mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-19 02:44:53 +08:00
Compare commits
2 Commits
cp-fixes-a
...
qwenimage-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f70010ca5d | ||
|
|
2f0b35fd84 |
@@ -882,24 +882,21 @@ the image\n<|vision_start|><|image_pad|><|vision_end|><|im_end|>\n<|im_start|>as
|
||||
latents = latents / latents_std + latents_mean
|
||||
|
||||
b, c, f, h, w = latents.shape
|
||||
|
||||
latents = latents[:, :, 1:] # remove the first frame as it is the orgin input
|
||||
|
||||
latents = latents.permute(0, 2, 1, 3, 4).view(-1, c, 1, h, w)
|
||||
|
||||
image = self.vae.decode(latents, return_dict=False)[0] # (b f) c 1 h w
|
||||
img = self.vae.decode(latents, return_dict=False)[0] # (b f) c 1 h w
|
||||
img = img.squeeze(2)
|
||||
|
||||
image = image.squeeze(2)
|
||||
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
images = []
|
||||
img = self.image_processor.postprocess(img, output_type=output_type)
|
||||
image = []
|
||||
for bidx in range(b):
|
||||
images.append(image[bidx * f : (bidx + 1) * f])
|
||||
image.append(img[bidx * f : (bidx + 1) * f])
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (images,)
|
||||
return (image,)
|
||||
|
||||
return QwenImagePipelineOutput(images=images)
|
||||
return QwenImagePipelineOutput(images=image)
|
||||
|
||||
223
tests/pipelines/qwenimage/test_qwenimage_layered.py
Normal file
223
tests/pipelines/qwenimage/test_qwenimage_layered.py
Normal file
@@ -0,0 +1,223 @@
|
||||
# Copyright 2025 The HuggingFace Team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import diffusers
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import Qwen2_5_VLConfig, Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLQwenImage,
|
||||
FlowMatchEulerDiscreteScheduler,
|
||||
QwenImageLayeredPipeline,
|
||||
QwenImageTransformer2DModel,
|
||||
)
|
||||
|
||||
from ...testing_utils import enable_full_determinism, torch_device
|
||||
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin, to_np
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class QwenImageLayeredPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = QwenImageLayeredPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"height", "width", "cross_attention_kwargs"}
|
||||
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
|
||||
image_params = frozenset(["image"])
|
||||
image_latents_params = frozenset(["latents"])
|
||||
required_optional_params = frozenset(
|
||||
[
|
||||
"num_inference_steps",
|
||||
"generator",
|
||||
"latents",
|
||||
"return_dict",
|
||||
"callback_on_step_end",
|
||||
"callback_on_step_end_tensor_inputs",
|
||||
]
|
||||
)
|
||||
supports_dduf = False
|
||||
test_xformers_attention = False
|
||||
test_layerwise_casting = True
|
||||
test_group_offloading = True
|
||||
|
||||
def get_dummy_components(self):
|
||||
tiny_ckpt_id = "hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration"
|
||||
|
||||
torch.manual_seed(0)
|
||||
transformer = QwenImageTransformer2DModel(
|
||||
patch_size=2,
|
||||
in_channels=16,
|
||||
out_channels=4,
|
||||
num_layers=2,
|
||||
attention_head_dim=16,
|
||||
num_attention_heads=3,
|
||||
joint_attention_dim=16,
|
||||
guidance_embeds=False,
|
||||
axes_dims_rope=(8, 4, 4),
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
z_dim = 4
|
||||
vae = AutoencoderKLQwenImage(
|
||||
base_dim=z_dim * 6,
|
||||
z_dim=z_dim,
|
||||
dim_mult=[1, 2, 4],
|
||||
num_res_blocks=1,
|
||||
temperal_downsample=[False, True],
|
||||
latents_mean=[0.0] * z_dim,
|
||||
latents_std=[1.0] * z_dim,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = Qwen2_5_VLConfig(
|
||||
text_config={
|
||||
"hidden_size": 16,
|
||||
"intermediate_size": 16,
|
||||
"num_hidden_layers": 2,
|
||||
"num_attention_heads": 2,
