define 3 blocks. Each block has its own normalization layer.
|
||||
# 1. Self-Attn
|
||||
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
||||
|
||||
self.attn1 = Attention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
dropout=dropout,
|
||||
bias=attention_bias,
|
||||
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
||||
upcast_attention=upcast_attention,
|
||||
out_bias=attention_out_bias,
|
||||
)
|
||||
|
||||
# 2. Cross-Attn
|
||||
if cross_attention_dim is not None or double_self_attention:
|
||||
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
||||
|
||||
self.attn2 = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
dropout=dropout,
|
||||
bias=attention_bias,
|
||||
upcast_attention=upcast_attention,
|
||||
out_bias=attention_out_bias,
|
||||
) # is self-attn if encoder_hidden_states is none
|
||||
|
||||
# 3. Feed-forward
|
||||
self.ff = FeedForward(
|
||||
dim,
|
||||
dropout=dropout,
|
||||
activation_fn=activation_fn,
|
||||
final_dropout=final_dropout,
|
||||
inner_dim=ff_inner_dim,
|
||||
bias=ff_bias,
|
||||
)
|
||||
|
||||
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
||||
|
||||
# let chunk size default to None
|
||||
self._chunk_size = None
|
||||
self._chunk_dim = 0
|
||||
|
||||
def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
|
||||
frame_indices = []
|
||||
for i in range(0, num_frames - self.context_length + 1, self.context_stride):
|
||||
window_start = i
|
||||
window_end = min(num_frames, i + self.context_length)
|
||||
frame_indices.append((window_start, window_end))
|
||||
|
||||
return frame_indices
|
||||
|
||||
def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
|
||||
if weighting_scheme == "pyramid":
|
||||
if num_frames % 2 == 0:
|
||||
# num_frames = 4 => [1, 2, 2, 1]
|
||||
weights = list(range(1, num_frames // 2 + 1))
|
||||
weights = weights + weights[::-1]
|
||||
else:
|
||||
# num_frames = 5 => [1, 2, 3, 2, 1]
|
||||
weights = list(range(1, num_frames // 2 + 1))
|
||||
weights = weights + [num_frames // 2 + 1] + weights[::-1]
|
||||
else:
|
||||
raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")
|
||||
|
||||
return weights
|
||||
|
||||
def set_free_noise_properties(
|
||||
self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
|
||||
) -> None:
|
||||
self.context_length = context_length
|
||||
self.context_stride = context_stride
|
||||
self.weighting_scheme = weighting_scheme
|
||||
|
||||
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
|
||||
# Sets chunk feed-forward
|
||||
self._chunk_size = chunk_size
|
||||
self._chunk_dim = dim
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
cross_attention_kwargs: Dict[str, Any] = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
if cross_attention_kwargs is not None:
|
||||
if cross_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
||||
|
||||
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
||||
|
||||
# hidden_states: [B x H x W, F, C]
|
||||
device = hidden_states.device
|
||||
dtype = hidden_states.dtype
|
||||
|
||||
num_frames = hidden_states.size(1)
|
||||
frame_indices = self._get_frame_indices(num_frames)
|
||||
frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
|
||||
frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
|
||||
is_last_frame_batch_complete = frame_indices[-1][1] == num_frames
|
||||
|
||||
# Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
|
||||
# For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
|
||||
# [(0, 16), (4, 20), (8, 24), (10, 26)]
|
||||
if not is_last_frame_batch_complete:
|
||||
if num_frames < self.context_length:
|
||||
raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
|
||||
last_frame_batch_length = num_frames - frame_indices[-1][1]
|
||||
frame_indices.append((num_frames - self.context_length, num_frames))
|
||||
|
||||
num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
|
||||
accumulated_values = torch.zeros_like(hidden_states)
|
||||
|
||||
for i, (frame_start, frame_end) in enumerate(frame_indices):
|
||||
# The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
|
||||
# cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
|
||||
# essentially a non-multiple of `context_length`.
|
||||
weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
|
||||
weights *= frame_weights
|
||||
|
||||
hidden_states_chunk = hidden_states[:, frame_start:frame_end]
|
||||
|
||||
# Notice that normalization is always applied before the real computation in the following blocks.
|
||||
# 1. Self-Attention
|
||||
# assert self.norm_type == "layer_norm"
|
||||
norm_hidden_states = self.norm1(hidden_states_chunk)
|
||||
|
||||
if self.pos_embed is not None:
|
||||
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
||||
|
||||
attn_output = self.attn1(
|
||||
norm_hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
||||
attention_mask=attention_mask,
|
||||
**cross_attention_kwargs,
|
||||
)
|
||||
|
||||
hidden_states_chunk = attn_output + hidden_states_chunk
|
||||
if hidden_states_chunk.ndim == 4:
|
||||
hidden_states_chunk = hidden_states_chunk.squeeze(1)
|
||||
|
||||
# 2. Cross-Attention
|
||||
if self.attn2 is not None:
|
||||
norm_hidden_states = self.norm2(hidden_states_chunk)
|
||||
|
||||
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
||||
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
||||
|
||||
attn_output = self.attn2(
|
||||
norm_hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=encoder_attention_mask,
|
||||
**cross_attention_kwargs,
|
||||
)
|
||||
hidden_states_chunk = attn_output + hidden_states_chunk
|
||||
|
||||
if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
|
||||
accumulated_values[:, -last_frame_batch_length:] += (
|
||||
hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
|
||||
)
|
||||
num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
|
||||
else:
|
||||
accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
|
||||
num_times_accumulated[:, frame_start:frame_end] += weights
|
||||
|
||||
hidden_states = torch.where(
|
||||
num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
|
||||
).to(dtype)
|
||||
|
||||
# 3. Feed-forward
|
||||
norm_hidden_states = self.norm3(hidden_states)
|
||||
|
||||
if self._chunk_size is not None:
|
||||
# "feed_forward_chunk_size" can be used to save memory
|
||||
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
||||
else:
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
|
||||
hidden_states = ff_output + hidden_states
|
||||
if hidden_states.ndim == 4:
|
||||
hidden_states = hidden_states.squeeze(1)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MotionModules(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -231,7 +529,7 @@ class MotionAdapter(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||||
pass
|
||||
|
||||
|
||||
class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
|
||||
class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
||||
r"""
|
||||
A modified conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a
|
||||
sample shaped output.
|
||||
|
||||
@@ -118,7 +118,6 @@ else:
|
||||
_import_structure["amused"] = ["AmusedImg2ImgPipeline", "AmusedInpaintPipeline", "AmusedPipeline"]
|
||||
_import_structure["animatediff"] = [
|
||||
"AnimateDiffPipeline",
|
||||
"AnimateDiffControlNetPipeline",
|
||||
"AnimateDiffSDXLPipeline",
|
||||
"AnimateDiffSparseControlNetPipeline",
|
||||
"AnimateDiffVideoToVideoPipeline",
|
||||
@@ -232,10 +231,6 @@ else:
|
||||
_import_structure["pixart_alpha"] = ["PixArtAlphaPipeline", "PixArtSigmaPipeline"]
|
||||
_import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"]
|
||||
_import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"]
|
||||
_import_structure["stable_audio"] = [
|
||||
"StableAudioProjectionModel",
|
||||
"StableAudioPipeline",
|
||||
]
|
||||
_import_structure["stable_cascade"] = [
|
||||
"StableCascadeCombinedPipeline",
|
||||
"StableCascadeDecoderPipeline",
|
||||
@@ -420,7 +415,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
else:
|
||||
from .amused import AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline
|
||||
from .animatediff import (
|
||||
AnimateDiffControlNetPipeline,
|
||||
AnimateDiffPipeline,
|
||||
AnimateDiffSDXLPipeline,
|
||||
AnimateDiffSparseControlNetPipeline,
|
||||
@@ -539,7 +533,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
|
||||
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
|
||||
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
|
||||
from .stable_audio import StableAudioPipeline, StableAudioProjectionModel
|
||||
from .stable_cascade import (
|
||||
StableCascadeCombinedPipeline,
|
||||
StableCascadeDecoderPipeline,
|
||||
|
||||
@@ -22,7 +22,6 @@ except OptionalDependencyNotAvailable:
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_animatediff"] = ["AnimateDiffPipeline"]
|
||||
_import_structure["pipeline_animatediff_controlnet"] = ["AnimateDiffControlNetPipeline"]
|
||||
_import_structure["pipeline_animatediff_sdxl"] = ["AnimateDiffSDXLPipeline"]
|
||||
_import_structure["pipeline_animatediff_sparsectrl"] = ["AnimateDiffSparseControlNetPipeline"]
|
||||
_import_structure["pipeline_animatediff_video2video"] = ["AnimateDiffVideoToVideoPipeline"]
|
||||
@@ -36,7 +35,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
|
||||
else:
|
||||
from .pipeline_animatediff import AnimateDiffPipeline
|
||||
from .pipeline_animatediff_controlnet import AnimateDiffControlNetPipeline
|
||||
from .pipeline_animatediff_sdxl import AnimateDiffSDXLPipeline
|
||||
from .pipeline_animatediff_sparsectrl import AnimateDiffSparseControlNetPipeline
|
||||
from .pipeline_animatediff_video2video import AnimateDiffVideoToVideoPipeline
|
||||
|
||||
@@ -42,6 +42,7 @@ from ...utils import (
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from ..free_init_utils import FreeInitMixin
|
||||
from ..free_noise_utils import AnimateDiffFreeNoiseMixin
|
||||
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
||||
from .pipeline_output import AnimateDiffPipelineOutput
|
||||
|
||||
@@ -72,6 +73,7 @@ class AnimateDiffPipeline(
|
||||
IPAdapterMixin,
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
FreeInitMixin,
|
||||
AnimateDiffFreeNoiseMixin,
|
||||
):
|
||||
r"""
|
||||
Pipeline for text-to-video generation.
|
||||
@@ -394,15 +396,20 @@ class AnimateDiffPipeline(
|
||||
|
||||
return ip_adapter_image_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
||||
def decode_latents(self, latents):
|
||||
def decode_latents(self, latents, decode_batch_size: int = 16):
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
batch_size, channels, num_frames, height, width = latents.shape
|
||||
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
||||
|
||||
image = self.vae.decode(latents).sample
|
||||
video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
video = []
|
||||
for i in range(0, latents.shape[0], decode_batch_size):
|
||||
batch_latents = latents[i : i + decode_batch_size]
|
||||
batch_latents = self.vae.decode(batch_latents).sample
|
||||
video.append(batch_latents)
|
||||
|
||||
video = torch.cat(video)
|
||||
video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
video = video.float()
|
||||
return video
|
||||
@@ -495,7 +502,6 @@ class AnimateDiffPipeline(
|
||||
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
||||
)
|
||||
|
||||
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
|
||||
def prepare_latents(
|
||||
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
||||
):
|
||||
@@ -517,6 +523,22 @@ class AnimateDiffPipeline(
|
||||
else:
|
||||
latents = latents.to(device)
|
||||
|
||||
if self.free_noise_enabled and self._free_noise_shuffle:
|
||||
for i in range(self._free_noise_context_length, num_frames, self._free_noise_context_stride):
|
||||
# ensure window is within bounds
|
||||
window_start = max(0, i - self._free_noise_context_length)
|
||||
window_end = min(num_frames, window_start + self._free_noise_context_stride)
|
||||
window_length = window_end - window_start
|
||||
|
||||
if window_length == 0:
|
||||
break
|
||||
|
||||
indices = torch.LongTensor(list(range(window_start, window_end)))
|
||||
shuffled_indices = indices[torch.randperm(window_length, generator=generator)]
|
||||
|
||||
# shuffle latents in every window
|
||||
latents[:, :, window_start:window_end] = latents[:, :, shuffled_indices]
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
@@ -569,6 +591,7 @@ class AnimateDiffPipeline(
|
||||
clip_skip: Optional[int] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
decode_batch_size: int = 16,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
@@ -637,6 +660,8 @@ class AnimateDiffPipeline(
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
decode_batch_size (`int`, defaults to `16`):
|
||||
The number of frames to decode at a time when calling `decode_latents` method.
|
||||
|
||||
Examples:
|
||||
|
||||
@@ -808,7 +833,7 @@ class AnimateDiffPipeline(
|
||||
if output_type == "latent":
|
||||
video = latents
|
||||
else:
|
||||
video_tensor = self.decode_latents(latents)
|
||||
video_tensor = self.decode_latents(latents, decode_batch_size)
|
||||
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
|
||||
|
||||
# 10. Offload all models
|
||||
|
||||
@@ -30,6 +30,7 @@ from ...utils.torch_utils import is_compiled_module, randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from ..controlnet.multicontrolnet import MultiControlNetModel
|
||||
from ..free_init_utils import FreeInitMixin
|
||||
from ..free_noise_utils import AnimateDiffFreeNoiseMixin
|
||||
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
||||
from .pipeline_output import AnimateDiffPipelineOutput
|
||||
|
||||
@@ -109,6 +110,7 @@ class AnimateDiffControlNetPipeline(
|
||||
IPAdapterMixin,
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
FreeInitMixin,
|
||||
AnimateDiffFreeNoiseMixin,
|
||||
):
|
||||
r"""
|
||||
Pipeline for text-to-video generation with ControlNet guidance.
