mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-09 14:04:37 +08:00
Compare commits
22 Commits
modular-lo
...
sana-sprin
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7a04604553 | ||
|
|
a220997e11 | ||
|
|
94d87d5186 | ||
|
|
c3e107f0a9 | ||
|
|
c4d049c054 | ||
|
|
eae8ed71a2 | ||
|
|
8c07fccb6d | ||
|
|
3734af8eac | ||
|
|
1de087e16f | ||
|
|
8e4f71177e | ||
|
|
9cd5f1e66d | ||
|
|
da3c9172df | ||
|
|
be73b5960c | ||
|
|
8070495df1 | ||
|
|
4e5a9efdc2 | ||
|
|
398ca0c938 | ||
|
|
4eef82b2c9 | ||
|
|
5b19b22685 | ||
|
|
0d6309ae00 | ||
|
|
ae4c3fda10 | ||
|
|
9714187c30 | ||
|
|
c952370cb4 |
@@ -496,6 +496,8 @@
|
||||
title: PixArt-Σ
|
||||
- local: api/pipelines/sana
|
||||
title: Sana
|
||||
- local: api/pipelines/sana_sprint
|
||||
title: Sana Sprint
|
||||
- local: api/pipelines/self_attention_guidance
|
||||
title: Self-Attention Guidance
|
||||
- local: api/pipelines/semantic_stable_diffusion
|
||||
|
||||
100
docs/source/en/api/pipelines/sana_sprint.md
Normal file
100
docs/source/en/api/pipelines/sana_sprint.md
Normal file
@@ -0,0 +1,100 @@
|
||||
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License. -->
|
||||
|
||||
# SanaSprintPipeline
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
|
||||
</div>
|
||||
|
||||
[SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation](https://huggingface.co/papers/2503.09641) from NVIDIA, MIT HAN Lab, and Hugging Face by Junsong Chen, Shuchen Xue, Yuyang Zhao, Jincheng Yu, Sayak Paul, Junyu Chen, Han Cai, Enze Xie, Song Han
|
||||
|
||||
The abstract from the paper is:
|
||||
|
||||
*This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step — outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10× faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024×1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.*
|
||||
|
||||
<Tip>
|
||||
|
||||
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
|
||||
|
||||
</Tip>
|
||||
|
||||
This pipeline was contributed by [lawrence-cj](https://github.com/lawrence-cj), [shuchen Xue](https://github.com/scxue) and [Enze Xie](https://github.com/xieenze). The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://huggingface.co/Efficient-Large-Model/).
|
||||
|
||||
Available models:
|
||||
|
||||
| Model | Recommended dtype |
|
||||
|:-------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------:|
|
||||
| [`Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers) | `torch.bfloat16` |
|
||||
| [`Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers) | `torch.bfloat16` |
|
||||
|
||||
Refer to [this](https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76) collection for more information.
|
||||
|
||||
Note: The recommended dtype mentioned is for the transformer weights. The text encoder must stay in `torch.bfloat16` and VAE weights must stay in `torch.bfloat16` or `torch.float32` for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.
|
||||
|
||||
|
||||
## Quantization
|
||||
|
||||
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
|
||||
|
||||
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`SanaSprintPipeline`] for inference with bitsandbytes.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SanaTransformer2DModel, SanaSprintPipeline
|
||||
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, AutoModel
|
||||
|
||||
quant_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
text_encoder_8bit = AutoModel.from_pretrained(
|
||||
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
|
||||
subfolder="text_encoder",
|
||||
quantization_config=quant_config,
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
|
||||
transformer_8bit = SanaTransformer2DModel.from_pretrained(
|
||||
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
|
||||
subfolder="transformer",
|
||||
quantization_config=quant_config,
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
pipeline = SanaSprintPipeline.from_pretrained(
|
||||
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
|
||||
text_encoder=text_encoder_8bit,
|
||||
transformer=transformer_8bit,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="balanced",
|
||||
)
|
||||
|
||||
prompt = "a tiny astronaut hatching from an egg on the moon"
|
||||
image = pipeline(prompt).images[0]
|
||||
image.save("sana.png")
|
||||
```
|
||||
|
||||
## Setting `max_timesteps`
|
||||
|
||||
Users can tweak the `max_timesteps` value for experimenting with the visual quality of the generated outputs. The default `max_timesteps` value was obtained with an inference-time search process. For more details about it, check out the paper.
|
||||
|
||||
## SanaSprintPipeline
|
||||
|
||||
[[autodoc]] SanaSprintPipeline
|
||||
- all
|
||||
- __call__
|
||||
|
||||
|
||||
## SanaPipelineOutput
|
||||
|
||||
[[autodoc]] pipelines.sana.pipeline_output.SanaPipelineOutput
|
||||
@@ -16,7 +16,9 @@ from diffusers import (
|
||||
DPMSolverMultistepScheduler,
|
||||
FlowMatchEulerDiscreteScheduler,
|
||||
SanaPipeline,
|
||||
SanaSprintPipeline,
|
||||
SanaTransformer2DModel,
|
||||
SCMScheduler,
|
||||
)
|
||||
from diffusers.models.modeling_utils import load_model_dict_into_meta
|
||||
from diffusers.utils.import_utils import is_accelerate_available
|
||||
@@ -25,6 +27,7 @@ from diffusers.utils.import_utils import is_accelerate_available
|
||||
CTX = init_empty_weights if is_accelerate_available else nullcontext
|
||||
|
||||
ckpt_ids = [
|
||||
"Efficient-Large-Model/SANA1.5_4.8B_1024px/checkpoints/SANA1.5_4.8B_1024px.pth",
|
||||
"Efficient-Large-Model/Sana_1600M_4Kpx_BF16/checkpoints/Sana_1600M_4Kpx_BF16.pth",
|
||||
"Efficient-Large-Model/Sana_1600M_2Kpx_BF16/checkpoints/Sana_1600M_2Kpx_BF16.pth",
|
||||
"Efficient-Large-Model/Sana_1600M_1024px_MultiLing/checkpoints/Sana_1600M_1024px_MultiLing.pth",
|
||||
@@ -72,15 +75,42 @@ def main(args):
|
||||
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
|
||||
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
|
||||
|
||||
# AdaLN-single LN
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
|
||||
"t_embedder.mlp.0.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
|
||||
"t_embedder.mlp.2.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
|
||||
# Handle different time embedding structure based on model type
|
||||
|
||||
if args.model_type in ["SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"]:
|
||||
# For Sana Sprint, the time embedding structure is different
|
||||
converted_state_dict["time_embed.timestep_embedder.linear_1.weight"] = state_dict.pop(
|
||||
"t_embedder.mlp.0.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
|
||||
converted_state_dict["time_embed.timestep_embedder.linear_2.weight"] = state_dict.pop(
|
||||
"t_embedder.mlp.2.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
|
||||
|
||||
# Guidance embedder for Sana Sprint
|
||||
converted_state_dict["time_embed.guidance_embedder.linear_1.weight"] = state_dict.pop(
|
||||
"cfg_embedder.mlp.0.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.guidance_embedder.linear_1.bias"] = state_dict.pop("cfg_embedder.mlp.0.bias")
|
||||
converted_state_dict["time_embed.guidance_embedder.linear_2.weight"] = state_dict.pop(
|
||||
"cfg_embedder.mlp.2.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.guidance_embedder.linear_2.bias"] = state_dict.pop("cfg_embedder.mlp.2.bias")
|
||||
else:
|
||||
# Original Sana time embedding structure
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
|
||||
"t_embedder.mlp.0.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop(
|
||||
"t_embedder.mlp.0.bias"
|
||||
)
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
|
||||
"t_embedder.mlp.2.weight"
|
||||
)
|
||||
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop(
|
||||
"t_embedder.mlp.2.bias"
|
||||
)
|
||||
|
||||
# Shared norm.
|
||||
converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight")
|
||||
@@ -96,14 +126,22 @@ def main(args):
|
||||
flow_shift = 3.0
|
||||
|
||||
# model config
|
||||
if args.model_type == "SanaMS_1600M_P1_D20":
|
||||
if args.model_type in ["SanaMS_1600M_P1_D20", "SanaSprint_1600M_P1_D20", "SanaMS1.5_1600M_P1_D20"]:
|
||||
layer_num = 20
|
||||
elif args.model_type == "SanaMS_600M_P1_D28":
|
||||
elif args.model_type in ["SanaMS_600M_P1_D28", "SanaSprint_600M_P1_D28"]:
|
||||
layer_num = 28
|
||||
elif args.model_type == "SanaMS_4800M_P1_D60":
|
||||
layer_num = 60
|
||||
else:
|
||||
raise ValueError(f"{args.model_type} is not supported.")
