Compare commits

...

4 Commits

Author SHA1 Message Date
DN6
e30dc5176c update 2025-08-28 17:02:11 +05:30
DN6
ca4a16f94c update 2025-08-28 15:56:54 +05:30
github-actions[bot]
30a72ee140 Apply style fixes 2025-08-28 10:26:29 +00:00
DN6
58dfcf9e92 update 2025-08-22 18:36:46 +05:30
11 changed files with 59 additions and 66 deletions

View File

@@ -51,10 +51,10 @@ t2i_pipeline = t2i_blocks.init_pipeline(modular_repo_id, components_manager=comp
</hfoption>
</hfoptions>
Components are only loaded and registered when using [`~ModularPipeline.load_components`] or [`~ModularPipeline.load_default_components`]. The example below uses [`~ModularPipeline.load_default_components`] to create a second pipeline that reuses all the components from the first one, and assigns it to a different collection
Components are only loaded and registered when using [`~ModularPipeline.load_components`] or [`~ModularPipeline.load_components`]. The example below uses [`~ModularPipeline.load_components`] to create a second pipeline that reuses all the components from the first one, and assigns it to a different collection
```py
pipe.load_default_components()
pipe.load_components()
pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
```

View File

@@ -75,13 +75,13 @@ Guiders that are already saved on the Hub with a `modular_model_index.json` file
}
```
The guider is only created after calling [`~ModularPipeline.load_default_components`] based on the loading specification in `modular_model_index.json`.
The guider is only created after calling [`~ModularPipeline.load_components`] based on the loading specification in `modular_model_index.json`.
```py
t2i_pipeline = t2i_blocks.init_pipeline("YiYiXu/modular-doc-guider")
# not created during init
assert t2i_pipeline.guider is None
t2i_pipeline.load_default_components()
t2i_pipeline.load_components()
# loaded as PAG guider
t2i_pipeline.guider
```

View File

@@ -29,7 +29,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.to("cuda")
image = pipeline(prompt="Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", output="images")[0]
@@ -49,7 +49,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(IMAGE2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.to("cuda")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
@@ -73,7 +73,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(INPAINT_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.to("cuda")
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
@@ -176,15 +176,15 @@ diffdiff_pipeline = ModularPipeline.from_pretrained(modular_repo_id, trust_remot
## Loading components
A [`ModularPipeline`] doesn't automatically instantiate with components. It only loads the configuration and component specifications. You can load all components with [`~ModularPipeline.load_default_components`] or only load specific components with [`~ModularPipeline.load_components`].
A [`ModularPipeline`] doesn't automatically instantiate with components. It only loads the configuration and component specifications. You can load all components with [`~ModularPipeline.load_components`] or only load specific components with [`~ModularPipeline.load_components`].
<hfoptions id="load">
<hfoption id="load_default_components">
<hfoption id="load_components">
```py
import torch
t2i_pipeline.load_default_components(torch_dtype=torch.float16)
t2i_pipeline.load_components(torch_dtype=torch.float16)
t2i_pipeline.to("cuda")
```

View File

@@ -173,9 +173,9 @@ print(dd_blocks)
## ModularPipeline
Convert the [`SequentialPipelineBlocks`] into a [`ModularPipeline`] with the [`ModularPipeline.init_pipeline`] method. This initializes the expected components to load from a `modular_model_index.json` file. Explicitly load the components by calling [`ModularPipeline.load_default_components`].
Convert the [`SequentialPipelineBlocks`] into a [`ModularPipeline`] with the [`ModularPipeline.init_pipeline`] method. This initializes the expected components to load from a `modular_model_index.json` file. Explicitly load the components by calling [`ModularPipeline.load_components`].
It is a good idea to initialize the [`ComponentManager`] with the pipeline to help manage the different components. Once you call [`~ModularPipeline.load_default_components`], the components are registered to the [`ComponentManager`] and can be shared between workflows. The example below uses the `collection` argument to assign the components a `"diffdiff"` label for better organization.
It is a good idea to initialize the [`ComponentManager`] with the pipeline to help manage the different components. Once you call [`~ModularPipeline.load_components`], the components are registered to the [`ComponentManager`] and can be shared between workflows. The example below uses the `collection` argument to assign the components a `"diffdiff"` label for better organization.
```py
from diffusers.modular_pipelines import ComponentsManager