|
||||
@@ -432,6 +434,7 @@ class AnimateDiffControlNetPipeline(
|
||||
|
||||
return ip_adapter_image_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
|
||||
def decode_latents(self, latents, decode_batch_size: int = 16):
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
|
||||
@@ -56,6 +56,7 @@ from ...utils import (
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from ..free_init_utils import FreeInitMixin
|
||||
from ..free_noise_utils import AnimateDiffFreeNoiseMixin
|
||||
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
||||
from .pipeline_output import AnimateDiffPipelineOutput
|
||||
|
||||
@@ -194,6 +195,7 @@ class AnimateDiffSDXLPipeline(
|
||||
TextualInversionLoaderMixin,
|
||||
IPAdapterMixin,
|
||||
FreeInitMixin,
|
||||
AnimateDiffFreeNoiseMixin,
|
||||
):
|
||||
r"""
|
||||
Pipeline for text-to-video generation using Stable Diffusion XL.
|
||||
@@ -606,15 +608,21 @@ class AnimateDiffSDXLPipeline(
|
||||
|
||||
return ip_adapter_image_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
||||
def decode_latents(self, latents):
|
||||
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
|
||||
def decode_latents(self, latents, decode_batch_size: int = 16):
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
batch_size, channels, num_frames, height, width = latents.shape
|
||||
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
||||
|
||||
image = self.vae.decode(latents).sample
|
||||
video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
video = []
|
||||
for i in range(0, latents.shape[0], decode_batch_size):
|
||||
batch_latents = latents[i : i + decode_batch_size]
|
||||
batch_latents = self.vae.decode(batch_latents).sample
|
||||
video.append(batch_latents)
|
||||
|
||||
video = torch.cat(video)
|
||||
video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
video = video.float()
|
||||
return video
|
||||
@@ -876,6 +884,7 @@ class AnimateDiffSDXLPipeline(
|
||||
clip_skip: Optional[int] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
decode_batch_size: int = 16,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
@@ -1015,6 +1024,8 @@ class AnimateDiffSDXLPipeline(
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
decode_batch_size (`int`, defaults to `16`):
|
||||
The number of frames to decode at a time when calling `decode_latents` method.
|
||||
|
||||
Examples:
|
||||
|
||||
@@ -1258,7 +1269,7 @@ class AnimateDiffSDXLPipeline(
|
||||
if output_type == "latent":
|
||||
video = latents
|
||||
else:
|
||||
video_tensor = self.decode_latents(latents)
|
||||
video_tensor = self.decode_latents(latents, decode_batch_size)
|
||||
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
|
||||
|
||||
# cast back to fp16 if needed
|
||||
|
||||
@@ -38,6 +38,7 @@ from ...utils import (
|
||||
from ...utils.torch_utils import is_compiled_module, randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from ..free_init_utils import FreeInitMixin
|
||||
from ..free_noise_utils import AnimateDiffFreeNoiseMixin
|
||||
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
||||
from .pipeline_output import AnimateDiffPipelineOutput
|
||||
|
||||
@@ -127,6 +128,7 @@ class AnimateDiffSparseControlNetPipeline(
|
||||
IPAdapterMixin,
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
FreeInitMixin,
|
||||
AnimateDiffFreeNoiseMixin,
|
||||
):
|
||||
r"""
|
||||
Pipeline for controlled text-to-video generation using the method described in [SparseCtrl: Adding Sparse Controls
|
||||
@@ -448,15 +450,21 @@ class AnimateDiffSparseControlNetPipeline(
|
||||
|
||||
return ip_adapter_image_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
||||
def decode_latents(self, latents):
|
||||
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
|
||||
def decode_latents(self, latents, decode_batch_size: int = 16):
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
batch_size, channels, num_frames, height, width = latents.shape
|
||||
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
||||
|
||||
image = self.vae.decode(latents).sample
|
||||
video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
video = []
|
||||
for i in range(0, latents.shape[0], decode_batch_size):
|
||||
batch_latents = latents[i : i + decode_batch_size]
|
||||
batch_latents = self.vae.decode(batch_latents).sample
|
||||
video.append(batch_latents)
|
||||
|
||||
video = torch.cat(video)
|
||||
video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
video = video.float()
|
||||
return video
|
||||
@@ -728,6 +736,7 @@ class AnimateDiffSparseControlNetPipeline(
|
||||
clip_skip: Optional[int] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
decode_batch_size: int = 16,
|
||||
):
|
||||
r"""
|
||||
The call function to the pipeline for generation.
|
||||
@@ -806,6 +815,8 @@ class AnimateDiffSparseControlNetPipeline(
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
decode_batch_size (`int`, defaults to `16`):
|
||||
The number of frames to decode at a time when calling `decode_latents` method.
|
||||
|
||||
Examples:
|
||||
|
||||
@@ -996,7 +1007,7 @@ class AnimateDiffSparseControlNetPipeline(
|
||||
if output_type == "latent":
|
||||
video = latents
|
||||
else:
|
||||
video_tensor = self.decode_latents(latents)
|
||||
video_tensor = self.decode_latents(latents, decode_batch_size)
|
||||
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
|
||||
|
||||
# 12. Offload all models
|
||||
|
||||
@@ -35,6 +35,7 @@ from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from ..free_init_utils import FreeInitMixin
|
||||
from ..free_noise_utils import AnimateDiffFreeNoiseMixin
|
||||
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
||||
from .pipeline_output import AnimateDiffPipelineOutput
|
||||
|
||||
@@ -176,6 +177,7 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
IPAdapterMixin,
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
FreeInitMixin,
|
||||
AnimateDiffFreeNoiseMixin,
|
||||
):
|
||||
r"""
|
||||
Pipeline for video-to-video generation.
|
||||
@@ -498,15 +500,21 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
|
||||
return ip_adapter_image_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
||||
def decode_latents(self, latents):
|
||||
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
|
||||
def decode_latents(self, latents, decode_batch_size: int = 16):
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
batch_size, channels, num_frames, height, width = latents.shape
|
||||
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
||||
|
||||
image = self.vae.decode(latents).sample
|
||||
video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
video = []
|
||||
for i in range(0, latents.shape[0], decode_batch_size):
|
||||
batch_latents = latents[i : i + decode_batch_size]
|
||||
batch_latents = self.vae.decode(batch_latents).sample
|
||||
video.append(batch_latents)
|
||||
|
||||
video = torch.cat(video)
|
||||
video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
video = video.float()
|
||||
return video
|
||||
@@ -747,6 +755,7 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
clip_skip: Optional[int] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
decode_batch_size: int = 16,
|
||||
):
|
||||
r"""
|
||||
The call function to the pipeline for generation.
|
||||
@@ -822,6 +831,8 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
decode_batch_size (`int`, defaults to `16`):
|
||||
The number of frames to decode at a time when calling `decode_latents` method.
|
||||
|
||||
Examples:
|
||||
|
||||
@@ -990,7 +1001,7 @@ class AnimateDiffVideoToVideoPipeline(
|
||||
if output_type == "latent":
|
||||
video = latents
|
||||
else:
|
||||
video_tensor = self.decode_latents(latents)
|
||||
video_tensor = self.decode_latents(latents, decode_batch_size)
|
||||
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
|
||||
|
||||
# 10. Offload all models
|
||||
|
||||
141
src/diffusers/pipelines/free_noise_utils.py
Normal file
141
src/diffusers/pipelines/free_noise_utils.py
Normal file
@@ -0,0 +1,141 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Optional, Union
|
||||
|
||||
from ..models.attention import BasicTransformerBlock
|
||||
from ..models.unets.unet_motion_model import (
|
||||
CrossAttnDownBlockMotion,
|
||||
DownBlockMotion,
|
||||
FreeNoiseTransformerBlock,
|
||||
TransformerTemporalModel,
|
||||
UpBlockMotion,
|
||||
)
|
||||
|
||||
|
||||
class AnimateDiffFreeNoiseMixin:
|
||||
r"""Mixin class for [FreeNoise](https://arxiv.org/abs/2310.15169)."""
|
||||
|
||||
def _enable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]):
|
||||
r"""Helper function to enable FreeNoise in transformer blocks."""
|
||||
|
||||
for motion_module in block.motion_modules:
|
||||
motion_module: TransformerTemporalModel
|
||||
num_transformer_blocks = len(motion_module.transformer_blocks)
|
||||
|
||||
for i in range(num_transformer_blocks):
|
||||
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock):
|
||||
motion_module.transformer_blocks[i].set_free_noise_properties(
|
||||
self._free_noise_context_length,
|
||||
self._free_noise_context_stride,
|
||||
self._free_noise_weighting_scheme,
|
||||
)
|
||||
else:
|
||||
assert isinstance(motion_module.transformer_blocks[i], BasicTransformerBlock)
|
||||
basic_transfomer_block = motion_module.transformer_blocks[i]
|
||||
|
||||
motion_module.transformer_blocks[i] = FreeNoiseTransformerBlock(
|
||||
dim=basic_transfomer_block.dim,
|
||||
num_attention_heads=basic_transfomer_block.num_attention_heads,
|
||||
attention_head_dim=basic_transfomer_block.attention_head_dim,
|
||||
dropout=basic_transfomer_block.dropout,
|
||||
cross_attention_dim=basic_transfomer_block.cross_attention_dim,
|
||||
activation_fn=basic_transfomer_block.activation_fn,
|
||||
attention_bias=basic_transfomer_block.attention_bias,
|
||||
only_cross_attention=basic_transfomer_block.only_cross_attention,
|
||||
double_self_attention=basic_transfomer_block.double_self_attention,
|
||||
positional_embeddings=basic_transfomer_block.positional_embeddings,
|
||||
num_positional_embeddings=basic_transfomer_block.num_positional_embeddings,
|
||||
context_length=self._free_noise_context_length,
|
||||
context_stride=self._free_noise_context_stride,
|
||||
weighting_scheme=self._free_noise_weighting_scheme,
|
||||
).to(device=self.device, dtype=self.dtype)
|
||||
|
||||
motion_module.transformer_blocks[i].load_state_dict(
|
||||
basic_transfomer_block.state_dict(), strict=True
|
||||
)
|
||||
|
||||
def _disable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]):
|
||||
r"""Helper function to disable FreeNoise in transformer blocks."""
|
||||
|
||||
for motion_module in block.motion_modules:
|
||||
motion_module: TransformerTemporalModel
|
||||
num_transformer_blocks = len(motion_module.transformer_blocks)
|
||||
|
||||
for i in range(num_transformer_blocks):
|
||||
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock):
|
||||
free_noise_transfomer_block = motion_module.transformer_blocks[i]
|
||||
|
||||
motion_module.transformer_blocks[i] = BasicTransformerBlock(
|
||||
dim=free_noise_transfomer_block.dim,
|
||||
num_attention_heads=free_noise_transfomer_block.num_attention_heads,
|
||||
attention_head_dim=free_noise_transfomer_block.attention_head_dim,
|
||||
dropout=free_noise_transfomer_block.dropout,
|
||||
cross_attention_dim=free_noise_transfomer_block.cross_attention_dim,
|
||||
activation_fn=free_noise_transfomer_block.activation_fn,
|
||||
attention_bias=free_noise_transfomer_block.attention_bias,
|
||||
only_cross_attention=free_noise_transfomer_block.only_cross_attention,
|
||||
double_self_attention=free_noise_transfomer_block.double_self_attention,
|
||||
positional_embeddings=free_noise_transfomer_block.positional_embeddings,
|
||||
num_positional_embeddings=free_noise_transfomer_block.num_positional_embeddings,
|
||||
).to(device=self.device, dtype=self.dtype)
|
||||
|
||||
motion_module.transformer_blocks[i].load_state_dict(
|
||||
free_noise_transfomer_block.state_dict(), strict=True
|
||||
)
|
||||
|
||||
def enable_free_noise(
|
||||
self,
|
||||
context_length: Optional[int] = 16,
|
||||
context_stride: int = 4,
|
||||
weighting_scheme: str = "pyramid",
|
||||
shuffle: bool = True,
|
||||
) -> None:
|
||||
r"""
|
||||
Enable long video generation using FreeNoise.
|
||||
|
||||
Args:
|
||||
context_length (`int`, defaults to `16`, *optional*):
|
||||
The number of video frames to process at once. It's recommended to set this to the maximum frames the
|
||||
Motion Adapter was trained with (usually 16/24/32). If `None`, the default value from the motion
|
||||
adapter config is used.
|
||||
context_stride (`int`, *optional*):
|
||||
Long videos are generated by processing many frames. FreeNoise processes these frames in sliding
|
||||
windows of size `context_length`. Context stride allows you to specify how many frames to skip between
|
||||
each window. For example, a context length of 16 and context stride of 4 would process 24 frames as:
|
||||
[0, 15], [4, 19], [8, 23] (0-based indexing)
|
||||
weighting_scheme (`str`, defaults to `4`):
|
||||
TODO(aryan)
|
||||
shuffle (`str`, defaults to `True`):
|
||||
TODO(aryan): decide if this is even needed
|
||||
"""
|
||||
self._free_noise_context_length = context_length or self.motion_adapter.config.motion_max_seq_length
|
||||
self._free_noise_context_stride = context_stride
|
||||
self._free_noise_weighting_scheme = weighting_scheme
|
||||
self._free_noise_shuffle = shuffle
|
||||
|
||||
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
|
||||
for block in blocks:
|
||||
self._enable_free_noise_in_block(block)
|
||||
|
||||
def disable_free_noise(self) -> None:
|
||||
self._free_noise_context_length = None
|
||||
|
||||
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
|
||||
for block in blocks:
|
||||
self._disable_free_noise_in_block(block)
|
||||
|
||||
@property
|
||||
def free_noise_enabled(self):
|
||||
return hasattr(self, "_free_noise_context_length") and self._free_noise_context_length is not None
|
||||
@@ -45,6 +45,7 @@ from ...utils import (
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ...video_processor import VideoProcessor
|
||||
from ..free_init_utils import FreeInitMixin
|
||||
from ..free_noise_utils import AnimateDiffFreeNoiseMixin
|
||||
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
||||
|
||||
|
||||
@@ -131,6 +132,7 @@ class PIAPipeline(
|
||||
StableDiffusionLoraLoaderMixin,
|
||||
FromSingleFileMixin,
|
||||
FreeInitMixin,
|
||||
AnimateDiffFreeNoiseMixin,
|
||||
):
|
||||
r"""
|
||||
Pipeline for text-to-video generation.