|
||||
# Positional embedding interpolation scale.
|
||||
interpolation_scale = {512: None, 1024: None, 2048: 1.0, 4096: 2.0}
|
||||
qk_norm = (
|
||||
"rms_norm_across_heads"
|
||||
if args.model_type
|
||||
in ["SanaMS1.5_1600M_P1_D20", "SanaMS1.5_4800M_P1_D60", "SanaSprint_600M_P1_D28", "SanaSprint_1600M_P1_D20"]
|
||||
else None
|
||||
)
|
||||
|
||||
for depth in range(layer_num):
|
||||
# Transformer blocks.
|
||||
@@ -117,6 +155,14 @@ def main(args):
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
|
||||
if qk_norm is not None:
|
||||
# Add Q/K normalization for self-attention (attn1) - needed for Sana-Sprint and Sana-1.5
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_q.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.attn.q_norm.weight"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.norm_k.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.attn.k_norm.weight"
|
||||
)
|
||||
# Projection.
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.attn.proj.weight"
|
||||
@@ -154,6 +200,14 @@ def main(args):
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
|
||||
if qk_norm is not None:
|
||||
# Add Q/K normalization for cross-attention (attn2) - needed for Sana-Sprint and Sana-1.5
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_q.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.cross_attn.q_norm.weight"
|
||||
)
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.norm_k.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.cross_attn.k_norm.weight"
|
||||
)
|
||||
|
||||
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
|
||||
f"blocks.{depth}.cross_attn.proj.weight"
|
||||
@@ -169,24 +223,37 @@ def main(args):
|
||||
|
||||
# Transformer
|
||||
with CTX():
|
||||
transformer = SanaTransformer2DModel(
|
||||
in_channels=32,
|
||||
out_channels=32,
|
||||
num_attention_heads=model_kwargs[args.model_type]["num_attention_heads"],
|
||||
attention_head_dim=model_kwargs[args.model_type]["attention_head_dim"],
|
||||
num_layers=model_kwargs[args.model_type]["num_layers"],
|
||||
num_cross_attention_heads=model_kwargs[args.model_type]["num_cross_attention_heads"],
|
||||
cross_attention_head_dim=model_kwargs[args.model_type]["cross_attention_head_dim"],
|
||||
cross_attention_dim=model_kwargs[args.model_type]["cross_attention_dim"],
|
||||
caption_channels=2304,
|
||||
mlp_ratio=2.5,
|
||||
attention_bias=False,
|
||||
sample_size=args.image_size // 32,
|
||||
patch_size=1,
|
||||
norm_elementwise_affine=False,
|
||||
norm_eps=1e-6,
|
||||
interpolation_scale=interpolation_scale[args.image_size],
|
||||
)
|
||||
transformer_kwargs = {
|
||||
"in_channels": 32,
|
||||
"out_channels": 32,
|
||||
"num_attention_heads": model_kwargs[args.model_type]["num_attention_heads"],
|
||||
"attention_head_dim": model_kwargs[args.model_type]["attention_head_dim"],
|
||||
"num_layers": model_kwargs[args.model_type]["num_layers"],
|
||||
"num_cross_attention_heads": model_kwargs[args.model_type]["num_cross_attention_heads"],
|
||||
"cross_attention_head_dim": model_kwargs[args.model_type]["cross_attention_head_dim"],
|
||||
"cross_attention_dim": model_kwargs[args.model_type]["cross_attention_dim"],
|
||||
"caption_channels": 2304,
|
||||
"mlp_ratio": 2.5,
|
||||
"attention_bias": False,
|
||||
"sample_size": args.image_size // 32,
|
||||
"patch_size": 1,
|
||||
"norm_elementwise_affine": False,
|
||||
"norm_eps": 1e-6,
|
||||
"interpolation_scale": interpolation_scale[args.image_size],
|
||||
}
|
||||
|
||||
# Add qk_norm parameter for Sana Sprint
|
||||
if args.model_type in [
|
||||
"SanaMS1.5_1600M_P1_D20",
|
||||
"SanaMS1.5_4800M_P1_D60",
|
||||
"SanaSprint_600M_P1_D28",
|
||||
"SanaSprint_1600M_P1_D20",
|
||||
]:
|
||||
transformer_kwargs["qk_norm"] = "rms_norm_across_heads"
|
||||
if args.model_type in ["SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"]:
|
||||
transformer_kwargs["guidance_embeds"] = True
|
||||
|
||||
transformer = SanaTransformer2DModel(**transformer_kwargs)
|
||||
|
||||
if is_accelerate_available():
|
||||
load_model_dict_into_meta(transformer, converted_state_dict)
|
||||
@@ -196,6 +263,8 @@ def main(args):
|
||||
try:
|
||||
state_dict.pop("y_embedder.y_embedding")
|
||||
state_dict.pop("pos_embed")
|
||||
state_dict.pop("logvar_linear.weight")
|
||||
state_dict.pop("logvar_linear.bias")
|
||||
except KeyError:
|
||||
print("y_embedder.y_embedding or pos_embed not found in the state_dict")
|
||||
|
||||
@@ -210,47 +279,75 @@ def main(args):
|
||||
print(
|
||||
colored(
|
||||
f"Only saving transformer model of {args.model_type}. "
|
||||
f"Set --save_full_pipeline to save the whole SanaPipeline",
|
||||
f"Set --save_full_pipeline to save the whole Pipeline",
|
||||
"green",
|
||||
attrs=["bold"],
|
||||
)
|
||||
)
|
||||
transformer.save_pretrained(
|
||||
os.path.join(args.dump_path, "transformer"), safe_serialization=True, max_shard_size="5GB", variant=variant
|
||||
os.path.join(args.dump_path, "transformer"), safe_serialization=True, max_shard_size="5GB"
|
||||
)
|
||||
else:
|
||||
print(colored(f"Saving the whole SanaPipeline containing {args.model_type}", "green", attrs=["bold"]))
|
||||
print(colored(f"Saving the whole Pipeline containing {args.model_type}", "green", attrs=["bold"]))
|
||||
# VAE
|
||||
ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers", torch_dtype=torch.float32)
|
||||
ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers", torch_dtype=torch.float32)
|
||||
|
||||
# Text Encoder
|
||||
text_encoder_model_path = "google/gemma-2-2b-it"
|
||||
text_encoder_model_path = "Efficient-Large-Model/gemma-2-2b-it"
|
||||
tokenizer = AutoTokenizer.from_pretrained(text_encoder_model_path)
|
||||
tokenizer.padding_side = "right"
|
||||
text_encoder = AutoModelForCausalLM.from_pretrained(
|
||||
text_encoder_model_path, torch_dtype=torch.bfloat16
|
||||
).get_decoder()
|
||||
|
||||
# Scheduler
|
||||
if args.scheduler_type == "flow-dpm_solver":
|
||||
scheduler = DPMSolverMultistepScheduler(
|
||||
flow_shift=flow_shift,
|
||||
use_flow_sigmas=True,
|
||||
prediction_type="flow_prediction",
|
||||
)
|
||||
elif args.scheduler_type == "flow-euler":
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
|
||||
else:
|
||||
raise ValueError(f"Scheduler type {args.scheduler_type} is not supported")
|
||||
# Choose the appropriate pipeline and scheduler based on model type
|
||||
if args.model_type in ["SanaSprint_1600M_P1_D20", "SanaSprint_600M_P1_D28"]:
|
||||
# Force SCM Scheduler for Sana Sprint regardless of scheduler_type
|
||||
if args.scheduler_type != "scm":
|
||||
print(
|
||||
colored(
|
||||
f"Warning: Overriding scheduler_type '{args.scheduler_type}' to 'scm' for SanaSprint model",
|
||||
"yellow",
|
||||
attrs=["bold"],
|
||||
)
|
||||
)
|
||||
|
||||
pipe = SanaPipeline(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