@@ -209,11 +209,11 @@ Use the [`sub_blocks.insert`] method to insert it into the [`ModularPipeline`].
dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0)
```
Call [`~ModularPipeline.init_pipeline`] to initialize a [`ModularPipeline`] and use [`~ModularPipeline.load_default_components`] to load the model components. Load and set the IP-Adapter to run the pipeline.
Call [`~ModularPipeline.init_pipeline`] to initialize a [`ModularPipeline`] and use [`~ModularPipeline.load_components`] to load the model components. Load and set the IP-Adapter to run the pipeline.
```py
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.loader.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
dd_pipeline.loader.set_ip_adapter_scale(0.6)
dd_pipeline = dd_pipeline.to(device)
@@ -260,14 +260,14 @@ class SDXLDiffDiffControlNetDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
controlnet_denoise_block = SDXLDiffDiffControlNetDenoiseStep()
```
Insert the `controlnet_input` block and replace the `denoise` block with the new `controlnet_denoise_block`. Initialize a [`ModularPipeline`] and [`~ModularPipeline.load_default_components`] into it.
Insert the `controlnet_input` block and replace the `denoise` block with the new `controlnet_denoise_block`. Initialize a [`ModularPipeline`] and [`~ModularPipeline.load_components`] into it.
```py
dd_blocks.sub_blocks.insert("controlnet_input", control_input_block, 7)
dd_blocks.sub_blocks["denoise"] = controlnet_denoise_block
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline = dd_pipeline.to(device)
control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.jpeg")
@@ -320,7 +320,7 @@ Call [`SequentialPipelineBlocks.from_blocks_dict`] to create a [`SequentialPipel
```py
dd_auto_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_AUTO_BLOCKS)
dd_pipeline = dd_auto_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline.load_components(torch_dtype=torch.float16)
```
## Share
@@ -340,5 +340,5 @@ from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
components = ComponentsManager()
diffdiff_pipeline = ModularPipeline.from_pretrained("YiYiXu/modular-diffdiff-0704", trust_remote_code=True, components_manager=components, collection="diffdiff")
diffdiff_pipeline.load_default_components(torch_dtype=torch.float16)
diffdiff_pipeline.load_components(torch_dtype=torch.float16)
```

View File

@@ -48,10 +48,10 @@ t2i_pipeline = t2i_blocks.init_pipeline(modular_repo_id, components_manager=comp
</hfoption>
</hfoptions>
组件仅在调用 [`~ModularPipeline.load_components`] 或 [`~ModularPipeline.load_default_components`] 时加载和注册。以下示例使用 [`~ModularPipeline.load_default_components`] 创建第二个管道,重用第一个管道的所有组件,并将其分配到不同的集合。
组件仅在调用 [`~ModularPipeline.load_components`] 或 [`~ModularPipeline.load_components`] 时加载和注册。以下示例使用 [`~ModularPipeline.load_components`] 创建第二个管道,重用第一个管道的所有组件,并将其分配到不同的集合。
```py
pipe.load_default_components()
pipe.load_components()
pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
```

View File

@@ -73,13 +73,13 @@ ComponentSpec(name='guider', type_hint=<class 'diffusers.guiders.perturbed_atten
}
```
引导器只有在调用 [`~ModularPipeline.load_default_components`] 之后才会创建,基于 `modular_model_index.json` 中的加载规范。
引导器只有在调用 [`~ModularPipeline.load_components`] 之后才会创建,基于 `modular_model_index.json` 中的加载规范。
```py
t2i_pipeline = t2i_blocks.init_pipeline("YiYiXu/modular-doc-guider")
# 在初始化时未创建
assert t2i_pipeline.guider is None
t2i_pipeline.load_default_components()
t2i_pipeline.load_components()
# 加载为 PAG 引导器
t2i_pipeline.guider
```

View File

@@ -28,7 +28,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.to("cuda")
image = pipeline(prompt="Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", output="images")[0]
@@ -48,7 +48,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(IMAGE2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.to("cuda")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
@@ -72,7 +72,7 @@ blocks = SequentialPipelineBlocks.from_blocks_dict(INPAINT_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
pipeline = blocks.init_pipeline(modular_repo_id)
pipeline.load_default_components(torch_dtype=torch.float16)
pipeline.load_components(torch_dtype=torch.float16)
pipeline.to("cuda")
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
@@ -176,15 +176,15 @@ diffdiff_pipeline = ModularPipeline.from_pretrained(modular_repo_id, trust_remot
## 加载组件
一个[`ModularPipeline`]不会自动实例化组件。它只加载配置和组件规范。您可以使用[`~ModularPipeline.load_default_components`]加载所有组件,或仅使用[`~ModularPipeline.load_components`]加载特定组件。
一个[`ModularPipeline`]不会自动实例化组件。它只加载配置和组件规范。您可以使用[`~ModularPipeline.load_components`]加载所有组件,或仅使用[`~ModularPipeline.load_components`]加载特定组件。
<hfoptions id="load">
<hfoption id="load_default_components">
<hfoption id="load_components">
```py
import torch
t2i_pipeline.load_default_components(torch_dtype=torch.float16)
t2i_pipeline.load_components(torch_dtype=torch.float16)
t2i_pipeline.to("cuda")
```