|
||||
@@ -407,15 +409,21 @@ class PIAPipeline(
|
||||
|
||||
return image_embeds, uncond_image_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
||||
def decode_latents(self, latents):
|
||||
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
|
||||
def decode_latents(self, latents, decode_batch_size: int = 16):
|
||||
latents = 1 / self.vae.config.scaling_factor * latents
|
||||
|
||||
batch_size, channels, num_frames, height, width = latents.shape
|
||||
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
||||
|
||||
image = self.vae.decode(latents).sample
|
||||
video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
video = []
|
||||
for i in range(0, latents.shape[0], decode_batch_size):
|
||||
batch_latents = latents[i : i + decode_batch_size]
|
||||
batch_latents = self.vae.decode(batch_latents).sample
|
||||
video.append(batch_latents)
|
||||
|
||||
video = torch.cat(video)
|
||||
video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
video = video.float()
|
||||
return video
|
||||
@@ -687,6 +695,7 @@ class PIAPipeline(
|
||||
clip_skip: Optional[int] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
decode_batch_size: int = 16,
|
||||
):
|
||||
r"""
|
||||
The call function to the pipeline for generation.
|
||||
@@ -763,6 +772,8 @@ class PIAPipeline(
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
decode_batch_size (`int`, defaults to `16`):
|
||||
The number of frames to decode at a time when calling `decode_latents` method.
|
||||
|
||||
Examples:
|
||||
|
||||
@@ -931,7 +942,7 @@ class PIAPipeline(
|
||||
if output_type == "latent":
|
||||
video = latents
|
||||
else:
|
||||
video_tensor = self.decode_latents(latents)
|
||||
video_tensor = self.decode_latents(latents, decode_batch_size)
|
||||
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
|
||||
|
||||
# 10. Offload all models
|
||||
|
||||
@@ -1,50 +0,0 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
is_transformers_version,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_import_structure = {}
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.27.0")):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_objects
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["modeling_stable_audio"] = ["StableAudioProjectionModel"]
|
||||
_import_structure["pipeline_stable_audio"] = ["StableAudioPipeline"]
|
||||
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.27.0")):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
|
||||
else:
|
||||
from .modeling_stable_audio import StableAudioProjectionModel
|
||||
from .pipeline_stable_audio import StableAudioPipeline
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
@@ -1,158 +0,0 @@
|
||||
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from math import pi
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...models.modeling_utils import ModelMixin
|
||||
from ...utils import BaseOutput, logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class StableAudioPositionalEmbedding(nn.Module):
|
||||
"""Used for continuous time"""
|
||||
|
||||
def __init__(self, dim: int):
|
||||
super().__init__()
|
||||
assert (dim % 2) == 0
|
||||
half_dim = dim // 2
|
||||
self.weights = nn.Parameter(torch.randn(half_dim))
|
||||
|
||||
def forward(self, times: torch.Tensor) -> torch.Tensor:
|
||||
times = times[..., None]
|
||||
freqs = times * self.weights[None] * 2 * pi
|
||||
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
||||
fouriered = torch.cat((times, fouriered), dim=-1)
|
||||
return fouriered
|
||||
|
||||
|
||||
@dataclass
|
||||
class StableAudioProjectionModelOutput(BaseOutput):
|
||||
"""
|
||||
Args:
|
||||
Class for StableAudio projection layer's outputs.
|
||||
text_hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states obtained by linearly projecting the hidden-states for the text encoder.
|
||||
seconds_start_hidden_states (`torch.Tensor` of shape `(batch_size, 1, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states obtained by linearly projecting the audio start hidden states.
|
||||
seconds_end_hidden_states (`torch.Tensor` of shape `(batch_size, 1, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states obtained by linearly projecting the audio end hidden states.
|
||||
"""
|
||||
|
||||
text_hidden_states: Optional[torch.Tensor] = None
|
||||
seconds_start_hidden_states: Optional[torch.Tensor] = None
|
||||
seconds_end_hidden_states: Optional[torch.Tensor] = None
|
||||
|
||||
|
||||
class StableAudioNumberConditioner(nn.Module):
|
||||
"""
|
||||
A simple linear projection model to map numbers to a latent space.
|
||||
|
||||
Args:
|
||||
number_embedding_dim (`int`):
|
||||
Dimensionality of the number embeddings.
|
||||
min_value (`int`):
|
||||
The minimum value of the seconds number conditioning modules.
|
||||
max_value (`int`):
|
||||
The maximum value of the seconds number conditioning modules
|
||||
internal_dim (`int`):
|
||||
Dimensionality of the intermediate number hidden states.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
number_embedding_dim,
|
||||
min_value,
|
||||
max_value,
|
||||
internal_dim: Optional[int] = 256,
|
||||
):
|
||||
super().__init__()
|
||||
self.time_positional_embedding = nn.Sequential(
|
||||
StableAudioPositionalEmbedding(internal_dim),
|
||||
nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim),
|
||||
)
|
||||
|
||||
self.number_embedding_dim = number_embedding_dim
|
||||
self.min_value = min_value
|
||||
self.max_value = max_value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
floats: torch.Tensor,
|
||||
):
|
||||
floats = floats.clamp(self.min_value, self.max_value)
|
||||
|
||||
normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value)
|
||||
|
||||
# Cast floats to same type as embedder
|
||||
embedder_dtype = next(self.time_positional_embedding.parameters()).dtype
|
||||
normalized_floats = normalized_floats.to(embedder_dtype)
|
||||
|
||||
embedding = self.time_positional_embedding(normalized_floats)
|
||||
float_embeds = embedding.view(-1, 1, self.number_embedding_dim)
|
||||
|
||||
return float_embeds
|
||||
|
||||
|
||||
class StableAudioProjectionModel(ModelMixin, ConfigMixin):
|
||||
"""
|
||||
A simple linear projection model to map the conditioning values to a shared latent space.
|
||||
|
||||
Args:
|
||||
text_encoder_dim (`int`):
|
||||
Dimensionality of the text embeddings from the text encoder (T5).
|
||||
conditioning_dim (`int`):
|
||||
Dimensionality of the output conditioning tensors.
|
||||
min_value (`int`):
|
||||
The minimum value of the seconds number conditioning modules.
|
||||
max_value (`int`):
|
||||
The maximum value of the seconds number conditioning modules
|
||||
"""
|
||||
|
||||
@register_to_config
|
||||
def __init__(self, text_encoder_dim, conditioning_dim, min_value, max_value):
|
||||
super().__init__()
|
||||
self.text_projection = (
|
||||
nn.Identity() if conditioning_dim == text_encoder_dim else nn.Linear(text_encoder_dim, conditioning_dim)
|
||||
)
|
||||
self.start_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value)
|
||||
self.end_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
text_hidden_states: Optional[torch.Tensor] = None,
|
||||
start_seconds: Optional[torch.Tensor] = None,
|
||||
end_seconds: Optional[torch.Tensor] = None,
|
||||
):
|
||||
text_hidden_states = (
|
||||
text_hidden_states if text_hidden_states is None else self.text_projection(text_hidden_states)
|
||||
)
|
||||
seconds_start_hidden_states = (
|
||||
start_seconds if start_seconds is None else self.start_number_conditioner(start_seconds)
|
||||
)
|
||||
seconds_end_hidden_states = end_seconds if end_seconds is None else self.end_number_conditioner(end_seconds)
|
||||
|
||||
return StableAudioProjectionModelOutput(
|
||||
text_hidden_states=text_hidden_states,
|
||||
seconds_start_hidden_states=seconds_start_hidden_states,
|
||||
seconds_end_hidden_states=seconds_end_hidden_states,
|
||||
)
|
||||
@@ -1,745 +0,0 @@
|
||||
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Callable, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
T5EncoderModel,
|
||||
T5Tokenizer,
|
||||
T5TokenizerFast,
|
||||
)
|
||||
|
||||
from ...models import AutoencoderOobleck, StableAudioDiTModel
|
||||
from ...models.embeddings import get_1d_rotary_pos_embed
|
||||
from ...schedulers import EDMDPMSolverMultistepScheduler
|
||||
from ...utils import (
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
|
||||
from .modeling_stable_audio import StableAudioProjectionModel
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import scipy
|
||||
>>> import torch
|
||||
>>> import soundfile as sf
|
||||
>>> from diffusers import StableAudioPipeline
|
||||
|
||||
>>> repo_id = "stabilityai/stable-audio-open-1.0"
|
||||
>>> pipe = StableAudioPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
|
||||
>>> pipe = pipe.to("cuda")
|
||||
|
||||
>>> # define the prompts
|
||||
>>> prompt = "The sound of a hammer hitting a wooden surface."
|
||||
>>> negative_prompt = "Low quality."
|
||||
|
||||
>>> # set the seed for generator
|
||||
>>> generator = torch.Generator("cuda").manual_seed(0)
|
||||
|
||||
>>> # run the generation
|
||||
>>> audio = pipe(
|
||||
... prompt,
|
||||
... negative_prompt=negative_prompt,
|
||||
... num_inference_steps=200,
|
||||
... audio_end_in_s=10.0,
|
||||
... num_waveforms_per_prompt=3,
|
||||
... generator=generator,
|
||||
... ).audios
|
||||
|
||||
>>> output = audio[0].T.float().cpu().numpy()
|
||||
>>> sf.write("hammer.wav", output, pipe.vae.sampling_rate)
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
class StableAudioPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-audio generation using StableAudio.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
||||
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderOobleck`]):
|
||||
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`~transformers.T5EncoderModel`]):
|
||||
Frozen text-encoder. StableAudio uses the encoder of
|
||||
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
||||
[google-t5/t5-base](https://huggingface.co/google-t5/t5-base) variant.
|
||||
projection_model ([`StableAudioProjectionModel`]):
|
||||
A trained model used to linearly project the hidden-states from the text encoder model and the start and
|
||||
end seconds. The projected hidden-states from the encoder and the conditional seconds are concatenated to
|
||||
give the input to the transformer model.
|
||||
tokenizer ([`~transformers.T5Tokenizer`]):
|
||||
Tokenizer to tokenize text for the frozen text-encoder.
|
||||
transformer ([`StableAudioDiTModel`]):
|
||||
A `StableAudioDiTModel` to denoise the encoded audio latents.
|
||||
scheduler ([`EDMDPMSolverMultistepScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded audio latents.
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->projection_model->transformer->vae"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderOobleck,
|
||||
text_encoder: T5EncoderModel,
|
||||
projection_model: StableAudioProjectionModel,
|
||||
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
|
||||
transformer: StableAudioDiTModel,
|
||||
scheduler: EDMDPMSolverMultistepScheduler,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
projection_model=projection_model,
|
||||
tokenizer=tokenizer,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
self.rotary_embed_dim = self.transformer.config.attention_head_dim // 2
|
||||
|
||||
# Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.enable_vae_slicing
|
||||
def enable_vae_slicing(self):
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.vae.enable_slicing()
|
||||
|
||||
# Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.disable_vae_slicing
|
||||
def disable_vae_slicing(self):
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_slicing()
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt,
|
||||
device,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt=None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.LongTensor] = None,
|
||||
negative_attention_mask: Optional[torch.LongTensor] = None,
|
||||
):
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
# 1. Tokenize text
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
attention_mask = text_inputs.attention_mask
|
||||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
||||
text_input_ids, untruncated_ids
|
||||
):
|
||||
removed_text = self.tokenizer.batch_decode(
|
||||
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
||||
)
|
||||
logger.warning(
|
||||
f"The following part of your input was truncated because {self.text_encoder.config.model_type} can "
|
||||
f"only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
text_input_ids = text_input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# 2. Text encoder forward
|
||||
self.text_encoder.eval()
|
||||
prompt_embeds = self.text_encoder(
|
||||
text_input_ids,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
prompt_embeds = prompt_embeds[0]
|
||||
|
||||
if do_classifier_free_guidance and negative_prompt is not None:
|
||||
uncond_tokens: List[str]
|
||||
if type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = negative_prompt
|
||||
|
||||
# 1. Tokenize text
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
uncond_input_ids = uncond_input.input_ids.to(device)
|
||||
negative_attention_mask = uncond_input.attention_mask.to(device)
|
||||
|
||||
# 2. Text encoder forward
|
||||
self.text_encoder.eval()
|
||||
negative_prompt_embeds = self.text_encoder(
|
||||
uncond_input_ids,
|
||||
attention_mask=negative_attention_mask,
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds[0]
|
||||
|
||||
if negative_attention_mask is not None:
|
||||
# set the masked tokens to the null embed
|
||||
negative_prompt_embeds = torch.where(
|
||||
negative_attention_mask.to(torch.bool).unsqueeze(2), negative_prompt_embeds, 0.0
|
||||
)
|
||||
|
||||
# 3. Project prompt_embeds and negative_prompt_embeds
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is not None:
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we concatenate the negative and text embeddings into a single batch
|
||||
# to avoid doing two forward passes
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
if attention_mask is not None and negative_attention_mask is None:
|
||||
negative_attention_mask = torch.ones_like(attention_mask)
|
||||
elif attention_mask is None and negative_attention_mask is not None:
|
||||
attention_mask = torch.ones_like(negative_attention_mask)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = torch.cat([negative_attention_mask, attention_mask])
|
||||
|
||||
prompt_embeds = self.projection_model(
|
||||
text_hidden_states=prompt_embeds,
|
||||
).text_hidden_states
|
||||
if attention_mask is not None:
|
||||
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
|
||||
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
def encode_duration(
|
||||
self,
|
||||
audio_start_in_s,
|
||||
audio_end_in_s,
|
||||
device,
|
||||
do_classifier_free_guidance,
|
||||
batch_size,
|
||||
):
|
||||
audio_start_in_s = audio_start_in_s if isinstance(audio_start_in_s, list) else [audio_start_in_s]
|
||||
audio_end_in_s = audio_end_in_s if isinstance(audio_end_in_s, list) else [audio_end_in_s]
|
||||
|
||||
if len(audio_start_in_s) == 1:
|
||||
audio_start_in_s = audio_start_in_s * batch_size
|
||||
if len(audio_end_in_s) == 1:
|
||||
audio_end_in_s = audio_end_in_s * batch_size
|
||||
|
||||
# Cast the inputs to floats
|
||||
audio_start_in_s = [float(x) for x in audio_start_in_s]
|
||||
audio_start_in_s = torch.tensor(audio_start_in_s).to(device)
|
||||
|
||||
audio_end_in_s = [float(x) for x in audio_end_in_s]
|
||||
audio_end_in_s = torch.tensor(audio_end_in_s).to(device)
|
||||
|
||||
projection_output = self.projection_model(
|
||||
start_seconds=audio_start_in_s,
|
||||
end_seconds=audio_end_in_s,
|
||||
)