transformer=transformer,
|
||||
vae=ae,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
pipe.save_pretrained(args.dump_path, safe_serialization=True, max_shard_size="5GB", variant=variant)
|
||||
# SCM Scheduler for Sana Sprint
|
||||
scheduler_config = {
|
||||
"num_train_timesteps": 1000,
|
||||
"prediction_type": "trigflow",
|
||||
"sigma_data": 0.5,
|
||||
}
|
||||
scheduler = SCMScheduler(**scheduler_config)
|
||||
pipe = SanaSprintPipeline(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
transformer=transformer,
|
||||
vae=ae,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
else:
|
||||
# Original Sana scheduler
|
||||
if args.scheduler_type == "flow-dpm_solver":
|
||||
scheduler = DPMSolverMultistepScheduler(
|
||||
flow_shift=flow_shift,
|
||||
use_flow_sigmas=True,
|
||||
prediction_type="flow_prediction",
|
||||
)
|
||||
elif args.scheduler_type == "flow-euler":
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
|
||||
else:
|
||||
raise ValueError(f"Scheduler type {args.scheduler_type} is not supported")
|
||||
|
||||
pipe = SanaPipeline(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
transformer=transformer,
|
||||
vae=ae,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
pipe.save_pretrained(args.dump_path, safe_serialization=True, max_shard_size="5GB")
|
||||
|
||||
|
||||
DTYPE_MAPPING = {
|
||||
@@ -259,12 +356,6 @@ DTYPE_MAPPING = {
|
||||
"bf16": torch.bfloat16,
|
||||
}
|
||||
|
||||
VARIANT_MAPPING = {
|
||||
"fp32": None,
|
||||
"fp16": "fp16",
|
||||
"bf16": "bf16",
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
@@ -281,10 +372,23 @@ if __name__ == "__main__":
|
||||
help="Image size of pretrained model, 512, 1024, 2048 or 4096.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_type", default="SanaMS_1600M_P1_D20", type=str, choices=["SanaMS_1600M_P1_D20", "SanaMS_600M_P1_D28"]
|
||||
"--model_type",
|
||||
default="SanaMS_1600M_P1_D20",
|
||||
type=str,
|
||||
choices=[
|
||||
"SanaMS_1600M_P1_D20",
|
||||
"SanaMS_600M_P1_D28",
|
||||
"SanaMS_4800M_P1_D60",
|
||||
"SanaSprint_1600M_P1_D20",
|
||||
"SanaSprint_600M_P1_D28",
|
||||
],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--scheduler_type", default="flow-dpm_solver", type=str, choices=["flow-dpm_solver", "flow-euler"]
|
||||
"--scheduler_type",
|
||||
default="flow-dpm_solver",
|
||||
type=str,
|
||||
choices=["flow-dpm_solver", "flow-euler", "scm"],
|
||||
help="Scheduler type to use. Use 'scm' for Sana Sprint models.",
|
||||
)
|
||||
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
|
||||
parser.add_argument("--save_full_pipeline", action="store_true", help="save all the pipelien elemets in one.")
|
||||
@@ -309,10 +413,41 @@ if __name__ == "__main__":
|
||||
"cross_attention_dim": 1152,
|
||||
"num_layers": 28,
|
||||
},
|
||||
"SanaMS1.5_1600M_P1_D20": {
|
||||
"num_attention_heads": 70,
|
||||
"attention_head_dim": 32,
|
||||
"num_cross_attention_heads": 20,
|
||||
"cross_attention_head_dim": 112,
|
||||
"cross_attention_dim": 2240,
|
||||
"num_layers": 20,
|
||||
},
|
||||
"SanaMS1.5__4800M_P1_D60": {
|
||||
"num_attention_heads": 70,
|
||||
"attention_head_dim": 32,
|
||||
"num_cross_attention_heads": 20,
|
||||
"cross_attention_head_dim": 112,
|
||||
"cross_attention_dim": 2240,
|
||||
"num_layers": 60,
|
||||
},
|
||||
"SanaSprint_600M_P1_D28": {
|
||||
"num_attention_heads": 36,
|
||||
"attention_head_dim": 32,
|
||||
"num_cross_attention_heads": 16,
|
||||
"cross_attention_head_dim": 72,
|
||||
"cross_attention_dim": 1152,
|
||||
"num_layers": 28,
|
||||
},
|
||||
"SanaSprint_1600M_P1_D20": {
|
||||
"num_attention_heads": 70,
|
||||
"attention_head_dim": 32,
|
||||
"num_cross_attention_heads": 20,
|
||||
"cross_attention_head_dim": 112,
|
||||
"cross_attention_dim": 2240,
|
||||
"num_layers": 20,
|
||||
},
|
||||
}
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
weight_dtype = DTYPE_MAPPING[args.dtype]
|
||||
variant = VARIANT_MAPPING[args.dtype]
|
||||
|
||||
main(args)
|
||||
|
||||
@@ -271,6 +271,7 @@ else:
|
||||
"RePaintScheduler",
|
||||
"SASolverScheduler",
|
||||
"SchedulerMixin",
|
||||
"SCMScheduler",
|
||||
"ScoreSdeVeScheduler",
|
||||
"TCDScheduler",
|
||||
"UnCLIPScheduler",
|
||||
@@ -421,6 +422,7 @@ else:
|
||||
"ReduxImageEncoder",
|
||||
"SanaPAGPipeline",
|
||||
"SanaPipeline",
|
||||
"SanaSprintPipeline",
|
||||
"SemanticStableDiffusionPipeline",
|
||||
"ShapEImg2ImgPipeline",
|
||||
"ShapEPipeline",
|
||||
@@ -834,6 +836,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
RePaintScheduler,
|
||||
SASolverScheduler,
|
||||
SchedulerMixin,
|
||||
SCMScheduler,
|
||||
ScoreSdeVeScheduler,
|
||||
TCDScheduler,
|
||||
UnCLIPScheduler,
|
||||
@@ -965,6 +968,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ReduxImageEncoder,
|
||||
SanaPAGPipeline,
|
||||
SanaPipeline,
|
||||
SanaSprintPipeline,
|
||||
SemanticStableDiffusionPipeline,
|
||||
ShapEImg2ImgPipeline,
|
||||
ShapEPipeline,
|
||||
|
||||
@@ -6020,6 +6020,11 @@ class SanaLinearAttnProcessor2_0:
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
query = query.transpose(1, 2).unflatten(1, (attn.heads, -1))
|
||||
key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3)
|
||||
value = value.transpose(1, 2).unflatten(1, (attn.heads, -1))
|
||||
|
||||
@@ -15,6 +15,7 @@
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
@@ -23,10 +24,9 @@ from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_
|
||||
from ..attention_processor import (
|
||||
Attention,
|
||||
AttentionProcessor,
|
||||
AttnProcessor2_0,
|
||||
SanaLinearAttnProcessor2_0,
|
||||
)
|
||||
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
|
||||
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection, TimestepEmbedding, Timesteps
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import AdaLayerNormSingle, RMSNorm
|
||||
@@ -96,6 +96,95 @@ class SanaModulatedNorm(nn.Module):
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SanaCombinedTimestepGuidanceEmbeddings(nn.Module):
|
||||
def __init__(self, embedding_dim):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
|
||||
self.guidance_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
||||
|
||||
def forward(self, timestep: torch.Tensor, guidance: torch.Tensor = None, hidden_dtype: torch.dtype = None):
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
|
||||
|
||||
guidance_proj = self.guidance_condition_proj(guidance)
|
||||
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=hidden_dtype))
|
||||
conditioning = timesteps_emb + guidance_emb
|
||||
|
||||
return self.linear(self.silu(conditioning)), conditioning
|
||||
|
||||
|
||||
class SanaAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("SanaAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SanaTransformerBlock(nn.Module):
|
||||
r"""
|
||||
Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629).