View File

@@ -175,7 +175,7 @@ print(dd_blocks)
将 [`SequentialPipelineBlocks`] 转换为 [`ModularPipeline`],使用 [`ModularPipeline.init_pipeline`] 方法。这会初始化从 `modular_model_index.json` 文件加载的预期组件。通过调用 [`ModularPipeline.load_defau
lt_components`]。
初始化[`ComponentManager`]时传入pipeline是一个好主意以帮助管理不同的组件。一旦调用[`~ModularPipeline.load_default_components`],组件就会被注册到[`ComponentManager`]中,并且可以在工作流之间共享。下面的例子使用`collection`参数为组件分配了一个`"diffdiff"`标签,以便更好地组织。
初始化[`ComponentManager`]时传入pipeline是一个好主意以帮助管理不同的组件。一旦调用[`~ModularPipeline.load_components`],组件就会被注册到[`ComponentManager`]中,并且可以在工作流之间共享。下面的例子使用`collection`参数为组件分配了一个`"diffdiff"`标签,以便更好地组织。
```py
from diffusers.modular_pipelines import ComponentsManager
@@ -209,11 +209,11 @@ ip_adapter_block = StableDiffusionXLAutoIPAdapterStep()
dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0)
```
调用[`~ModularPipeline.init_pipeline`]来初始化一个[`ModularPipeline`],并使用[`~ModularPipeline.load_default_components`]加载模型组件。加载并设置IP-Adapter以运行pipeline。
调用[`~ModularPipeline.init_pipeline`]来初始化一个[`ModularPipeline`],并使用[`~ModularPipeline.load_components`]加载模型组件。加载并设置IP-Adapter以运行pipeline。
```py
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.loader.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
dd_pipeline.loader.set_ip_adapter_scale(0.6)
dd_pipeline = dd_pipeline.to(device)
@@ -261,14 +261,14 @@ class SDXLDiffDiffControlNetDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
controlnet_denoise_block = SDXLDiffDiffControlNetDenoiseStep()
```
插入 `controlnet_input` 块并用新的 `controlnet_denoise_block` 替换 `denoise` 块。初始化一个 [`ModularPipeline`] 并将 [`~ModularPipeline.load_default_components`] 加载到其中。
插入 `controlnet_input` 块并用新的 `controlnet_denoise_block` 替换 `denoise` 块。初始化一个 [`ModularPipeline`] 并将 [`~ModularPipeline.load_components`] 加载到其中。
```py
dd_blocks.sub_blocks.insert("controlnet_input", control_input_block, 7)
dd_blocks.sub_blocks["denoise"] = controlnet_denoise_block
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline = dd_pipeline.to(device)
control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.jpeg")
@@ -322,7 +322,7 @@ DIFFDIFF_AUTO_BLOCKS.insert("controlnet_input",StableDiffusionXLControlNetAutoIn
```py
dd_auto_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_AUTO_BLOCKS)
dd_pipeline = dd_auto_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_default_components(torch_dtype=torch.float16)
dd_pipeline.load_components(torch_dtype=torch.float16)
```
## 分享
@@ -342,5 +342,5 @@ from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
components = ComponentsManager()
diffdiff_pipeline = ModularPipeline.from_pretrained("YiYiXu/modular-diffdiff-0704", trust_remote_code=True, components_manager=components, collection="diffdiff")
diffdiff_pipeline.load_default_components(torch_dtype=torch.float16)
diffdiff_pipeline.load_components(torch_dtype=torch.float16)
```