|
||||
seconds_start_hidden_states = projection_output.seconds_start_hidden_states
|
||||
seconds_end_hidden_states = projection_output.seconds_end_hidden_states
|
||||
|
||||
# For classifier free guidance, we need to do two forward passes.
|
||||
# Here we repeat the audio hidden states to avoid doing two forward passes
|
||||
if do_classifier_free_guidance:
|
||||
seconds_start_hidden_states = torch.cat([seconds_start_hidden_states, seconds_start_hidden_states], dim=0)
|
||||
seconds_end_hidden_states = torch.cat([seconds_end_hidden_states, seconds_end_hidden_states], dim=0)
|
||||
|
||||
return seconds_start_hidden_states, seconds_end_hidden_states
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
audio_start_in_s,
|
||||
audio_end_in_s,
|
||||
callback_steps,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
attention_mask=None,
|
||||
negative_attention_mask=None,
|
||||
initial_audio_waveforms=None,
|
||||
initial_audio_sampling_rate=None,
|
||||
):
|
||||
if audio_end_in_s < audio_start_in_s:
|
||||
raise ValueError(
|
||||
f"`audio_end_in_s={audio_end_in_s}' must be higher than 'audio_start_in_s={audio_start_in_s}` but "
|
||||
)
|
||||
|
||||
if (
|
||||
audio_start_in_s < self.projection_model.config.min_value
|
||||
or audio_start_in_s > self.projection_model.config.max_value
|
||||
):
|
||||
raise ValueError(
|
||||
f"`audio_start_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but "
|
||||
f"is {audio_start_in_s}."
|
||||
)
|
||||
|
||||
if (
|
||||
audio_end_in_s < self.projection_model.config.min_value
|
||||
or audio_end_in_s > self.projection_model.config.max_value
|
||||
):
|
||||
raise ValueError(
|
||||
f"`audio_end_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but "
|
||||
f"is {audio_end_in_s}."
|
||||
)
|
||||
|
||||
if (callback_steps is None) or (
|
||||
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||||
f" {type(callback_steps)}."
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and (prompt_embeds is None):
|
||||
raise ValueError(
|
||||
"Provide either `prompt`, or `prompt_embeds`. Cannot leave"
|
||||
"`prompt` undefined without specifying `prompt_embeds`."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]:
|
||||
raise ValueError(
|
||||
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
|
||||
f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}"
|
||||
)
|
||||
|
||||
if initial_audio_sampling_rate is None and initial_audio_waveforms is not None:
|
||||
raise ValueError(
|
||||
"`initial_audio_waveforms' is provided but the sampling rate is not. Make sure to pass `initial_audio_sampling_rate`."
|
||||
)
|
||||
|
||||
if initial_audio_sampling_rate is not None and initial_audio_sampling_rate != self.vae.sampling_rate:
|
||||
raise ValueError(
|
||||
f"`initial_audio_sampling_rate` must be {self.vae.hop_length}' but is `{initial_audio_sampling_rate}`."
|
||||
"Make sure to resample the `initial_audio_waveforms` and to correct the sampling rate. "
|
||||
)
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_vae,
|
||||
sample_size,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
initial_audio_waveforms=None,
|
||||
num_waveforms_per_prompt=None,
|
||||
audio_channels=None,
|
||||
):
|
||||
shape = (batch_size, num_channels_vae, sample_size)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
latents = latents.to(device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
|
||||
# encode the initial audio for use by the model
|
||||
if initial_audio_waveforms is not None:
|
||||
# check dimension
|
||||
if initial_audio_waveforms.ndim == 2:
|
||||
initial_audio_waveforms = initial_audio_waveforms.unsqueeze(1)
|
||||
elif initial_audio_waveforms.ndim != 3:
|
||||
raise ValueError(
|
||||
f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but has `{initial_audio_waveforms.ndim}` dimensions"
|
||||
)
|
||||
|
||||
audio_vae_length = self.transformer.config.sample_size * self.vae.hop_length
|
||||
audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length)
|
||||
|
||||
# check num_channels
|
||||
if initial_audio_waveforms.shape[1] == 1 and audio_channels == 2:
|
||||
initial_audio_waveforms = initial_audio_waveforms.repeat(1, 2, 1)
|
||||
elif initial_audio_waveforms.shape[1] == 2 and audio_channels == 1:
|
||||
initial_audio_waveforms = initial_audio_waveforms.mean(1, keepdim=True)
|
||||
|
||||
if initial_audio_waveforms.shape[:2] != audio_shape[:2]:
|
||||
raise ValueError(
|
||||
f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but is of shape `{initial_audio_waveforms.shape}`"
|
||||
)
|
||||
|
||||
# crop or pad
|
||||
audio_length = initial_audio_waveforms.shape[-1]
|
||||
if audio_length < audio_vae_length:
|
||||
logger.warning(
|
||||
f"The provided input waveform is shorter ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be padded."
|
||||
)
|
||||
elif audio_length > audio_vae_length:
|
||||
logger.warning(
|
||||
f"The provided input waveform is longer ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be cropped."
|
||||
)
|
||||
|
||||
audio = initial_audio_waveforms.new_zeros(audio_shape)
|
||||
audio[:, :, : min(audio_length, audio_vae_length)] = initial_audio_waveforms[:, :, :audio_vae_length]
|
||||
|
||||
encoded_audio = self.vae.encode(audio).latent_dist.sample(generator)
|
||||
encoded_audio = encoded_audio.repeat((num_waveforms_per_prompt, 1, 1))
|
||||
latents = encoded_audio + latents
|
||||
return latents
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
audio_end_in_s: Optional[float] = None,
|
||||
audio_start_in_s: Optional[float] = 0.0,
|
||||
num_inference_steps: int = 100,
|
||||
guidance_scale: float = 7.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_waveforms_per_prompt: Optional[int] = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
initial_audio_waveforms: Optional[torch.Tensor] = None,
|
||||
initial_audio_sampling_rate: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.LongTensor] = None,
|
||||
negative_attention_mask: Optional[torch.LongTensor] = None,
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
output_type: Optional[str] = "pt",
|
||||
):
|
||||
r"""
|
||||
The call function to the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.
|
||||
audio_end_in_s (`float`, *optional*, defaults to 47.55):
|
||||
Audio end index in seconds.
|
||||
audio_start_in_s (`float`, *optional*, defaults to 0):
|
||||
Audio start index in seconds.
|
||||
num_inference_steps (`int`, *optional*, defaults to 100):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.0):
|
||||
A higher guidance scale value encourages the model to generate audio that is closely linked to the text
|
||||
`prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide what to not include in audio generation. If not defined, you need to
|
||||
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
||||
num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of waveforms to generate per prompt.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
||||
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
||||
generation deterministic.
|
||||
latents (`torch.Tensor`, *optional*):
|
||||
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for audio
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor is generated by sampling using the supplied random `generator`.
|
||||
initial_audio_waveforms (`torch.Tensor`, *optional*):
|
||||
Optional initial audio waveforms to use as the initial audio waveform for generation. Must be of shape
|
||||
`(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)`, where `batch_size`
|
||||
corresponds to the number of prompts passed to the model.
|
||||
initial_audio_sampling_rate (`int`, *optional*):
|
||||
Sampling rate of the `initial_audio_waveforms`, if they are provided. Must be the same as the model.
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-computed text embeddings from the text encoder model. Can be used to easily tweak text inputs,
|
||||
*e.g.* prompt weighting. If not provided, text embeddings will be computed from `prompt` input
|
||||
argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-computed negative text embeddings from the text encoder model. Can be used to easily tweak text
|
||||
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
|
||||
`negative_prompt` input argument.
|
||||
attention_mask (`torch.LongTensor`, *optional*):
|
||||
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
|
||||
be computed from `prompt` input argument.
|
||||
negative_attention_mask (`torch.LongTensor`, *optional*):
|
||||
Pre-computed attention mask to be applied to the `negative_text_audio_duration_embeds`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||||
plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that calls every `callback_steps` steps during inference. The function is called with the
|
||||
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
||||
every step.
|
||||
output_type (`str`, *optional*, defaults to `"pt"`):
|
||||
The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or
|
||||
`"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion
|
||||
model (LDM) output.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||||
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
||||
otherwise a `tuple` is returned where the first element is a list with the generated audio.
|
||||
"""
|
||||
# 0. Convert audio input length from seconds to latent length
|
||||
downsample_ratio = self.vae.hop_length
|
||||
|
||||
max_audio_length_in_s = self.transformer.config.sample_size * downsample_ratio / self.vae.config.sampling_rate
|
||||
if audio_end_in_s is None:
|
||||
audio_end_in_s = max_audio_length_in_s
|
||||
|
||||
if audio_end_in_s - audio_start_in_s > max_audio_length_in_s:
|
||||
raise ValueError(
|
||||
f"The total audio length requested ({audio_end_in_s-audio_start_in_s}s) is longer than the model maximum possible length ({max_audio_length_in_s}). Make sure that 'audio_end_in_s-audio_start_in_s<={max_audio_length_in_s}'."
|
||||
)
|
||||
|
||||
waveform_start = int(audio_start_in_s * self.vae.config.sampling_rate)
|
||||
waveform_end = int(audio_end_in_s * self.vae.config.sampling_rate)
|
||||
waveform_length = int(self.transformer.config.sample_size)
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
audio_start_in_s,
|
||||
audio_end_in_s,
|
||||
callback_steps,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
attention_mask,
|
||||
negative_attention_mask,
|
||||
initial_audio_waveforms,
|
||||
initial_audio_sampling_rate,
|
||||
)
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
attention_mask,
|
||||
negative_attention_mask,
|
||||
)
|
||||
|
||||
# Encode duration
|
||||
seconds_start_hidden_states, seconds_end_hidden_states = self.encode_duration(
|
||||
audio_start_in_s,
|
||||
audio_end_in_s,
|
||||
device,
|
||||
do_classifier_free_guidance and (negative_prompt is not None or negative_prompt_embeds is not None),
|
||||
batch_size,
|
||||
)
|
||||
|
||||
# Create text_audio_duration_embeds and audio_duration_embeds
|
||||
text_audio_duration_embeds = torch.cat(
|
||||
[prompt_embeds, seconds_start_hidden_states, seconds_end_hidden_states], dim=1
|
||||
)
|
||||
|
||||
audio_duration_embeds = torch.cat([seconds_start_hidden_states, seconds_end_hidden_states], dim=2)
|
||||
|
||||
# In case of classifier free guidance without negative prompt, we need to create unconditional embeddings and
|
||||
# to concatenate it to the embeddings
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None and negative_prompt is None:
|
||||
negative_text_audio_duration_embeds = torch.zeros_like(
|
||||
text_audio_duration_embeds, device=text_audio_duration_embeds.device
|
||||
)
|
||||
text_audio_duration_embeds = torch.cat(
|
||||
[negative_text_audio_duration_embeds, text_audio_duration_embeds], dim=0
|
||||
)
|
||||
audio_duration_embeds = torch.cat([audio_duration_embeds, audio_duration_embeds], dim=0)
|
||||
|
||||
bs_embed, seq_len, hidden_size = text_audio_duration_embeds.shape
|
||||
# duplicate audio_duration_embeds and text_audio_duration_embeds for each generation per prompt, using mps friendly method
|
||||
text_audio_duration_embeds = text_audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
||||
text_audio_duration_embeds = text_audio_duration_embeds.view(
|
||||
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
|
||||
)
|
||||
|
||||
audio_duration_embeds = audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1)
|
||||
audio_duration_embeds = audio_duration_embeds.view(
|
||||
bs_embed * num_waveforms_per_prompt, -1, audio_duration_embeds.shape[-1]
|
||||
)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_vae = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_waveforms_per_prompt,
|
||||
num_channels_vae,
|
||||
waveform_length,
|
||||
text_audio_duration_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
initial_audio_waveforms,
|
||||
num_waveforms_per_prompt,
|
||||
audio_channels=self.vae.config.audio_channels,
|
||||
)
|
||||
|
||||
# 6. Prepare extra step kwargs
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 7. Prepare rotary positional embedding
|
||||
rotary_embedding = get_1d_rotary_pos_embed(
|
||||
self.rotary_embed_dim,
|
||||
latents.shape[2] + audio_duration_embeds.shape[1],
|
||||
use_real=True,
|
||||
repeat_interleave_real=False,
|
||||
)
|
||||
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.transformer(
|
||||
latent_model_input,
|
||||
t.unsqueeze(0),
|
||||
encoder_hidden_states=text_audio_duration_embeds,
|
||||
global_hidden_states=audio_duration_embeds,
|
||||
rotary_embedding=rotary_embedding,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
step_idx = i // getattr(self.scheduler, "order", 1)
|
||||
callback(step_idx, t, latents)
|
||||
|
||||
# 9. Post-processing
|
||||
if not output_type == "latent":
|
||||
audio = self.vae.decode(latents).sample
|
||||
else:
|
||||
return AudioPipelineOutput(audios=latents)
|
||||
|
||||
audio = audio[:, :, waveform_start:waveform_end]
|
||||
|
||||
if output_type == "np":
|
||||
audio = audio.cpu().float().numpy()
|
||||
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (audio,)
|
||||
|
||||
return AudioPipelineOutput(audios=audio)
|
||||
@@ -118,7 +118,6 @@ except OptionalDependencyNotAvailable:
|
||||
_dummy_modules.update(get_objects_from_module(dummy_torch_and_torchsde_objects))
|
||||
|
||||
else:
|
||||
_import_structure["scheduling_cosine_dpmsolver_multistep"] = ["CosineDPMSolverMultistepScheduler"]
|
||||
_import_structure["scheduling_dpmsolver_sde"] = ["DPMSolverSDEScheduler"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
@@ -206,7 +205,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
|
||||
else:
|
||||
from .scheduling_cosine_dpmsolver_multistep import CosineDPMSolverMultistepScheduler
|
||||
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
|
||||
|
||||
else:
|
||||
|
||||
@@ -1,572 +0,0 @@
|
||||
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from .scheduling_dpmsolver_sde import BrownianTreeNoiseSampler
|
||||
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
||||
|
||||
|
||||
class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021).