|
||||
@@ -115,6 +204,7 @@ class SanaTransformerBlock(nn.Module):
|
||||
norm_eps: float = 1e-6,
|
||||
attention_out_bias: bool = True,
|
||||
mlp_ratio: float = 2.5,
|
||||
qk_norm: Optional[str] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
@@ -124,6 +214,8 @@ class SanaTransformerBlock(nn.Module):
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
kv_heads=num_attention_heads if qk_norm is not None else None,
|
||||
qk_norm=qk_norm,
|
||||
dropout=dropout,
|
||||
bias=attention_bias,
|
||||
cross_attention_dim=None,
|
||||
@@ -135,13 +227,15 @@ class SanaTransformerBlock(nn.Module):
|
||||
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
||||
self.attn2 = Attention(
|
||||
query_dim=dim,
|
||||
qk_norm=qk_norm,
|
||||
kv_heads=num_cross_attention_heads if qk_norm is not None else None,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
heads=num_cross_attention_heads,
|
||||
dim_head=cross_attention_head_dim,
|
||||
dropout=dropout,
|
||||
bias=True,
|
||||
out_bias=attention_out_bias,
|
||||
processor=AttnProcessor2_0(),
|
||||
processor=SanaAttnProcessor2_0(),
|
||||
)
|
||||
|
||||
# 3. Feed-forward
|
||||
@@ -258,6 +352,9 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
norm_elementwise_affine: bool = False,
|
||||
norm_eps: float = 1e-6,
|
||||
interpolation_scale: Optional[int] = None,
|
||||
guidance_embeds: bool = False,
|
||||
guidance_embeds_scale: float = 0.1,
|
||||
qk_norm: Optional[str] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
@@ -276,7 +373,10 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
)
|
||||
|
||||
# 2. Additional condition embeddings
|
||||
self.time_embed = AdaLayerNormSingle(inner_dim)
|
||||
if guidance_embeds:
|
||||
self.time_embed = SanaCombinedTimestepGuidanceEmbeddings(inner_dim)
|
||||
else:
|
||||
self.time_embed = AdaLayerNormSingle(inner_dim)
|
||||
|
||||
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
||||
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
|
||||
@@ -296,6 +396,7 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
norm_elementwise_affine=norm_elementwise_affine,
|
||||
norm_eps=norm_eps,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qk_norm=qk_norm,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
@@ -372,7 +473,8 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
timestep: torch.LongTensor,
|
||||
timestep: torch.Tensor,
|
||||
guidance: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
@@ -423,9 +525,14 @@ class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrig
|
||||
|
||||
hidden_states = self.patch_embed(hidden_states)
|
||||
|
||||
timestep, embedded_timestep = self.time_embed(
|
||||
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
||||
)
|
||||
if guidance is not None:
|
||||
timestep, embedded_timestep = self.time_embed(
|
||||
timestep, guidance=guidance, hidden_dtype=hidden_states.dtype
|
||||
)
|
||||
else:
|
||||
timestep, embedded_timestep = self.time_embed(
|
||||
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
||||
)
|
||||
|
||||
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
||||
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
||||
|
||||
@@ -280,7 +280,7 @@ else:
|
||||
_import_structure["paint_by_example"] = ["PaintByExamplePipeline"]
|
||||
_import_structure["pia"] = ["PIAPipeline"]
|
||||
_import_structure["pixart_alpha"] = ["PixArtAlphaPipeline", "PixArtSigmaPipeline"]
|
||||
_import_structure["sana"] = ["SanaPipeline"]
|
||||
_import_structure["sana"] = ["SanaPipeline", "SanaSprintPipeline"]
|
||||
_import_structure["semantic_stable_diffusion"] = ["SemanticStableDiffusionPipeline"]
|
||||
_import_structure["shap_e"] = ["ShapEImg2ImgPipeline", "ShapEPipeline"]
|
||||
_import_structure["stable_audio"] = [
|
||||
@@ -651,7 +651,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .paint_by_example import PaintByExamplePipeline
|
||||
from .pia import PIAPipeline
|
||||
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
|
||||
from .sana import SanaPipeline
|
||||
from .sana import SanaPipeline, SanaSprintPipeline
|
||||
from .semantic_stable_diffusion import SemanticStableDiffusionPipeline
|
||||
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
|
||||
from .stable_audio import StableAudioPipeline, StableAudioProjectionModel
|
||||
|
||||
@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable:
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_sana"] = ["SanaPipeline"]
|
||||
_import_structure["pipeline_sana_sprint"] = ["SanaSprintPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
@@ -33,6 +34,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .pipeline_sana import SanaPipeline
|
||||
from .pipeline_sana_sprint import SanaSprintPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -248,6 +248,64 @@ class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
|
||||
"""
|
||||
self.vae.disable_tiling()
|
||||
|
||||
def _get_gemma_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
clean_caption: bool = False,
|
||||
max_sequence_length: int = 300,
|
||||
complex_human_instruction: Optional[List[str]] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device to place the resulting embeddings on
|
||||
clean_caption (`bool`, defaults to `False`):
|
||||
If `True`, the function will preprocess and clean the provided caption before encoding.
|
||||
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
||||
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
|
||||
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
|
||||
the prompt.
|
||||
"""
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
if getattr(self, "tokenizer", None) is not None:
|
||||
self.tokenizer.padding_side = "right"
|
||||
|
||||
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
||||
|
||||
# prepare complex human instruction
|
||||
if not complex_human_instruction:
|
||||
max_length_all = max_sequence_length
|
||||
else:
|
||||
chi_prompt = "\n".join(complex_human_instruction)
|
||||
prompt = [chi_prompt + p for p in prompt]
|
||||
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
|
||||
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length_all,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
|
||||
prompt_attention_mask = text_inputs.attention_mask
|
||||
prompt_attention_mask = prompt_attention_mask.to(device)
|
||||
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
||||
prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device)
|
||||
|
||||
return prompt_embeds, prompt_attention_mask
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
@@ -296,6 +354,13 @@ class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
|
||||
if device is None:
|
||||
device = self._execution_device
|
||||
|
||||
if self.transformer is not None:
|
||||
dtype = self.transformer.dtype
|
||||
elif self.text_encoder is not None:
|
||||
dtype = self.text_encoder.dtype
|
||||
else:
|
||||
dtype = None
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
|
||||
@@ -320,43 +385,18 @@ class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
|
||||
select_index = [0] + list(range(-max_length + 1, 0))
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
||||
|
||||
# prepare complex human instruction
|
||||
if not complex_human_instruction:
|
||||
max_length_all = max_length
|
||||
else:
|
||||
chi_prompt = "\n".join(complex_human_instruction)
|
||||
prompt = [chi_prompt + p for p in prompt]
|
||||
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
|
||||
max_length_all = num_chi_prompt_tokens + max_length - 2
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length_all,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
clean_caption=clean_caption,
|
||||
max_sequence_length=max_sequence_length,
|
||||
complex_human_instruction=complex_human_instruction,
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
|
||||
prompt_attention_mask = text_inputs.attention_mask
|
||||
prompt_attention_mask = prompt_attention_mask.to(device)
|
||||
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
||||
prompt_embeds = prompt_embeds[0][:, select_index]
|
||||
prompt_embeds = prompt_embeds[:, select_index]
|
||||
prompt_attention_mask = prompt_attention_mask[:, select_index]
|
||||
|
||||
if self.transformer is not None:
|
||||
dtype = self.transformer.dtype
|
||||
elif self.text_encoder is not None:
|
||||
dtype = self.text_encoder.dtype
|
||||
else:
|
||||
dtype = None
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
@@ -366,25 +406,15 @@ class SanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
|
||||
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
||||
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
||||
max_length = prompt_embeds.shape[1]
|
||||
uncond_input = self.tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_attention_mask=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
negative_prompt = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
|
||||
negative_prompt_embeds, negative_prompt_attention_mask = self._get_gemma_prompt_embeds(
|
||||
prompt=negative_prompt,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
clean_caption=clean_caption,
|
||||
max_sequence_length=max_sequence_length,
|
||||
complex_human_instruction=False,
|
||||
)
|
||||
negative_prompt_attention_mask = uncond_input.attention_mask
|
||||
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
||||
|
||||
negative_prompt_embeds = self.text_encoder(
|
||||
uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds[0]
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
|
||||
889
src/diffusers/pipelines/sana/pipeline_sana_sprint.py
Normal file
889
src/diffusers/pipelines/sana/pipeline_sana_sprint.py
Normal file
@@ -0,0 +1,889 @@
|
||||
# Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import html
|
||||
import inspect
|
||||
import re
|
||||
import urllib.parse as ul
|
||||
import warnings
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...image_processor import PixArtImageProcessor
|
||||
from ...loaders import SanaLoraLoaderMixin
|
||||
from ...models import AutoencoderDC, SanaTransformer2DModel
|
||||
from ...schedulers import DPMSolverMultistepScheduler
|
||||
from ...utils import (
|
||||
BACKENDS_MAPPING,
|
||||
USE_PEFT_BACKEND,
|
||||
is_bs4_available,
|
||||
is_ftfy_available,
|
||||
is_torch_xla_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from ..pixart_alpha.pipeline_pixart_alpha import ASPECT_RATIO_1024_BIN
|
||||
from .pipeline_output import SanaPipelineOutput
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
if is_bs4_available():
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
if is_ftfy_available():
|
||||
import ftfy
|
||||
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import SanaSprintPipeline
|
||||
|
||||
>>> pipe = SanaSprintPipeline.from_pretrained(
|
||||
... "Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers", torch_dtype=torch.bfloat16
|
||||
... )
|
||||
>>> pipe.to("cuda")
|
||||
|
||||
>>> image = pipe(prompt="a tiny astronaut hatching from an egg on the moon")[0]
|
||||
>>> image[0].save("output.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class SanaSprintPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using [SANA-Sprint](https://huggingface.co/papers/2503.09641).