View File

@@ -1409,7 +1409,7 @@ class LoopSequentialPipelineBlocks(ModularPipelineBlocks):
# YiYi TODO:
# 1. look into the serialization of modular_model_index.json, make sure the items are properly ordered like model_index.json (currently a mess)
# 2. do we need ConfigSpec? the are basically just key/val kwargs
# 3. imnprove docstring and potentially add validator for methods where we accpet kwargs to be passed to from_pretrained/save_pretrained/load_default_components(), load_components()
# 3. imnprove docstring and potentially add validator for methods where we accpet kwargs to be passed to from_pretrained/save_pretrained/load_components()
class ModularPipeline(ConfigMixin, PushToHubMixin):
"""
Base class for all Modular pipelines.
@@ -1478,7 +1478,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
- Components with default_creation_method="from_config" are created immediately, its specs are not included
in config dict and will not be saved in `modular_model_index.json`
- Components with default_creation_method="from_pretrained" are set to None and can be loaded later with
`load_default_components()`/`load_components()`
`load_components()` (with or without specific component names)
- The pipeline's config dict is populated with component specs (only for from_pretrained components) and
config values, which will be saved as `modular_model_index.json` during `save_pretrained`
- The pipeline's config dict is also used to store the pipeline blocks's class name, which will be saved as
@@ -1541,20 +1541,6 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
params[input_param.name] = input_param.default
return params
def load_default_components(self, **kwargs):
"""
Load from_pretrained components using the loading specs in the config dict.
Args:
**kwargs: Additional arguments passed to `from_pretrained` method, e.g. torch_dtype, cache_dir, etc.
"""
names = [
name
for name in self._component_specs.keys()
if self._component_specs[name].default_creation_method == "from_pretrained"
]
self.load_components(names=names, **kwargs)
@classmethod
@validate_hf_hub_args
def from_pretrained(
@@ -1682,8 +1668,8 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
- non from_pretrained components are created during __init__ and registered as the object itself
- Components are updated with the `update_components()` method: e.g. loader.update_components(unet=unet) or
loader.update_components(guider=guider_spec)
- (from_pretrained) Components are loaded with the `load_default_components()` method: e.g.
loader.load_default_components(names=["unet"])
- (from_pretrained) Components are loaded with the `load_components()` method: e.g.
loader.load_components(names=["unet"]) or loader.load_components() to load all default components
Args:
**kwargs: Keyword arguments where keys are component names and values are component objects.
@@ -1995,13 +1981,14 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
self.register_to_config(**config_to_register)
# YiYi TODO: support map for additional from_pretrained kwargs
# YiYi/Dhruv TODO: consolidate load_components and load_default_components?
def load_components(self, names: Union[List[str], str], **kwargs):
def load_components(self, names: Optional[Union[List[str], str]] = None, **kwargs):
"""
Load selected components from specs.
Args:
names: List of component names to load; by default will not load any components
names: List of component names to load. If None, will load all components with
default_creation_method == "from_pretrained". If provided as a list or string, will load only the
specified components.
**kwargs: additional kwargs to be passed to `from_pretrained()`.Can be:
- a single value to be applied to all components to be loaded, e.g. torch_dtype=torch.bfloat16
- a dict, e.g. torch_dtype={"unet": torch.bfloat16, "default": torch.float32}
@@ -2009,7 +1996,13 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
`variant`, `revision`, etc.
"""
if isinstance(names, str):
if names is None:
names = [
name
for name in self._component_specs.keys()
if self._component_specs[name].default_creation_method == "from_pretrained"
]
elif isinstance(names, str):
names = [names]
elif not isinstance(names, list):
raise ValueError(f"Invalid type for names: {type(names)}")

View File

@@ -67,7 +67,7 @@ class SDXLModularTests:
def get_pipeline(self, components_manager=None, torch_dtype=torch.float32):
pipeline = self.pipeline_blocks_class().init_pipeline(self.repo, components_manager=components_manager)
pipeline.load_default_components(torch_dtype=torch_dtype)
pipeline.load_components(torch_dtype=torch_dtype)
return pipeline
def get_dummy_inputs(self, device, seed=0):
@@ -158,7 +158,7 @@ class SDXLModularIPAdapterTests:
blocks = self.pipeline_blocks_class()
_ = blocks.sub_blocks.pop("ip_adapter")
pipe = blocks.init_pipeline(self.repo)
pipe.load_default_components(torch_dtype=torch.float32)
pipe.load_components(torch_dtype=torch.float32)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
cross_attention_dim = pipe.unet.config.get("cross_attention_dim")

View File

@@ -343,7 +343,7 @@ class ModularPipelineTesterMixin:
with tempfile.TemporaryDirectory() as tmpdirname:
base_pipe.save_pretrained(tmpdirname)
pipe = ModularPipeline.from_pretrained(tmpdirname).to(torch_device)
pipe.load_default_components(torch_dtype=torch.float32)
pipe.load_components(torch_dtype=torch.float32)
pipe.to(torch_device)
pipes.append(pipe)