|
||||
This scheduler was used in Stable Audio Open [1].
|
||||
|
||||
[1] Evans, Parker, et al. "Stable Audio Open" https://arxiv.org/abs/2407.14358
|
||||
|
||||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||||
methods the library implements for all schedulers such as loading and saving.
|
||||
|
||||
Args:
|
||||
sigma_min (`float`, *optional*, defaults to 0.3):
|
||||
Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1].
|
||||
sigma_max (`float`, *optional*, defaults to 500):
|
||||
Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1].
|
||||
sigma_data (`float`, *optional*, defaults to 1.0):
|
||||
The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1].
|
||||
sigma_schedule (`str`, *optional*, defaults to `exponential`):
|
||||
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
|
||||
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
|
||||
incorporated in this model: https://huggingface.co/stabilityai/cosxl.
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
solver_order (`int`, defaults to 2):
|
||||
The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`.
|
||||
prediction_type (`str`, defaults to `v_prediction`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
Video](https://imagen.research.google/video/paper.pdf) paper).
|
||||
solver_type (`str`, defaults to `midpoint`):
|
||||
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
|
||||
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
|
||||
lower_order_final (`bool`, defaults to `True`):
|
||||
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
||||
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
||||
euler_at_final (`bool`, defaults to `False`):
|
||||
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
|
||||
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
|
||||
steps, but sometimes may result in blurring.
|
||||
final_sigmas_type (`str`, defaults to `"zero"`):
|
||||
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
||||
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
||||
"""
|
||||
|
||||
_compatibles = []
|
||||
order = 1
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
sigma_min: float = 0.3,
|
||||
sigma_max: float = 500,
|
||||
sigma_data: float = 1.0,
|
||||
sigma_schedule: str = "exponential",
|
||||
num_train_timesteps: int = 1000,
|
||||
solver_order: int = 2,
|
||||
prediction_type: str = "v_prediction",
|
||||
rho: float = 7.0,
|
||||
solver_type: str = "midpoint",
|
||||
lower_order_final: bool = True,
|
||||
euler_at_final: bool = False,
|
||||
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
||||
):
|
||||
if solver_type not in ["midpoint", "heun"]:
|
||||
if solver_type in ["logrho", "bh1", "bh2"]:
|
||||
self.register_to_config(solver_type="midpoint")
|
||||
else:
|
||||
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
||||
|
||||
ramp = torch.linspace(0, 1, num_train_timesteps)
|
||||
if sigma_schedule == "karras":
|
||||
sigmas = self._compute_karras_sigmas(ramp)
|
||||
elif sigma_schedule == "exponential":
|
||||
sigmas = self._compute_exponential_sigmas(ramp)
|
||||
|
||||
self.timesteps = self.precondition_noise(sigmas)
|
||||
|
||||
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
|
||||
# setable values
|
||||
self.num_inference_steps = None
|
||||
self.model_outputs = [None] * solver_order
|
||||
self.lower_order_nums = 0
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
@property
|
||||
def init_noise_sigma(self):
|
||||
# standard deviation of the initial noise distribution
|
||||
return (self.config.sigma_max**2 + 1) ** 0.5
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
"""
|
||||
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
"""
|
||||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||||
"""
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
Args:
|
||||
begin_index (`int`):
|
||||
The begin index for the scheduler.
|
||||
"""
|
||||
self._begin_index = begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
|
||||
def precondition_inputs(self, sample, sigma):
|
||||
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
||||
scaled_sample = sample * c_in
|
||||
return scaled_sample
|
||||
|
||||
def precondition_noise(self, sigma):
|
||||
if not isinstance(sigma, torch.Tensor):
|
||||
sigma = torch.tensor([sigma])
|
||||
|
||||
return sigma.atan() / math.pi * 2
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
|
||||
def precondition_outputs(self, sample, model_output, sigma):
|
||||
sigma_data = self.config.sigma_data
|
||||
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
||||
|
||||
if self.config.prediction_type == "epsilon":
|
||||
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
||||
elif self.config.prediction_type == "v_prediction":
|
||||
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
||||
else:
|
||||
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
|
||||
|
||||
denoised = c_skip * sample + c_out * model_output
|
||||
|
||||
return denoised
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
|
||||
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
|
||||
"""
|
||||
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||||
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
||||
|
||||
Args:
|
||||
sample (`torch.Tensor`):
|
||||
The input sample.
|
||||
timestep (`int`, *optional*):
|
||||
The current timestep in the diffusion chain.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
A scaled input sample.
|
||||
"""
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
sample = self.precondition_inputs(sample, sigma)
|
||||
|
||||
self.is_scale_input_called = True
|
||||
return sample
|
||||
|
||||
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
Args:
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
"""
|
||||
|
||||
self.num_inference_steps = num_inference_steps
|
||||
|
||||
ramp = torch.linspace(0, 1, self.num_inference_steps)
|
||||
if self.config.sigma_schedule == "karras":
|
||||
sigmas = self._compute_karras_sigmas(ramp)
|
||||
elif self.config.sigma_schedule == "exponential":
|
||||
sigmas = self._compute_exponential_sigmas(ramp)
|
||||
|
||||
sigmas = sigmas.to(dtype=torch.float32, device=device)
|
||||
self.timesteps = self.precondition_noise(sigmas)
|
||||
|
||||
if self.config.final_sigmas_type == "sigma_min":
|
||||
sigma_last = self.config.sigma_min
|
||||
elif self.config.final_sigmas_type == "zero":
|
||||
sigma_last = 0
|
||||
else:
|
||||
raise ValueError(
|
||||
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
||||
)
|
||||
|
||||
self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])
|
||||
|
||||
self.model_outputs = [
|
||||
None,
|
||||
] * self.config.solver_order
|
||||
self.lower_order_nums = 0
|
||||
|
||||
# add an index counter for schedulers that allow duplicated timesteps
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
# if a noise sampler is used, reinitialise it
|
||||
self.noise_sampler = None
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
|
||||
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
||||
"""Constructs the noise schedule of Karras et al. (2022)."""
|
||||
sigma_min = sigma_min or self.config.sigma_min
|
||||
sigma_max = sigma_max or self.config.sigma_max
|
||||
|
||||
rho = self.config.rho
|
||||
min_inv_rho = sigma_min ** (1 / rho)
|
||||
max_inv_rho = sigma_max ** (1 / rho)
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
|
||||
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
||||
"""Implementation closely follows k-diffusion.
|
||||
|
||||
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
|
||||
"""
|
||||
sigma_min = sigma_min or self.config.sigma_min
|
||||
sigma_max = sigma_max or self.config.sigma_max
|
||||
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
||||
def _sigma_to_t(self, sigma, log_sigmas):
|
||||
# get log sigma
|
||||
log_sigma = np.log(np.maximum(sigma, 1e-10))
|
||||
|
||||
# get distribution
|
||||
dists = log_sigma - log_sigmas[:, np.newaxis]
|
||||
|
||||
# get sigmas range
|
||||
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
||||
high_idx = low_idx + 1
|
||||
|
||||
low = log_sigmas[low_idx]
|
||||
high = log_sigmas[high_idx]
|
||||
|
||||
# interpolate sigmas
|
||||
w = (low - log_sigma) / (low - high)
|
||||
w = np.clip(w, 0, 1)
|
||||
|
||||
# transform interpolation to time range
|
||||
t = (1 - w) * low_idx + w * high_idx
|
||||
t = t.reshape(sigma.shape)
|
||||
return t
|
||||
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
|
||||
sigma_t = sigma
|
||||
|
||||
return alpha_t, sigma_t
|
||||
|
||||
def convert_model_output(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
sample: torch.Tensor = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
|
||||
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
|
||||
integral of the data prediction model.
|
||||
|
||||
<Tip>
|
||||
|
||||
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
|
||||
prediction and data prediction models.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from the learned diffusion model.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The converted model output.
|
||||
"""
|
||||
sigma = self.sigmas[self.step_index]
|
||||
x0_pred = self.precondition_outputs(sample, model_output, sigma)
|
||||
|
||||
return x0_pred
|
||||
|
||||
def dpm_solver_first_order_update(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
sample: torch.Tensor = None,
|
||||
noise: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
One step for the first-order DPMSolver (equivalent to DDIM).
|
||||
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from the learned diffusion model.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The sample tensor at the previous timestep.
|
||||
"""
|
||||
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
|
||||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||||
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
|
||||
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||||
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
|
||||
|
||||
h = lambda_t - lambda_s
|
||||
assert noise is not None
|
||||
x_t = (
|
||||
(sigma_t / sigma_s * torch.exp(-h)) * sample
|
||||
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
|
||||
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
||||
)
|
||||
|
||||
return x_t
|
||||
|
||||
def multistep_dpm_solver_second_order_update(
|
||||
self,
|
||||
model_output_list: List[torch.Tensor],
|
||||
sample: torch.Tensor = None,
|
||||
noise: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
One step for the second-order multistep DPMSolver.
|
||||
|
||||
Args:
|
||||
model_output_list (`List[torch.Tensor]`):
|
||||
The direct outputs from learned diffusion model at current and latter timesteps.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The sample tensor at the previous timestep.
|
||||
"""
|
||||
sigma_t, sigma_s0, sigma_s1 = (
|
||||
self.sigmas[self.step_index + 1],
|
||||
self.sigmas[self.step_index],
|
||||
self.sigmas[self.step_index - 1],
|
||||
)
|
||||
|
||||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||||
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
||||
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
|
||||
|
||||
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||||
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
||||
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
|
||||
|
||||
m0, m1 = model_output_list[-1], model_output_list[-2]
|
||||
|
||||
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
|
||||
r0 = h_0 / h
|
||||
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
|
||||
|
||||
# sde-dpmsolver++
|
||||
assert noise is not None
|
||||
if self.config.solver_type == "midpoint":
|
||||
x_t = (
|
||||
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
||||
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
||||
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
|
||||
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
||||
)
|
||||
elif self.config.solver_type == "heun":
|
||||
x_t = (
|
||||
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
||||
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
||||
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
|
||||
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
||||
)
|
||||
|
||||
return x_t
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
index_candidates = (schedule_timesteps == timestep).nonzero()
|
||||
|
||||
if len(index_candidates) == 0:
|
||||
step_index = len(self.timesteps) - 1
|
||||
# The sigma index that is taken for the **very** first `step`
|
||||
# is always the second index (or the last index if there is only 1)
|
||||
# This way we can ensure we don't accidentally skip a sigma in
|
||||
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||||
elif len(index_candidates) > 1:
|
||||
step_index = index_candidates[1].item()
|
||||
else:
|
||||
step_index = index_candidates[0].item()
|
||||
|
||||
return step_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
||||
def _init_step_index(self, timestep):
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
"""
|
||||
|
||||
if self.begin_index is None:
|
||||
if isinstance(timestep, torch.Tensor):
|
||||
timestep = timestep.to(self.timesteps.device)
|
||||
self._step_index = self.index_for_timestep(timestep)
|
||||
else:
|
||||
self._step_index = self._begin_index
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
sample: torch.Tensor,
|
||||
generator=None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
||||
the multistep DPMSolver.
|
||||
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`int`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A random number generator.