|
||||
"num_key_value_heads": 2,
|
||||
"rope_scaling": {
|
||||
"mrope_section": [1, 1, 2],
|
||||
"rope_type": "default",
|
||||
"type": "default",
|
||||
},
|
||||
"rope_theta": 1000000.0,
|
||||
},
|
||||
vision_config={
|
||||
"depth": 2,
|
||||
"hidden_size": 16,
|
||||
"intermediate_size": 16,
|
||||
"num_heads": 2,
|
||||
"out_hidden_size": 16,
|
||||
},
|
||||
hidden_size=16,
|
||||
vocab_size=152064,
|
||||
vision_end_token_id=151653,
|
||||
vision_start_token_id=151652,
|
||||
vision_token_id=151654,
|
||||
)
|
||||
text_encoder = Qwen2_5_VLForConditionalGeneration(config)
|
||||
tokenizer = Qwen2Tokenizer.from_pretrained(tiny_ckpt_id)
|
||||
processor = Qwen2VLProcessor.from_pretrained(tiny_ckpt_id)
|
||||
|
||||
components = {
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"processor": processor,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
|
||||
inputs = {
|
||||
"prompt": "dance monkey",
|
||||
"image": Image.new("RGB", (32, 32)),
|
||||
"negative_prompt": "bad quality",
|
||||
"generator": generator,
|
||||
"true_cfg_scale": 1.0,
|
||||
"layers": 2,
|
||||
"num_inference_steps": 2,
|
||||
"max_sequence_length": 16,
|
||||
"resolution": 640,
|
||||
"output_type": "pt",
|
||||
}
|
||||
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
images = pipe(**inputs).images
|
||||
self.assertEqual(len(images), 1)
|
||||
|
||||
generated_layers = images[0]
|
||||
self.assertEqual(generated_layers.shape, (inputs["layers"], 3, 640, 640))
|
||||
|
||||
# fmt: off
|
||||
expected_slice_layer_0 = torch.tensor([0.5752, 0.6324, 0.4913, 0.4421, 0.4917, 0.4923, 0.4790, 0.4299, 0.4029, 0.3506, 0.3302, 0.3352, 0.3579, 0.4422, 0.5086, 0.5961])
|
||||
expected_slice_layer_1 = torch.tensor([0.5103, 0.6606, 0.5652, 0.6512, 0.5900, 0.5814, 0.5873, 0.5083, 0.5058, 0.4131, 0.4321, 0.5300, 0.3507, 0.4826, 0.4745, 0.5426])
|
||||
# fmt: on
|
||||
|
||||
layer_0_slice = torch.cat([generated_layers[0].flatten()[:8], generated_layers[0].flatten()[-8:]])
|
||||
layer_1_slice = torch.cat([generated_layers[1].flatten()[:8], generated_layers[1].flatten()[-8:]])
|
||||
|
||||
self.assertTrue(torch.allclose(layer_0_slice, expected_slice_layer_0, atol=1e-3))
|
||||
self.assertTrue(torch.allclose(layer_1_slice, expected_slice_layer_1, atol=1e-3))
|
||||
|
||||
def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-1):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
if hasattr(component, "set_default_attn_processor"):
|
||||
component.set_default_attn_processor()
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["generator"] = self.get_generator(0)
|
||||
|
||||
logger = diffusers.logging.get_logger(pipe.__module__)
|
||||
logger.setLevel(level=diffusers.logging.FATAL)
|
||||
|
||||
batched_inputs = {}
|
||||
batched_inputs.update(inputs)
|
||||
|
||||
for name in self.batch_params:
|
||||
if name not in inputs:
|
||||
continue
|
||||
|
||||
value = inputs[name]
|
||||
if name == "prompt":
|
||||
len_prompt = len(value)
|
||||
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
|
||||
batched_inputs[name][-1] = 100 * "very long"
|
||||
else:
|
||||
batched_inputs[name] = batch_size * [value]
|
||||
|
||||
if "generator" in inputs:
|
||||
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
|
||||
|
||||
if "batch_size" in inputs:
|
||||
batched_inputs["batch_size"] = batch_size
|
||||
|
||||
batched_inputs["num_inference_steps"] = inputs["num_inference_steps"]
|
||||
|
||||
output = pipe(**inputs).images
|
||||
output_batch = pipe(**batched_inputs).images
|
||||
|
||||
self.assertEqual(len(output_batch), batch_size)
|
||||
|
||||
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
|
||||
self.assertLess(max_diff, expected_max_diff)
|
||||
Reference in New Issue
Block a user