|
||||
"""
|
||||
|
||||
# fmt: off
|
||||
bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
|
||||
# fmt: on
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
|
||||
text_encoder: Gemma2PreTrainedModel,
|
||||
vae: AutoencoderDC,
|
||||
transformer: SanaTransformer2DModel,
|
||||
scheduler: DPMSolverMultistepScheduler,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
|
||||
if hasattr(self, "vae") and self.vae is not None
|
||||
else 32
|
||||
)
|
||||
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
|
||||
def enable_vae_slicing(self):
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.vae.enable_slicing()
|
||||
|
||||
def disable_vae_slicing(self):
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_slicing()
|
||||
|
||||
def enable_vae_tiling(self):
|
||||
r"""
|
||||
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
||||
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
||||
processing larger images.
|
||||
"""
|
||||
self.vae.enable_tiling()
|
||||
|
||||
def disable_vae_tiling(self):
|
||||
r"""
|
||||
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_tiling()
|
||||
|
||||
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._get_gemma_prompt_embeds
|
||||
def _get_gemma_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
clean_caption: bool = False,
|
||||
max_sequence_length: int = 300,
|
||||
complex_human_instruction: Optional[List[str]] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device to place the resulting embeddings on
|
||||
clean_caption (`bool`, defaults to `False`):
|
||||
If `True`, the function will preprocess and clean the provided caption before encoding.
|
||||
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
||||
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
|
||||
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
|
||||
the prompt.
|
||||
"""
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
if getattr(self, "tokenizer", None) is not None:
|
||||
self.tokenizer.padding_side = "right"
|
||||
|
||||
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
||||
|
||||
# prepare complex human instruction
|
||||
if not complex_human_instruction:
|
||||
max_length_all = max_sequence_length
|
||||
else:
|
||||
chi_prompt = "\n".join(complex_human_instruction)
|
||||
prompt = [chi_prompt + p for p in prompt]
|
||||
num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
|
||||
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length_all,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
|
||||
prompt_attention_mask = text_inputs.attention_mask
|
||||
prompt_attention_mask = prompt_attention_mask.to(device)
|
||||
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
||||
prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device)
|
||||
|
||||
return prompt_embeds, prompt_attention_mask
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
num_images_per_prompt: int = 1,
|
||||
device: Optional[torch.device] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
clean_caption: bool = False,
|
||||
max_sequence_length: int = 300,
|
||||
complex_human_instruction: Optional[List[str]] = None,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
number of images that should be generated per prompt
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device to place the resulting embeddings on
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
clean_caption (`bool`, defaults to `False`):
|
||||
If `True`, the function will preprocess and clean the provided caption before encoding.
|
||||
max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
|
||||
complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
|
||||
If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
|
||||
the prompt.
|
||||
"""
|
||||
|
||||
if device is None:
|
||||
device = self._execution_device
|
||||
|
||||
if self.transformer is not None:
|
||||
dtype = self.transformer.dtype
|
||||
elif self.text_encoder is not None:
|
||||
dtype = self.text_encoder.dtype
|
||||
else:
|
||||
dtype = None
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
if getattr(self, "tokenizer", None) is not None:
|
||||
self.tokenizer.padding_side = "right"
|
||||
|
||||
# See Section 3.1. of the paper.
|
||||
max_length = max_sequence_length
|
||||
select_index = [0] + list(range(-max_length + 1, 0))
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
clean_caption=clean_caption,
|
||||
max_sequence_length=max_sequence_length,
|
||||
complex_human_instruction=complex_human_instruction,
|
||||
)
|
||||
|
||||
prompt_embeds = prompt_embeds[:, select_index]
|
||||
prompt_attention_mask = prompt_attention_mask[:, select_index]
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
||||
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
return prompt_embeds, prompt_attention_mask
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
num_inference_steps,
|
||||
timesteps,
|
||||
max_timesteps,
|
||||
intermediate_timesteps,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
prompt_embeds=None,
|
||||
prompt_attention_mask=None,
|
||||
):
|
||||
if height % 32 != 0 or width % 32 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if prompt_embeds is not None and prompt_attention_mask is None:
|
||||
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
||||
|
||||
if timesteps is not None and len(timesteps) != num_inference_steps + 1:
|
||||
raise ValueError("If providing custom timesteps, `timesteps` must be of length `num_inference_steps + 1`.")
|
||||
|
||||
if timesteps is not None and max_timesteps is not None:
|
||||
raise ValueError("If providing custom timesteps, `max_timesteps` should not be provided.")
|
||||
|
||||
if timesteps is None and max_timesteps is None:
|
||||
raise ValueError("Should provide either `timesteps` or `max_timesteps`.")
|
||||
|
||||
if intermediate_timesteps is not None and num_inference_steps != 2:
|
||||
raise ValueError("Intermediate timesteps for SCM is not supported when num_inference_steps != 2.")
|
||||
|
||||
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
||||
def _text_preprocessing(self, text, clean_caption=False):
|
||||
if clean_caption and not is_bs4_available():
|
||||
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
||||
logger.warning("Setting `clean_caption` to False...")
|
||||
clean_caption = False
|
||||
|
||||
if clean_caption and not is_ftfy_available():
|
||||
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
||||
logger.warning("Setting `clean_caption` to False...")
|
||||
clean_caption = False
|
||||
|
||||
if not isinstance(text, (tuple, list)):
|
||||
text = [text]
|
||||
|
||||
def process(text: str):
|
||||
if clean_caption:
|
||||
text = self._clean_caption(text)
|
||||
text = self._clean_caption(text)
|
||||
else:
|
||||
text = text.lower().strip()
|
||||
return text
|
||||
|
||||
return [process(t) for t in text]
|
||||
|
||||
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
||||
def _clean_caption(self, caption):
|
||||
caption = str(caption)
|
||||
caption = ul.unquote_plus(caption)
|
||||
caption = caption.strip().lower()
|
||||
caption = re.sub("<person>", "person", caption)
|
||||
# urls:
|
||||
caption = re.sub(
|
||||
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
||||
"",
|
||||
caption,
|
||||
) # regex for urls
|
||||
caption = re.sub(
|
||||
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
||||
"",
|
||||
caption,
|
||||
) # regex for urls
|
||||
# html:
|
||||
caption = BeautifulSoup(caption, features="html.parser").text
|
||||
|
||||
# @<nickname>
|
||||
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
||||
|
||||
# 31C0—31EF CJK Strokes
|
||||
# 31F0—31FF Katakana Phonetic Extensions
|
||||
# 3200—32FF Enclosed CJK Letters and Months
|
||||
# 3300—33FF CJK Compatibility
|
||||
# 3400—4DBF CJK Unified Ideographs Extension A
|
||||
# 4DC0—4DFF Yijing Hexagram Symbols
|
||||
# 4E00—9FFF CJK Unified Ideographs
|
||||
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
||||
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
||||
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
||||
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
||||
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
||||
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
||||
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
||||
#######################################################
|
||||
|
||||
# все виды тире / all types of dash --> "-"
|
||||
caption = re.sub(
|
||||
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
||||
"-",
|
||||
caption,
|
||||
)
|
||||
|
||||
# кавычки к одному стандарту
|
||||
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
||||
caption = re.sub(r"[‘’]", "'", caption)
|
||||
|
||||
# "
|
||||
caption = re.sub(r""?", "", caption)
|
||||
# &
|
||||
caption = re.sub(r"&", "", caption)
|
||||
|
||||
# ip adresses:
|
||||
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
||||
|
||||
# article ids:
|
||||
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
||||
|
||||
# \n
|
||||
caption = re.sub(r"\\n", " ", caption)