|
||||
return_dict (`bool`):
|
||||
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
||||
|
||||
Returns:
|
||||
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
||||
tuple is returned where the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
if self.num_inference_steps is None:
|
||||
raise ValueError(
|
||||
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||||
)
|
||||
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
# Improve numerical stability for small number of steps
|
||||
lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
|
||||
self.config.euler_at_final
|
||||
or (self.config.lower_order_final and len(self.timesteps) < 15)
|
||||
or self.config.final_sigmas_type == "zero"
|
||||
)
|
||||
lower_order_second = (
|
||||
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
|
||||
)
|
||||
|
||||
model_output = self.convert_model_output(model_output, sample=sample)
|
||||
for i in range(self.config.solver_order - 1):
|
||||
self.model_outputs[i] = self.model_outputs[i + 1]
|
||||
self.model_outputs[-1] = model_output
|
||||
|
||||
if self.noise_sampler is None:
|
||||
seed = None
|
||||
if generator is not None:
|
||||
seed = (
|
||||
[g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed()
|
||||
)
|
||||
self.noise_sampler = BrownianTreeNoiseSampler(
|
||||
model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed
|
||||
)
|
||||
noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to(
|
||||
model_output.device
|
||||
)
|
||||
|
||||
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
|
||||
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
|
||||
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
|
||||
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
|
||||
|
||||
if self.lower_order_nums < self.config.solver_order:
|
||||
self.lower_order_nums += 1
|
||||
|
||||
# upon completion increase step index by one
|
||||
self._step_index += 1
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample,)
|
||||
|
||||
return SchedulerOutput(prev_sample=prev_sample)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
||||
def add_noise(
|
||||
self,
|
||||
original_samples: torch.Tensor,
|
||||
noise: torch.Tensor,
|
||||
timesteps: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
||||
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
||||
# mps does not support float64
|
||||
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
||||
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
||||
else:
|
||||
schedule_timesteps = self.timesteps.to(original_samples.device)
|
||||
timesteps = timesteps.to(original_samples.device)
|
||||
|
||||
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
||||
if self.begin_index is None:
|
||||
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
||||
elif self.step_index is not None:
|
||||
# add_noise is called after first denoising step (for inpainting)
|
||||
step_indices = [self.step_index] * timesteps.shape[0]
|
||||
else:
|
||||
# add noise is called before first denoising step to create initial latent(img2img)
|
||||
step_indices = [self.begin_index] * timesteps.shape[0]
|
||||
|
||||
sigma = sigmas[step_indices].flatten()
|
||||
while len(sigma.shape) < len(original_samples.shape):
|
||||
sigma = sigma.unsqueeze(-1)
|
||||
|
||||
noisy_samples = original_samples + noise * sigma
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
@@ -134,7 +134,7 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
self.timesteps = self.precondition_noise(sigmas)
|
||||
|
||||
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
self.sigmas = self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
|
||||
# setable values
|
||||
self.num_inference_steps = None
|
||||
|
||||
@@ -93,7 +93,7 @@ from .import_utils import (
|
||||
is_xformers_available,
|
||||
requires_backends,
|
||||
)
|
||||
from .loading_utils import load_image, load_video
|
||||
from .loading_utils import load_image
|
||||
from .logging import get_logger
|
||||
from .outputs import BaseOutput
|
||||
from .peft_utils import (
|
||||
|
||||
@@ -62,21 +62,6 @@ class AutoencoderKLTemporalDecoder(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class AutoencoderOobleck(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class AutoencoderTiny(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
@@ -392,21 +377,6 @@ class SparseControlNetModel(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class StableAudioDiTModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class T2IAdapter(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -2,21 +2,6 @@
|
||||
from ..utils import DummyObject, requires_backends
|
||||
|
||||
|
||||
class CosineDPMSolverMultistepScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch", "torchsde"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "torchsde"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "torchsde"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "torchsde"])
|
||||
|
||||
|
||||
class DPMSolverSDEScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch", "torchsde"]
|
||||
|
||||
|
||||
@@ -77,21 +77,6 @@ class AmusedPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class AnimateDiffControlNetPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class AnimateDiffPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
@@ -1007,36 +992,6 @@ class ShapEPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableAudioPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableAudioProjectionModel(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class StableCascadeCombinedPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
@@ -9,7 +9,10 @@ import numpy as np
|
||||
import PIL.Image
|
||||
import PIL.ImageOps
|
||||
|
||||
from .import_utils import BACKENDS_MAPPING, is_opencv_available
|
||||
from .import_utils import (
|
||||
BACKENDS_MAPPING,
|
||||
is_opencv_available,
|
||||
)
|
||||
from .logging import get_logger
|
||||
|
||||
|
||||
|
||||
@@ -1,16 +1,13 @@
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Callable, List, Optional, Union
|
||||
from typing import Callable, Union
|
||||
|
||||
import PIL.Image
|
||||
import PIL.ImageOps
|
||||
import requests
|
||||
|
||||
from .import_utils import BACKENDS_MAPPING, is_opencv_available
|
||||
|
||||
|
||||
def load_image(
|
||||
image: Union[str, PIL.Image.Image], convert_method: Optional[Callable[[PIL.Image.Image], PIL.Image.Image]] = None
|
||||
image: Union[str, PIL.Image.Image], convert_method: Callable[[PIL.Image.Image], PIL.Image.Image] = None
|
||||
) -> PIL.Image.Image:
|
||||
"""
|
||||
Loads `image` to a PIL Image.
|
||||
@@ -18,7 +15,7 @@ def load_image(
|
||||
Args:
|
||||
image (`str` or `PIL.Image.Image`):
|
||||
The image to convert to the PIL Image format.
|
||||
convert_method (Callable[[PIL.Image.Image], PIL.Image.Image], *optional*):
|
||||
convert_method (Callable[[PIL.Image.Image], PIL.Image.Image], optional):
|
||||
A conversion method to apply to the image after loading it. When set to `None` the image will be converted
|
||||
"RGB".
|
||||
|
||||
@@ -50,73 +47,3 @@ def load_image(
|
||||
image = image.convert("RGB")
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def load_video(
|
||||
video: str,
|
||||
convert_method: Optional[Callable[[List[PIL.Image.Image]], List[PIL.Image.Image]]] = None,
|
||||
) -> List[PIL.Image.Image]:
|
||||
"""
|
||||
Loads `video` to a list of PIL Image.
|
||||
|
||||
Args:
|
||||
video (`str`):
|
||||
A URL or Path to a video to convert to a list of PIL Image format.
|
||||
convert_method (Callable[[List[PIL.Image.Image]], List[PIL.Image.Image]], *optional*):
|
||||
A conversion method to apply to the video after loading it. When set to `None` the images will be converted
|
||||
to "RGB".
|
||||
|
||||
Returns:
|
||||
`List[PIL.Image.Image]`:
|
||||
The video as a list of PIL images.
|
||||
"""
|
||||
is_url = video.startswith("http://") or video.startswith("https://")
|
||||
is_file = os.path.isfile(video)
|
||||
was_tempfile_created = False
|
||||
|
||||
if not (is_url or is_file):
|
||||
raise ValueError(
|
||||
f"Incorrect path or URL. URLs must start with `http://` or `https://`, and {video} is not a valid path."
|
||||
)
|
||||
|
||||
if is_url:
|
||||
video_data = requests.get(video, stream=True).raw
|
||||
video_path = tempfile.NamedTemporaryFile(suffix=os.path.splitext(video)[1], delete=False).name
|
||||
was_tempfile_created = True
|
||||
with open(video_path, "wb") as f:
|
||||
f.write(video_data.read())
|
||||
|
||||
video = video_path
|
||||
|
||||
pil_images = []
|
||||
if video.endswith(".gif"):
|
||||
gif = PIL.Image.open(video)
|
||||
try:
|
||||
while True:
|
||||
pil_images.append(gif.copy())
|
||||
gif.seek(gif.tell() + 1)
|
||||
except EOFError:
|
||||
pass
|
||||
|
||||
else:
|
||||
if is_opencv_available():
|
||||
import cv2
|
||||
else:
|
||||
raise ImportError(BACKENDS_MAPPING["opencv"][1].format("load_video"))
|
||||
|
||||
video_capture = cv2.VideoCapture(video)
|
||||
success, frame = video_capture.read()
|
||||
while success:
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
pil_images.append(PIL.Image.fromarray(frame))
|
||||
success, frame = video_capture.read()
|
||||
|
||||
video_capture.release()
|
||||
|
||||
if was_tempfile_created:
|
||||
os.remove(video_path)
|
||||
|
||||
if convert_method is not None:
|
||||
pil_images = convert_method(pil_images)
|
||||
|
||||
return pil_images
|
||||
|
||||
@@ -18,14 +18,12 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from parameterized import parameterized
|
||||
|
||||
from diffusers import (
|
||||
AsymmetricAutoencoderKL,
|
||||
AutoencoderKL,
|
||||
AutoencoderKLTemporalDecoder,
|
||||
AutoencoderOobleck,
|
||||
AutoencoderTiny,
|
||||
ConsistencyDecoderVAE,
|
||||
StableDiffusionPipeline,
|
||||
@@ -130,18 +128,6 @@ def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None):
|
||||
}
|
||||
|
||||
|
||||
def get_autoencoder_oobleck_config(block_out_channels=None):
|
||||
init_dict = {
|
||||
"encoder_hidden_size": 12,
|
||||
"decoder_channels": 12,
|
||||
"decoder_input_channels": 6,
|
||||
"audio_channels": 2,
|
||||
"downsampling_ratios": [2, 4],
|
||||
"channel_multiples": [1, 2],
|
||||
}
|
||||
return init_dict
|
||||
|
||||
|
||||
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
|
||||
model_class = AutoencoderKL
|
||||
main_input_name = "sample"
|
||||
@@ -494,41 +480,6 @@ class AutoencoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase)
|
||||
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))
|
||||
|
||||
|
||||
class AutoencoderOobleckTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
|
||||
model_class = AutoencoderOobleck
|
||||
main_input_name = "sample"
|
||||
base_precision = 1e-2
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 4
|
||||
num_channels = 2
|
||||
seq_len = 24
|
||||
|
||||
waveform = floats_tensor((batch_size, num_channels, seq_len)).to(torch_device)
|
||||
|
||||
return {"sample": waveform, "sample_posterior": False}
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (2, 24)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (2, 24)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = get_autoencoder_oobleck_config()
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
def test_forward_signature(self):
|
||||
pass
|
||||
|
||||
def test_forward_with_norm_groups(self):
|
||||
pass
|
||||
|
||||
|
||||
@slow
|
||||
class AutoencoderTinyIntegrationTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
@@ -1149,116 +1100,3 @@ class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
|
||||
for shape in shapes:
|
||||
image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype)
|
||||
pipe.vae.decode(image)
|
||||
|
||||
|
||||
@slow
|
||||
class AutoencoderOobleckIntegrationTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def _load_datasamples(self, num_samples):
|
||||
ds = load_dataset(
|
||||
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
|
||||
)
|
||||
# automatic decoding with librispeech
|
||||
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
|
||||
|
||||
return torch.nn.utils.rnn.pad_sequence(
|
||||
[torch.from_numpy(x["array"]) for x in speech_samples], batch_first=True
|
||||
)
|
||||
|
||||
def get_audio(self, audio_sample_size=2097152, fp16=False):
|
||||
dtype = torch.float16 if fp16 else torch.float32
|
||||
audio = self._load_datasamples(2).to(torch_device).to(dtype)
|
||||
|
||||
# pad / crop to audio_sample_size
|
||||
audio = torch.nn.functional.pad(audio[:, :audio_sample_size], pad=(0, audio_sample_size - audio.shape[-1]))
|
||||
|
||||
# todo channel
|
||||
audio = audio.unsqueeze(1).repeat(1, 2, 1).to(torch_device)
|
||||
|
||||
return audio
|
||||
|
||||
def get_oobleck_vae_model(self, model_id="stabilityai/stable-audio-open-1.0", fp16=False):
|
||||
torch_dtype = torch.float16 if fp16 else torch.float32
|
||||
|
||||
model = AutoencoderOobleck.from_pretrained(
|
||||
model_id,
|
||||
subfolder="vae",
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
model.to(torch_device)
|
||||
|
||||
return model
|
||||
|
||||
def get_generator(self, seed=0):
|
||||
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
|
||||
if torch_device != "mps":
|
||||
return torch.Generator(device=generator_device).manual_seed(seed)
|
||||
return torch.manual_seed(seed)
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
# fmt: off
|
||||
[33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192],
|
||||
[44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196],
|
||||
# fmt: on
|
||||
]
|
||||
)
|
||||
def test_stable_diffusion(self, seed, expected_slice, expected_mean_absolute_diff):
|
||||
model = self.get_oobleck_vae_model()
|
||||
audio = self.get_audio()
|
||||
generator = self.get_generator(seed)
|
||||
|
||||
with torch.no_grad():
|
||||
sample = model(audio, generator=generator, sample_posterior=True).sample
|
||||
|
||||
assert sample.shape == audio.shape
|
||||
assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6
|
||||
|
||||
output_slice = sample[-1, 1, 5:10].cpu()
|
||||
expected_output_slice = torch.tensor(expected_slice)
|
||||
|
||||
assert torch_all_close(output_slice, expected_output_slice, atol=1e-5)
|
||||
|
||||
def test_stable_diffusion_mode(self):
|
||||
model = self.get_oobleck_vae_model()
|
||||
audio = self.get_audio()
|
||||
|
||||
with torch.no_grad():
|
||||
sample = model(audio, sample_posterior=False).sample
|
||||
|
||||
assert sample.shape == audio.shape
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
# fmt: off
|
||||
[33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192],
|
||||
[44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196],
|
||||
# fmt: on
|
||||
]
|
||||
)
|
||||
def test_stable_diffusion_encode_decode(self, seed, expected_slice, expected_mean_absolute_diff):
|
||||
model = self.get_oobleck_vae_model()
|
||||
audio = self.get_audio()
|
||||
generator = self.get_generator(seed)
|
||||
|
||||
with torch.no_grad():
|
||||
x = audio
|
||||
posterior = model.encode(x).latent_dist
|
||||
z = posterior.sample(generator=generator)
|
||||
sample = model.decode(z).sample
|
||||
|
||||
# (batch_size, latent_dim, sequence_length)
|
||||
assert posterior.mean.shape == (audio.shape[0], model.config.decoder_input_channels, 1024)
|
||||
|
||||
assert sample.shape == audio.shape
|
||||
assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6
|
||||
|
||||
output_slice = sample[-1, 1, 5:10].cpu()
|
||||
expected_output_slice = torch.tensor(expected_slice)
|
||||
|
||||
assert torch_all_close(output_slice, expected_output_slice, atol=1e-5)
|
||||
|
||||
@@ -1,431 +0,0 @@
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
import diffusers
|
||||
from diffusers import (
|
||||
AnimateDiffControlNetPipeline,
|
||||
AutoencoderKL,
|
||||
ControlNetModel,
|
||||
DDIMScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
LCMScheduler,
|
||||
MotionAdapter,
|
||||
StableDiffusionPipeline,
|
||||
UNet2DConditionModel,
|
||||
UNetMotionModel,
|
||||
)
|
||||
from diffusers.utils import logging
|
||||
from diffusers.utils.testing_utils import torch_device
|
||||
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import (
|
||||
IPAdapterTesterMixin,
|
||||
PipelineFromPipeTesterMixin,
|
||||
PipelineTesterMixin,
|
||||
SDFunctionTesterMixin,
|
||||
)
|
||||
|
||||
|
||||
def to_np(tensor):
|
||||
if isinstance(tensor, torch.Tensor):
|
||||
tensor = tensor.detach().cpu().numpy()
|
||||
|
||||
return tensor
|
||||
|
||||
|
||||
class AnimateDiffControlNetPipelineFastTests(
|
||||
IPAdapterTesterMixin, SDFunctionTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase
|
||||
):
|
||||
pipeline_class = AnimateDiffControlNetPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"conditioning_frames"})
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
|
||||
def get_dummy_components(self):
|
||||
cross_attention_dim = 8
|
||||
block_out_channels = (8, 8)
|
||||
|
||||
torch.manual_seed(0)
|
||||
unet = UNet2DConditionModel(
|
||||
block_out_channels=block_out_channels,
|
||||
layers_per_block=2,
|
||||
sample_size=8,
|
||||
in_channels=4,
|
||||
out_channels=4,
|
||||
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
|
||||
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
norm_num_groups=2,
|
||||
)
|
||||
scheduler = DDIMScheduler(
|
||||
beta_start=0.00085,
|
||||
beta_end=0.012,
|
||||
beta_schedule="linear",
|
||||
clip_sample=False,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
controlnet = ControlNetModel(
|
||||
block_out_channels=block_out_channels,
|
||||
layers_per_block=2,
|
||||
in_channels=4,
|
||||
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
conditioning_embedding_out_channels=(8, 8),
|
||||
norm_num_groups=1,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
block_out_channels=block_out_channels,
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
||||
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
||||
latent_channels=4,
|
||||
norm_num_groups=2,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
text_encoder_config = CLIPTextConfig(
|
||||
bos_token_id=0,
|
||||
eos_token_id=2,
|
||||
hidden_size=cross_attention_dim,
|
||||
intermediate_size=37,
|
||||
layer_norm_eps=1e-05,
|
||||
num_attention_heads=4,
|
||||
num_hidden_layers=5,
|
||||
pad_token_id=1,
|
||||
vocab_size=1000,
|
||||
)
|
||||
text_encoder = CLIPTextModel(text_encoder_config)
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
motion_adapter = MotionAdapter(
|
||||
block_out_channels=block_out_channels,
|
||||
motion_layers_per_block=2,
|
||||
motion_norm_num_groups=2,
|
||||
motion_num_attention_heads=4,
|
||||
)
|
||||
|
||||
components = {
|
||||
"unet": unet,
|
||||
"controlnet": controlnet,
|
||||
"scheduler": scheduler,
|
||||
"vae": vae,
|
||||
"motion_adapter": motion_adapter,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"feature_extractor": None,
|
||||
"image_encoder": None,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed: int = 0, num_frames: int = 2):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
|
||||
video_height = 32
|
||||
video_width = 32
|
||||
conditioning_frames = [Image.new("RGB", (video_width, video_height))] * num_frames
|
||||
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"conditioning_frames": conditioning_frames,
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"num_frames": num_frames,
|
||||
"guidance_scale": 7.5,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_from_pipe_consistent_config(self):
|
||||
assert self.original_pipeline_class == StableDiffusionPipeline
|
||||
original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe"
|
||||
original_kwargs = {"requires_safety_checker": False}
|
||||
|
||||
# create original_pipeline_class(sd)
|
||||
pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)
|
||||
|
||||
# original_pipeline_class(sd) -> pipeline_class
|
||||
pipe_components = self.get_dummy_components()
|
||||
pipe_additional_components = {}
|
||||
for name, component in pipe_components.items():
|
||||
if name not in pipe_original.components:
|
||||
pipe_additional_components[name] = component
|
||||
|
||||
pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)
|
||||
|
||||
# pipeline_class -> original_pipeline_class(sd)
|
||||
original_pipe_additional_components = {}
|
||||
for name, component in pipe_original.components.items():
|
||||
if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
|
||||
original_pipe_additional_components[name] = component
|
||||
|
||||
pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)
|
||||
|
||||
# compare the config
|
||||
original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
|
||||
original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
|
||||
assert original_config_2 == original_config
|
||||
|
||||
def test_motion_unet_loading(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
|
||||
assert isinstance(pipe.unet, UNetMotionModel)
|
||||
|
||||
@unittest.skip("Attention slicing is not enabled in this pipeline")
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
pass
|
||||
|
||||
def test_ip_adapter_single(self):
|
||||
expected_pipe_slice = None
|
||||
if torch_device == "cpu":
|
||||
expected_pipe_slice = np.array(
|
||||
[
|
||||
0.6604,
|
||||
0.4099,
|
||||
0.4928,
|
||||
0.5706,
|
||||
0.5096,
|
||||
0.5012,
|
||||
0.6051,
|
||||
0.5169,
|
||||
0.5021,
|
||||
0.4864,
|
||||
0.4261,
|
||||
0.5779,
|
||||
0.5822,
|
||||
0.4049,
|
||||
0.5253,
|
||||
0.6160,
|
||||
0.4150,
|
||||
0.5155,
|
||||
]
|
||||
)
|
||||
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)
|
||||
|
||||
def test_dict_tuple_outputs_equivalent(self):
|
||||
expected_slice = None
|
||||
if torch_device == "cpu":
|
||||
expected_slice = np.array([0.6051, 0.5169, 0.5021, 0.6160, 0.4150, 0.5155])
|
||||
return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice)
|
||||
|
||||
def test_inference_batch_single_identical(
|
||||
self,
|
||||
batch_size=2,
|
||||
expected_max_diff=1e-4,
|
||||
additional_params_copy_to_batched_inputs=["num_inference_steps"],
|
||||
):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
for components in pipe.components.values():
|
||||
if hasattr(components, "set_default_attn_processor"):
|
||||
components.set_default_attn_processor()
|
||||
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
# Reset generator in case it is has been used in self.get_dummy_inputs
|
||||
inputs["generator"] = self.get_generator(0)
|
||||
|
||||
logger = logging.get_logger(pipe.__module__)
|
||||
logger.setLevel(level=diffusers.logging.FATAL)
|
||||
|
||||
# batchify inputs
|
||||
batched_inputs = {}
|
||||
batched_inputs.update(inputs)
|
||||
|
||||
for name in self.batch_params:
|
||||
if name not in inputs:
|
||||
continue
|
||||
|
||||
value = inputs[name]
|
||||
if name == "prompt":
|
||||
len_prompt = len(value)
|
||||
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
|
||||
batched_inputs[name][-1] = 100 * "very long"
|
||||
|
||||
else:
|
||||
batched_inputs[name] = batch_size * [value]
|
||||
|
||||
if "generator" in inputs:
|
||||
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
|
||||
|
||||
if "batch_size" in inputs:
|
||||
batched_inputs["batch_size"] = batch_size
|
||||
|
||||
for arg in additional_params_copy_to_batched_inputs:
|
||||
batched_inputs[arg] = inputs[arg]
|
||||
|
||||
output = pipe(**inputs)
|
||||
output_batch = pipe(**batched_inputs)
|
||||
|
||||
assert output_batch[0].shape[0] == batch_size
|
||||
|
||||
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
|
||||
assert max_diff < expected_max_diff
|
||||
|
||||
@unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
|
||||
def test_to_device(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
pipe.to("cpu")
|
||||
# pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components
|
||||
model_devices = [
|
||||
component.device.type for component in pipe.components.values() if hasattr(component, "device")
|
||||
]
|
||||
self.assertTrue(all(device == "cpu" for device in model_devices))
|
||||
|
||||
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
|
||||
self.assertTrue(np.isnan(output_cpu).sum() == 0)
|
||||
|
||||
pipe.to("cuda")
|
||||
model_devices = [
|
||||
component.device.type for component in pipe.components.values() if hasattr(component, "device")
|
||||
]
|
||||
self.assertTrue(all(device == "cuda" for device in model_devices))
|
||||
|
||||
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
|
||||
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
|
||||
|
||||
def test_to_dtype(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components
|
||||
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
|
||||
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))
|
||||
|
||||
pipe.to(dtype=torch.float16)
|
||||
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
|
||||
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))
|
||||
|
||||
def test_prompt_embeds(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.to(torch_device)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs.pop("prompt")
|
||||
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
|
||||
pipe(**inputs)
|
||||
|
||||
def test_free_init(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.to(torch_device)
|
||||
|
||||
inputs_normal = self.get_dummy_inputs(torch_device)
|
||||
frames_normal = pipe(**inputs_normal).frames[0]
|
||||
|
||||
pipe.enable_free_init(
|
||||
num_iters=2,
|
||||
use_fast_sampling=True,
|
||||
method="butterworth",
|
||||
order=4,
|
||||
spatial_stop_frequency=0.25,
|
||||
temporal_stop_frequency=0.25,
|
||||
)
|
||||
inputs_enable_free_init = self.get_dummy_inputs(torch_device)
|
||||
frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0]
|
||||
|
||||
pipe.disable_free_init()
|
||||
inputs_disable_free_init = self.get_dummy_inputs(torch_device)
|
||||
frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0]
|
||||
|
||||
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
|
||||
max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max()
|
||||
self.assertGreater(
|
||||
sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results"
|
||||
)
|
||||
self.assertLess(
|
||||
max_diff_disabled,
|
||||
1e-4,
|
||||
"Disabling of FreeInit should lead to results similar to the default pipeline results",
|
||||
)
|
||||
|
||||
def test_free_init_with_schedulers(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.to(torch_device)
|
||||
|
||||
inputs_normal = self.get_dummy_inputs(torch_device)
|
||||
frames_normal = pipe(**inputs_normal).frames[0]
|
||||
|
||||
schedulers_to_test = [
|
||||
DPMSolverMultistepScheduler.from_config(
|
||||
components["scheduler"].config,
|
||||
timestep_spacing="linspace",
|
||||
beta_schedule="linear",
|
||||
algorithm_type="dpmsolver++",
|
||||
steps_offset=1,
|
||||
clip_sample=False,
|
||||
),
|
||||
LCMScheduler.from_config(
|
||||
components["scheduler"].config,
|
||||
timestep_spacing="linspace",
|
||||
beta_schedule="linear",
|
||||
steps_offset=1,
|
||||
clip_sample=False,
|
||||
),
|
||||
]
|
||||
components.pop("scheduler")
|
||||
|
||||
for scheduler in schedulers_to_test:
|
||||
components["scheduler"] = scheduler
|
||||
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
pipe.to(torch_device)
|
||||
|
||||
pipe.enable_free_init(num_iters=2, use_fast_sampling=False)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
frames_enable_free_init = pipe(**inputs).frames[0]
|
||||
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
|
||||
|
||||
self.assertGreater(
|
||||
sum_enabled,
|
||||
1e1,
|
||||
"Enabling of FreeInit should lead to results different from the default pipeline results",
|
||||
)
|
||||
|
||||
def test_vae_slicing(self, video_count=2):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
inputs["prompt"] = [inputs["prompt"]] * video_count
|
||||
inputs["conditioning_frames"] = [inputs["conditioning_frames"]] * video_count
|
||||
output_1 = pipe(**inputs)
|
||||
|
||||
# make sure sliced vae decode yields the same result
|
||||
pipe.enable_vae_slicing()
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
inputs["prompt"] = [inputs["prompt"]] * video_count