|
||||
|
||||
# "#123"
|
||||
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
||||
# "#12345.."
|
||||
caption = re.sub(r"#\d{5,}\b", "", caption)
|
||||
# "123456.."
|
||||
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
||||
# filenames:
|
||||
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
||||
|
||||
#
|
||||
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
||||
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
||||
|
||||
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
||||
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
||||
|
||||
# this-is-my-cute-cat / this_is_my_cute_cat
|
||||
regex2 = re.compile(r"(?:\-|\_)")
|
||||
if len(re.findall(regex2, caption)) > 3:
|
||||
caption = re.sub(regex2, " ", caption)
|
||||
|
||||
caption = ftfy.fix_text(caption)
|
||||
caption = html.unescape(html.unescape(caption))
|
||||
|
||||
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
||||
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
||||
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
||||
|
||||
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
||||
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
||||
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
||||
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
||||
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
||||
|
||||
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
||||
|
||||
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
||||
|
||||
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
||||
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
||||
caption = re.sub(r"\s+", " ", caption)
|
||||
|
||||
caption.strip()
|
||||
|
||||
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
||||
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
||||
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
||||
caption = re.sub(r"^\.\S+$", "", caption)
|
||||
|
||||
return caption.strip()
|
||||
|
||||
# Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.prepare_latents
|
||||
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
||||
if latents is not None:
|
||||
return latents.to(device=device, dtype=dtype)
|
||||
|
||||
shape = (
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
int(height) // self.vae_scale_factor,
|
||||
int(width) // self.vae_scale_factor,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
return latents
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def attention_kwargs(self):
|
||||
return self._attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
num_inference_steps: int = 2,
|
||||
timesteps: List[int] = None,
|
||||
max_timesteps: float = 1.57080,
|
||||
intermediate_timesteps: float = 1.3,
|
||||
guidance_scale: float = 4.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
height: int = 1024,
|
||||
width: int = 1024,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
clean_caption: bool = False,
|
||||
use_resolution_binning: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 300,
|
||||
complex_human_instruction: List[str] = [
|
||||
"Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
|
||||
"- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
|
||||
"- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
|
||||
"Here are examples of how to transform or refine prompts:",
|
||||
"- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
|
||||
"- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
|
||||
"Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
|
||||
"User Prompt: ",
|
||||
],
|
||||
) -> Union[SanaPipelineOutput, Tuple]:
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
num_inference_steps (`int`, *optional*, defaults to 20):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
max_timesteps (`float`, *optional*, defaults to 1.57080):
|
||||
The maximum timestep value used in the SCM scheduler.
|
||||
intermediate_timesteps (`float`, *optional*, defaults to 1.3):
|
||||
The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2).
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||||
passed will be used. Must be in descending order.
|
||||
guidance_scale (`float`, *optional*, defaults to 4.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
||||
The width in pixels of the generated image.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.Tensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
||||
attention_kwargs:
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
clean_caption (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
||||
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
||||
prompt.
|
||||
use_resolution_binning (`bool` defaults to `True`):
|
||||
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
||||
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
||||
the requested resolution. Useful for generating non-square images.
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int` defaults to `300`):
|
||||
Maximum sequence length to use with the `prompt`.
|
||||
complex_human_instruction (`List[str]`, *optional*):
|
||||
Instructions for complex human attention:
|
||||
https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
|
||||
If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
|
||||
otherwise a `tuple` is returned where the first element is a list with the generated images
|
||||
"""
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
if use_resolution_binning:
|
||||
if self.transformer.config.sample_size == 32:
|
||||
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
|
||||
else:
|
||||
raise ValueError("Invalid sample size")
|
||||
orig_height, orig_width = height, width
|
||||
height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
|
||||
|
||||
self.check_inputs(
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=num_inference_steps,
|
||||
timesteps=timesteps,
|
||||
max_timesteps=max_timesteps,
|
||||
intermediate_timesteps=intermediate_timesteps,
|
||||
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds=prompt_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Default height and width to transformer
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
lora_scale = self.attention_kwargs.get("scale", None) if self.attention_kwargs is not None else None
|
||||
|
||||
# 3. Encode input prompt
|
||||
(
|
||||
prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
) = self.encode_prompt(
|
||||
prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
prompt_embeds=prompt_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
clean_caption=clean_caption,
|
||||
max_sequence_length=max_sequence_length,
|
||||
complex_human_instruction=complex_human_instruction,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
timesteps,
|
||||
sigmas=None,
|
||||
max_timesteps=max_timesteps,
|
||||
intermediate_timesteps=intermediate_timesteps,
|
||||
)
|
||||
if hasattr(self.scheduler, "set_begin_index"):
|
||||
self.scheduler.set_begin_index(0)
|
||||
|
||||
# 5. Prepare latents.
|
||||
latent_channels = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
latent_channels,
|
||||
height,
|
||||
width,
|
||||
torch.float32,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
latents = latents * self.scheduler.config.sigma_data
|
||||
|
||||
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
||||
guidance = guidance.expand(latents.shape[0]).to(prompt_embeds.dtype)
|
||||
guidance = guidance * self.transformer.config.guidance_embeds_scale
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 7. Denoising loop
|
||||
timesteps = timesteps[:-1]
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0]).to(prompt_embeds.dtype)
|
||||
latents_model_input = latents / self.scheduler.config.sigma_data
|
||||
|
||||
scm_timestep = torch.sin(timestep) / (torch.cos(timestep) + torch.sin(timestep))
|
||||
|
||||
scm_timestep_expanded = scm_timestep.view(-1, 1, 1, 1)
|
||||
latent_model_input = latents_model_input * torch.sqrt(
|
||||
scm_timestep_expanded**2 + (1 - scm_timestep_expanded) ** 2
|
||||
)
|
||||
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
|
||||
|
||||
# predict noise model_output
|
||||
noise_pred = self.transformer(
|
||||
latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_attention_mask=prompt_attention_mask,
|
||||
guidance=guidance,
|
||||
timestep=scm_timestep,
|
||||
return_dict=False,
|
||||
attention_kwargs=self.attention_kwargs,
|
||||
)[0]
|
||||
|
||||
noise_pred = (
|
||||
(1 - 2 * scm_timestep_expanded) * latent_model_input
|
||||
+ (1 - 2 * scm_timestep_expanded + 2 * scm_timestep_expanded**2) * noise_pred
|
||||
) / torch.sqrt(scm_timestep_expanded**2 + (1 - scm_timestep_expanded) ** 2)
|
||||
noise_pred = noise_pred.float() * self.scheduler.config.sigma_data
|
||||
|
||||
# compute previous image: x_t -> x_t-1
|
||||
latents, denoised = self.scheduler.step(
|
||||
noise_pred, timestep, latents, **extra_step_kwargs, return_dict=False
|
||||
)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
latents = denoised / self.scheduler.config.sigma_data
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
else:
|
||||
latents = latents.to(self.vae.dtype)
|
||||
try:
|
||||
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||||
except torch.cuda.OutOfMemoryError as e:
|
||||
warnings.warn(
|
||||
f"{e}. \n"
|
||||
f"Try to use VAE tiling for large images. For example: \n"
|
||||
f"pipe.vae.enable_tiling(tile_sample_min_width=512, tile_sample_min_height=512)"
|
||||
)
|
||||
if use_resolution_binning:
|
||||
image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
|
||||
|
||||
if not output_type == "latent":
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return SanaPipelineOutput(images=image)
|
||||
@@ -68,6 +68,7 @@ else:
|
||||
_import_structure["scheduling_pndm"] = ["PNDMScheduler"]
|
||||
_import_structure["scheduling_repaint"] = ["RePaintScheduler"]
|
||||
_import_structure["scheduling_sasolver"] = ["SASolverScheduler"]
|
||||
_import_structure["scheduling_scm"] = ["SCMScheduler"]
|
||||
_import_structure["scheduling_sde_ve"] = ["ScoreSdeVeScheduler"]
|
||||
_import_structure["scheduling_tcd"] = ["TCDScheduler"]
|
||||
_import_structure["scheduling_unclip"] = ["UnCLIPScheduler"]
|
||||
@@ -168,13 +169,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .scheduling_pndm import PNDMScheduler
|
||||
from .scheduling_repaint import RePaintScheduler
|
||||
from .scheduling_sasolver import SASolverScheduler
|
||||
from .scheduling_scm import SCMScheduler
|
||||
from .scheduling_sde_ve import ScoreSdeVeScheduler
|
||||
from .scheduling_tcd import TCDScheduler
|
||||
from .scheduling_unclip import UnCLIPScheduler
|
||||
from .scheduling_unipc_multistep import UniPCMultistepScheduler
|
||||
from .scheduling_utils import AysSchedules, KarrasDiffusionSchedulers, SchedulerMixin
|
||||
from .scheduling_vq_diffusion import VQDiffusionScheduler
|
||||
|
||||
try:
|
||||
if not is_flax_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
265
src/diffusers/schedulers/scheduling_scm.py
Normal file
265
src/diffusers/schedulers/scheduling_scm.py
Normal file
@@ -0,0 +1,265 @@
|
||||
# # Copyright 2024 Sana-Sprint Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
||||
# and https://github.com/hojonathanho/diffusion
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, register_to_config
|
||||
from ..schedulers.scheduling_utils import SchedulerMixin
|
||||
from ..utils import BaseOutput, logging
|
||||
from ..utils.torch_utils import randn_tensor
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@dataclass
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->SCM
|
||||
class SCMSchedulerOutput(BaseOutput):
|
||||
"""
|
||||
Output class for the scheduler's `step` function output.