|
||||
inputs["conditioning_frames"] = [inputs["conditioning_frames"]] * video_count
|
||||
output_2 = pipe(**inputs)
|
||||
|
||||
assert np.abs(output_2[0].flatten() - output_1[0].flatten()).max() < 1e-2
|
||||
@@ -1,460 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import gc
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
T5EncoderModel,
|
||||
T5Tokenizer,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderOobleck,
|
||||
CosineDPMSolverMultistepScheduler,
|
||||
StableAudioDiTModel,
|
||||
StableAudioPipeline,
|
||||
StableAudioProjectionModel,
|
||||
)
|
||||
from diffusers.utils import is_xformers_available
|
||||
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device
|
||||
|
||||
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = StableAudioPipeline
|
||||
params = frozenset(
|
||||
[
|
||||
"prompt",
|
||||
"audio_end_in_s",
|
||||
"audio_start_in_s",
|
||||
"guidance_scale",
|
||||
"negative_prompt",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
"initial_audio_waveforms",
|
||||
]
|
||||
)
|
||||
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"num_waveforms_per_prompt",
|
||||
"generator",
|
||||
"latents",
|
||||
"output_type",
|
||||
"return_dict",
|
||||
"callback",
|
||||
"callback_steps",
|
||||
]
|
||||
)
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = StableAudioDiTModel(
|
||||
sample_size=4,
|
||||
in_channels=3,
|
||||
num_layers=2,
|
||||
attention_head_dim=4,
|
||||
num_key_value_attention_heads=2,
|
||||
out_channels=3,
|
||||
cross_attention_dim=4,
|
||||
time_proj_dim=8,
|
||||
global_states_input_dim=8,
|
||||
cross_attention_input_dim=4,
|
||||
)
|
||||
scheduler = CosineDPMSolverMultistepScheduler(
|
||||
solver_order=2,
|
||||
prediction_type="v_prediction",
|
||||
sigma_data=1.0,
|
||||
sigma_schedule="exponential",
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderOobleck(
|
||||
encoder_hidden_size=6,
|
||||
downsampling_ratios=[1, 2],
|
||||
decoder_channels=3,
|
||||
decoder_input_channels=3,
|
||||
audio_channels=2,
|
||||
channel_multiples=[2, 4],
|
||||
sampling_rate=4,
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
t5_repo_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration"
|
||||
text_encoder = T5EncoderModel.from_pretrained(t5_repo_id)
|
||||
tokenizer = T5Tokenizer.from_pretrained(t5_repo_id, truncation=True, model_max_length=25)
|
||||
|
||||
torch.manual_seed(0)
|
||||
projection_model = StableAudioProjectionModel(
|
||||
text_encoder_dim=text_encoder.config.d_model,
|
||||
conditioning_dim=4,
|
||||
min_value=0,
|
||||
max_value=32,
|
||||
)
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"scheduler": scheduler,
|
||||
"vae": vae,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"projection_model": projection_model,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "A hammer hitting a wooden surface",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_save_load_local(self):
|
||||
# increase tolerance from 1e-4 -> 7e-3 to account for large composite model
|
||||
super().test_save_load_local(expected_max_difference=7e-3)
|
||||
|
||||
def test_save_load_optional_components(self):
|
||||
# increase tolerance from 1e-4 -> 7e-3 to account for large composite model
|
||||
super().test_save_load_optional_components(expected_max_difference=7e-3)
|
||||
|
||||
def test_stable_audio_ddim(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
|
||||
components = self.get_dummy_components()
|
||||
stable_audio_pipe = StableAudioPipeline(**components)
|
||||
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
||||
stable_audio_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
output = stable_audio_pipe(**inputs)
|
||||
audio = output.audios[0]
|
||||
|
||||
assert audio.ndim == 2
|
||||
assert audio.shape == (2, 7)
|
||||
|
||||
def test_stable_audio_without_prompts(self):
|
||||
components = self.get_dummy_components()
|
||||
stable_audio_pipe = StableAudioPipeline(**components)
|
||||
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
||||
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
||||
stable_audio_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["prompt"] = 3 * [inputs["prompt"]]
|
||||
|
||||
# forward
|
||||
output = stable_audio_pipe(**inputs)
|
||||
audio_1 = output.audios[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
prompt = 3 * [inputs.pop("prompt")]
|
||||
|
||||
text_inputs = stable_audio_pipe.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=stable_audio_pipe.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
).to(torch_device)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
attention_mask = text_inputs.attention_mask
|
||||
|
||||
prompt_embeds = stable_audio_pipe.text_encoder(
|
||||
text_input_ids,
|
||||
attention_mask=attention_mask,
|
||||
)[0]
|
||||
|
||||
inputs["prompt_embeds"] = prompt_embeds
|
||||
inputs["attention_mask"] = attention_mask
|
||||
|
||||
# forward
|
||||
output = stable_audio_pipe(**inputs)
|
||||
audio_2 = output.audios[0]
|
||||
|
||||
assert (audio_1 - audio_2).abs().max() < 1e-2
|
||||
|
||||
def test_stable_audio_negative_without_prompts(self):
|
||||
components = self.get_dummy_components()
|
||||
stable_audio_pipe = StableAudioPipeline(**components)
|
||||
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
||||
stable_audio_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
negative_prompt = 3 * ["this is a negative prompt"]
|
||||
inputs["negative_prompt"] = negative_prompt
|
||||
inputs["prompt"] = 3 * [inputs["prompt"]]
|
||||
|
||||
# forward
|
||||
output = stable_audio_pipe(**inputs)
|
||||
audio_1 = output.audios[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
prompt = 3 * [inputs.pop("prompt")]
|
||||
|
||||
text_inputs = stable_audio_pipe.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=stable_audio_pipe.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
).to(torch_device)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
attention_mask = text_inputs.attention_mask
|
||||
|
||||
prompt_embeds = stable_audio_pipe.text_encoder(
|
||||
text_input_ids,
|
||||
attention_mask=attention_mask,
|
||||
)[0]
|
||||
|
||||
inputs["prompt_embeds"] = prompt_embeds
|
||||
inputs["attention_mask"] = attention_mask
|
||||
|
||||
negative_text_inputs = stable_audio_pipe.tokenizer(
|
||||
negative_prompt,
|
||||
padding="max_length",
|
||||
max_length=stable_audio_pipe.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
).to(torch_device)
|
||||
negative_text_input_ids = negative_text_inputs.input_ids
|
||||
negative_attention_mask = negative_text_inputs.attention_mask
|
||||
|
||||
negative_prompt_embeds = stable_audio_pipe.text_encoder(
|
||||
negative_text_input_ids,
|
||||
attention_mask=negative_attention_mask,
|
||||
)[0]
|
||||
|
||||
inputs["negative_prompt_embeds"] = negative_prompt_embeds
|
||||
inputs["negative_attention_mask"] = negative_attention_mask
|
||||
|
||||
# forward
|
||||
output = stable_audio_pipe(**inputs)
|
||||
audio_2 = output.audios[0]
|
||||
|
||||
assert (audio_1 - audio_2).abs().max() < 1e-2
|
||||
|
||||
def test_stable_audio_negative_prompt(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
stable_audio_pipe = StableAudioPipeline(**components)
|
||||
stable_audio_pipe = stable_audio_pipe.to(device)
|
||||
stable_audio_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
negative_prompt = "egg cracking"
|
||||
output = stable_audio_pipe(**inputs, negative_prompt=negative_prompt)
|
||||
audio = output.audios[0]
|
||||
|
||||
assert audio.ndim == 2
|
||||
assert audio.shape == (2, 7)
|
||||
|
||||
def test_stable_audio_num_waveforms_per_prompt(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
stable_audio_pipe = StableAudioPipeline(**components)
|
||||
stable_audio_pipe = stable_audio_pipe.to(device)
|
||||
stable_audio_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
prompt = "A hammer hitting a wooden surface"
|
||||
|
||||
# test num_waveforms_per_prompt=1 (default)
|
||||
audios = stable_audio_pipe(prompt, num_inference_steps=2).audios
|
||||
|
||||
assert audios.shape == (1, 2, 7)
|
||||
|
||||
# test num_waveforms_per_prompt=1 (default) for batch of prompts
|
||||
batch_size = 2
|
||||
audios = stable_audio_pipe([prompt] * batch_size, num_inference_steps=2).audios
|
||||
|
||||
assert audios.shape == (batch_size, 2, 7)
|
||||
|
||||
# test num_waveforms_per_prompt for single prompt
|
||||
num_waveforms_per_prompt = 2
|
||||
audios = stable_audio_pipe(
|
||||
prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
|
||||
).audios
|
||||
|
||||
assert audios.shape == (num_waveforms_per_prompt, 2, 7)
|
||||
|
||||
# test num_waveforms_per_prompt for batch of prompts
|
||||
batch_size = 2
|
||||
audios = stable_audio_pipe(
|
||||
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
|
||||
).audios
|
||||
|
||||
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7)
|
||||
|
||||
def test_stable_audio_audio_end_in_s(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
stable_audio_pipe = StableAudioPipeline(**components)
|
||||
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
||||
stable_audio_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
output = stable_audio_pipe(audio_end_in_s=1.5, **inputs)
|
||||
audio = output.audios[0]
|
||||
|
||||
assert audio.ndim == 2
|
||||
assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.5
|
||||
|
||||
output = stable_audio_pipe(audio_end_in_s=1.1875, **inputs)
|
||||
audio = output.audios[0]
|
||||
|
||||
assert audio.ndim == 2
|
||||
assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.0
|
||||
|
||||
def test_attention_slicing_forward_pass(self):
|
||||
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
self._test_inference_batch_single_identical(expected_max_diff=5e-4)
|
||||
|
||||
@unittest.skipIf(
|
||||
torch_device != "cuda" or not is_xformers_available(),
|
||||
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
||||
)
|
||||
def test_xformers_attention_forwardGenerator_pass(self):
|
||||
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)
|
||||
|
||||
def test_stable_audio_input_waveform(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
stable_audio_pipe = StableAudioPipeline(**components)
|
||||
stable_audio_pipe = stable_audio_pipe.to(device)
|
||||
stable_audio_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
prompt = "A hammer hitting a wooden surface"
|
||||
|
||||
initial_audio_waveforms = torch.ones((1, 5))
|
||||
|
||||
# test raises error when no sampling rate
|
||||
with self.assertRaises(ValueError):
|
||||
audios = stable_audio_pipe(
|
||||
prompt, num_inference_steps=2, initial_audio_waveforms=initial_audio_waveforms
|
||||
).audios
|
||||
|
||||
# test raises error when wrong sampling rate
|
||||
with self.assertRaises(ValueError):
|
||||
audios = stable_audio_pipe(
|
||||
prompt,
|
||||
num_inference_steps=2,
|
||||
initial_audio_waveforms=initial_audio_waveforms,
|
||||
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate - 1,
|
||||
).audios
|
||||
|
||||
audios = stable_audio_pipe(
|
||||
prompt,
|
||||
num_inference_steps=2,
|
||||
initial_audio_waveforms=initial_audio_waveforms,
|
||||
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate,
|
||||
).audios
|
||||
assert audios.shape == (1, 2, 7)
|
||||
|
||||
# test works with num_waveforms_per_prompt
|
||||
num_waveforms_per_prompt = 2
|
||||
audios = stable_audio_pipe(
|
||||
prompt,
|
||||
num_inference_steps=2,
|
||||
num_waveforms_per_prompt=num_waveforms_per_prompt,
|
||||
initial_audio_waveforms=initial_audio_waveforms,
|
||||
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate,
|
||||
).audios
|
||||
|
||||
assert audios.shape == (num_waveforms_per_prompt, 2, 7)
|
||||
|
||||
# test num_waveforms_per_prompt for batch of prompts and input audio (two channels)
|
||||
batch_size = 2
|
||||
initial_audio_waveforms = torch.ones((batch_size, 2, 5))
|
||||
audios = stable_audio_pipe(
|
||||
[prompt] * batch_size,
|
||||
num_inference_steps=2,
|
||||
num_waveforms_per_prompt=num_waveforms_per_prompt,
|
||||
initial_audio_waveforms=initial_audio_waveforms,
|
||||
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate,
|
||||
).audios
|
||||
|
||||
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7)
|
||||
|
||||
@unittest.skip("Not supported yet")
|
||||
def test_sequential_cpu_offload_forward_pass(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Not supported yet")
|
||||
def test_sequential_offload_forward_pass_twice(self):
|
||||
pass
|
||||
|
||||
|
||||
@nightly
|
||||
@require_torch_gpu
|
||||
class StableAudioPipelineIntegrationTests(unittest.TestCase):
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
||||
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
||||
latents = np.random.RandomState(seed).standard_normal((1, 64, 1024))
|
||||
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
||||
inputs = {
|
||||
"prompt": "A hammer hitting a wooden surface",
|
||||
"latents": latents,
|
||||
"generator": generator,
|
||||
"num_inference_steps": 3,
|
||||
"audio_end_in_s": 30,
|
||||
"guidance_scale": 2.5,
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_stable_audio(self):
|
||||
stable_audio_pipe = StableAudioPipeline.from_pretrained("stabilityai/stable-audio-open-1.0")
|
||||
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
||||
stable_audio_pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_inputs(torch_device)
|
||||
inputs["num_inference_steps"] = 25
|
||||
audio = stable_audio_pipe(**inputs).audios[0]
|
||||
|
||||
assert audio.ndim == 2
|
||||
assert audio.shape == (2, int(inputs["audio_end_in_s"] * stable_audio_pipe.vae.sampling_rate))
|
||||
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
|
||||
audio_slice = audio[0, 447590:447600]
|
||||
# fmt: off
|
||||
expected_slice = np.array(
|
||||
[-0.0278, 0.1096, 0.1877, 0.3178, 0.5329, 0.6990, 0.6972, 0.6186, 0.5608, 0.5060]
|
||||
)
|
||||
# fmt: one
|
||||
max_diff = np.abs(expected_slice - audio_slice.detach().cpu().numpy()).max()
|
||||
assert max_diff < 1.5e-3
|
||||
Reference in New Issue
Block a user