|
||||
|
||||
Args:
|
||||
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
||||
denoising loop.
|
||||
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
||||
`pred_original_sample` can be used to preview progress or for guidance.
|
||||
"""
|
||||
|
||||
prev_sample: torch.Tensor
|
||||
pred_original_sample: Optional[torch.Tensor] = None
|
||||
|
||||
|
||||
class SCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
`SCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
||||
non-Markovian guidance. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass
|
||||
documentation for the generic methods the library implements for all schedulers such as loading and saving.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
prediction_type (`str`, defaults to `trigflow`):
|
||||
Prediction type of the scheduler function. Currently only supports "trigflow".
|
||||
sigma_data (`float`, defaults to 0.5):
|
||||
The standard deviation of the noise added during multi-step inference.
|
||||
"""
|
||||
|
||||
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
||||
order = 1
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
prediction_type: str = "trigflow",
|
||||
sigma_data: float = 0.5,
|
||||
):
|
||||
"""
|
||||
Initialize the SCM scheduler.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
prediction_type (`str`, defaults to `trigflow`):
|
||||
Prediction type of the scheduler function. Currently only supports "trigflow".
|
||||
sigma_data (`float`, defaults to 0.5):
|
||||
The standard deviation of the noise added during multi-step inference.
|
||||
"""
|
||||
# standard deviation of the initial noise distribution
|
||||
self.init_noise_sigma = 1.0
|
||||
|
||||
# setable values
|
||||
self.num_inference_steps = None
|
||||
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
||||
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
Args:
|
||||
begin_index (`int`):
|
||||
The begin index for the scheduler.
|
||||
"""
|
||||
self._begin_index = begin_index
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int,
|
||||
timesteps: torch.Tensor = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
max_timesteps: float = 1.57080,
|
||||
intermediate_timesteps: float = 1.3,
|
||||
):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
Args:
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
timesteps (`torch.Tensor`, *optional*):
|
||||
Custom timesteps to use for the denoising process.
|
||||
max_timesteps (`float`, defaults to 1.57080):
|
||||
The maximum timestep value used in the SCM scheduler.
|
||||
intermediate_timesteps (`float`, *optional*, defaults to 1.3):
|
||||
The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2).
|
||||
"""
|
||||
if num_inference_steps > self.config.num_train_timesteps:
|
||||
raise ValueError(
|
||||
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
||||
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
||||
f" maximal {self.config.num_train_timesteps} timesteps."
|
||||
)
|
||||
|
||||
if timesteps is not None and len(timesteps) != num_inference_steps + 1:
|
||||
raise ValueError("If providing custom timesteps, `timesteps` must be of length `num_inference_steps + 1`.")
|
||||
|
||||
if timesteps is not None and max_timesteps is not None:
|
||||
raise ValueError("If providing custom timesteps, `max_timesteps` should not be provided.")
|
||||
|
||||
if timesteps is None and max_timesteps is None:
|
||||
raise ValueError("Should provide either `timesteps` or `max_timesteps`.")
|
||||
|
||||
if intermediate_timesteps is not None and num_inference_steps != 2:
|
||||
raise ValueError("Intermediate timesteps for SCM is not supported when num_inference_steps != 2.")
|
||||
|
||||
self.num_inference_steps = num_inference_steps
|
||||
|
||||
if timesteps is not None:
|
||||
if isinstance(timesteps, list):
|
||||
self.timesteps = torch.tensor(timesteps, device=device).float()
|
||||
elif isinstance(timesteps, torch.Tensor):
|
||||
self.timesteps = timesteps.to(device).float()
|
||||
else:
|
||||
raise ValueError(f"Unsupported timesteps type: {type(timesteps)}")
|
||||
elif intermediate_timesteps is not None:
|
||||
self.timesteps = torch.tensor([max_timesteps, intermediate_timesteps, 0], device=device).float()
|
||||
else:
|
||||
# max_timesteps=arctan(80/0.5)=1.56454 is the default from sCM paper, we choose a different value here
|
||||
self.timesteps = torch.linspace(max_timesteps, 0, num_inference_steps + 1, device=device).float()
|
||||
print(f"Set timesteps: {self.timesteps}")
|
||||
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
||||
def _init_step_index(self, timestep):
|
||||
if self.begin_index is None:
|
||||
if isinstance(timestep, torch.Tensor):
|
||||
timestep = timestep.to(self.timesteps.device)
|
||||
self._step_index = self.index_for_timestep(timestep)
|
||||
else:
|
||||
self._step_index = self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
indices = (schedule_timesteps == timestep).nonzero()
|
||||
|
||||
# The sigma index that is taken for the **very** first `step`
|
||||
# is always the second index (or the last index if there is only 1)
|
||||
# This way we can ensure we don't accidentally skip a sigma in
|
||||
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||||
pos = 1 if len(indices) > 1 else 0
|
||||
|
||||
return indices[pos].item()
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: torch.FloatTensor,
|
||||
timestep: float,
|
||||
sample: torch.FloatTensor,
|
||||
generator: torch.Generator = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SCMSchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
model_output (`torch.FloatTensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`float`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.FloatTensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~schedulers.scheduling_scm.SCMSchedulerOutput`] or `tuple`.
|
||||
Returns:
|
||||
[`~schedulers.scheduling_utils.SCMSchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_scm.SCMSchedulerOutput`] is returned, otherwise a
|
||||
tuple is returned where the first element is the sample tensor.
|
||||
"""
|
||||
if self.num_inference_steps is None:
|
||||
raise ValueError(
|
||||
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||||
)
|
||||
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
# 2. compute alphas, betas
|
||||
t = self.timesteps[self.step_index + 1]
|
||||
s = self.timesteps[self.step_index]
|
||||
|
||||
# 4. Different Parameterization:
|
||||
parameterization = self.config.prediction_type
|
||||
|
||||
if parameterization == "trigflow":
|
||||
pred_x0 = torch.cos(s) * sample - torch.sin(s) * model_output
|
||||
else:
|
||||
raise ValueError(f"Unsupported parameterization: {parameterization}")
|
||||
|
||||
# 5. Sample z ~ N(0, I), For MultiStep Inference
|
||||
# Noise is not used for one-step sampling.
|
||||
if len(self.timesteps) > 1:
|
||||
noise = (
|
||||
randn_tensor(model_output.shape, device=model_output.device, generator=generator)
|
||||
* self.config.sigma_data
|
||||
)
|
||||
prev_sample = torch.cos(t) * pred_x0 + torch.sin(t) * noise
|
||||
else:
|
||||
prev_sample = pred_x0
|
||||
|
||||
self._step_index += 1
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample, pred_x0)
|
||||
|
||||
return SCMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_x0)
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
@@ -1834,6 +1834,21 @@ class SchedulerMixin(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class SCMScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class ScoreSdeVeScheduler(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -1502,6 +1502,21 @@ class SanaPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class SanaSprintPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class SemanticStableDiffusionPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
302
tests/pipelines/sana/test_sana_sprint.py
Normal file
302
tests/pipelines/sana/test_sana_sprint.py
Normal file
@@ -0,0 +1,302 @@
|
||||
# Copyright 2024 The HuggingFace Team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer
|
||||
|
||||
from diffusers import AutoencoderDC, SanaSprintPipeline, SanaTransformer2DModel, SCMScheduler
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin, to_np
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class SanaSprintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = SanaSprintPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "negative_prompt", "negative_prompt_embeds"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {"negative_prompt"}
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS - {"negative_prompt"}
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
test_xformers_attention = False
|
||||
test_layerwise_casting = True
|
||||
test_group_offloading = True
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = SanaTransformer2DModel(
|
||||
patch_size=1,
|
||||
in_channels=4,
|
||||
out_channels=4,
|
||||
num_layers=1,
|
||||
num_attention_heads=2,
|
||||
attention_head_dim=4,
|
||||
num_cross_attention_heads=2,
|
||||
cross_attention_head_dim=4,
|
||||
cross_attention_dim=8,
|
||||
caption_channels=8,
|
||||
sample_size=32,
|
||||
qk_norm="rms_norm_across_heads",
|
||||
guidance_embeds=True,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderDC(
|
||||
in_channels=3,
|
||||
latent_channels=4,
|
||||
attention_head_dim=2,
|
||||
encoder_block_types=(
|
||||
"ResBlock",
|
||||
"EfficientViTBlock",
|
||||
),
|
||||
decoder_block_types=(
|
||||
"ResBlock",
|
||||
"EfficientViTBlock",
|
||||
),
|
||||
encoder_block_out_channels=(8, 8),
|
||||
decoder_block_out_channels=(8, 8),
|
||||
encoder_qkv_multiscales=((), (5,)),
|
||||
decoder_qkv_multiscales=((), (5,)),
|
||||
encoder_layers_per_block=(1, 1),
|
||||
decoder_layers_per_block=[1, 1],
|
||||
downsample_block_type="conv",
|
||||
upsample_block_type="interpolate",
|
||||
decoder_norm_types="rms_norm",
|
||||
decoder_act_fns="silu",
|
||||
scaling_factor=0.41407,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = SCMScheduler()
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_config = Gemma2Config(
|
||||
head_dim=16,
|
||||
hidden_size=8,
|
||||
initializer_range=0.02,
|
||||
intermediate_size=64,
|
||||
max_position_embeddings=8192,
|
||||
model_type="gemma2",
|
||||
num_attention_heads=2,
|
||||
num_hidden_layers=1,
|
||||
num_key_value_heads=2,
|
||||
vocab_size=8,
|
||||
attn_implementation="eager",
|
||||
)
|
||||
text_encoder = Gemma2Model(text_encoder_config)
|
||||
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"max_sequence_length": 16,
|
||||
"output_type": "pt",
|
||||
"complex_human_instruction": None,
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs)[0]
|
||||
generated_image = image[0]
|
||||
|
||||
self.assertEqual(generated_image.shape, (3, 32, 32))
|
||||
expected_image = torch.randn(3, 32, 32)
|
||||
max_diff = np.abs(generated_image - expected_image).max()
|
||||
self.assertLessEqual(max_diff, 1e10)
|
||||
|
||||
def test_callback_inputs(self):
|
||||
sig = inspect.signature(self.pipeline_class.__call__)
|
||||
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
|
||||
has_callback_step_end = "callback_on_step_end" in sig.parameters
|
||||
|
||||
if not (has_callback_tensor_inputs and has_callback_step_end):
|
||||
return
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
self.assertTrue(
|
||||
hasattr(pipe, "_callback_tensor_inputs"),
|
||||
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
|
||||
)
|
||||
|
||||
def callback_inputs_subset(pipe, i, t, callback_kwargs):
|
||||
# iterate over callback args
|
||||
for tensor_name, tensor_value in callback_kwargs.items():
|
||||
# check that we're only passing in allowed tensor inputs
|
||||
assert tensor_name in pipe._callback_tensor_inputs
|
||||
|
||||
return callback_kwargs
|
||||
|
||||
def callback_inputs_all(pipe, i, t, callback_kwargs):
|
||||
for tensor_name in pipe._callback_tensor_inputs:
|
||||
assert tensor_name in callback_kwargs
|
||||
|
||||
# iterate over callback args
|
||||
for tensor_name, tensor_value in callback_kwargs.items():
|
||||
# check that we're only passing in allowed tensor inputs
|
||||
assert tensor_name in pipe._callback_tensor_inputs
|
||||
|
||||
return callback_kwargs
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
# Test passing in a subset
|
||||
inputs["callback_on_step_end"] = callback_inputs_subset
|
||||
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
# Test passing in a everything
|
||||
inputs["callback_on_step_end"] = callback_inputs_all
|
||||
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
|
||||
is_last = i == (pipe.num_timesteps - 1)
|
||||
if is_last:
|
||||
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
|
||||
return callback_kwargs
|
||||
|
||||
inputs["callback_on_step_end"] = callback_inputs_change_tensor
|
||||
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
||||
output = pipe(**inputs)[0]
|
||||
assert output.abs().sum() < 1e10
|
||||
|
||||
def test_attention_slicing_forward_pass(
|
||||
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
|
||||
):
|
||||
if not self.test_attention_slicing:
|
||||
return
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
generator_device = "cpu"
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_without_slicing = pipe(**inputs)[0]
|
||||
|
||||
pipe.enable_attention_slicing(slice_size=1)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_with_slicing1 = pipe(**inputs)[0]
|
||||
|
||||
pipe.enable_attention_slicing(slice_size=2)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
output_with_slicing2 = pipe(**inputs)[0]
|
||||
|
||||
if test_max_difference:
|
||||
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
|
||||
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
|
||||
self.assertLess(
|
||||
max(max_diff1, max_diff2),
|
||||
expected_max_diff,
|
||||
"Attention slicing should not affect the inference results",
|
||||
)
|
||||
|
||||
def test_vae_tiling(self, expected_diff_max: float = 0.2):
|
||||
generator_device = "cpu"
|
||||
components = self.get_dummy_components()
|
||||
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to("cpu")
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
# Without tiling
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
inputs["height"] = inputs["width"] = 128
|
||||
output_without_tiling = pipe(**inputs)[0]
|
||||
|
||||
# With tiling
|
||||
pipe.vae.enable_tiling(
|
||||
tile_sample_min_height=96,
|
||||
tile_sample_min_width=96,
|
||||
tile_sample_stride_height=64,
|
||||
tile_sample_stride_width=64,
|
||||
)
|
||||
inputs = self.get_dummy_inputs(generator_device)
|
||||
inputs["height"] = inputs["width"] = 128
|
||||
output_with_tiling = pipe(**inputs)[0]
|
||||
|
||||
self.assertLess(
|
||||
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
|
||||
expected_diff_max,
|
||||
"VAE tiling should not affect the inference results",
|
||||
)
|
||||
|
||||
# TODO(aryan): Create a dummy gemma model with smol vocab size
|
||||
@unittest.skip(
|
||||
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
|
||||
)
|
||||
def test_inference_batch_consistent(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(
|
||||
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
|
||||
)
|
||||
def test_inference_batch_single_identical(self):
|
||||
pass
|
||||
|
||||
def test_float16_inference(self):
|
||||
# Requires higher tolerance as model seems very sensitive to dtype
|
||||
super().test_float16_inference(expected_max_diff=0.08)
|
||||
Reference in New Issue
Block a user