|
|
|
|
@@ -0,0 +1,443 @@
|
|
|
|
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
import inspect
|
|
|
|
|
from typing import Callable, List, Optional, Union
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
|
|
|
|
|
|
from diffusers.utils import is_accelerate_available
|
|
|
|
|
|
|
|
|
|
from ...configuration_utils import FrozenDict
|
|
|
|
|
from ...models import AutoencoderKL, UNet2DConditionModel
|
|
|
|
|
from ...pipeline_utils import DiffusionPipeline
|
|
|
|
|
from ...schedulers import (
|
|
|
|
|
DDIMScheduler,
|
|
|
|
|
DPMSolverMultistepScheduler,
|
|
|
|
|
EulerAncestralDiscreteScheduler,
|
|
|
|
|
EulerDiscreteScheduler,
|
|
|
|
|
LMSDiscreteScheduler,
|
|
|
|
|
PNDMScheduler,
|
|
|
|
|
)
|
|
|
|
|
from ...utils import deprecate, logging
|
|
|
|
|
from . import StableDiffusionPipelineOutput
|
|
|
|
|
from .safety_checker import StableDiffusionSafetyChecker
|
|
|
|
|
|
|
|
|
|
# TODO: Remove when we migrate the upscaler model to diffusers >>>>>>>
|
|
|
|
|
import k_diffusion as K
|
|
|
|
|
import huggingface_hub
|
|
|
|
|
|
|
|
|
|
from torch import nn
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
UPSCALER_REPO = "pcuenq/k-upscaler"
|
|
|
|
|
|
|
|
|
|
class NoiseLevelAndTextConditionedUpscaler(nn.Module):
|
|
|
|
|
def __init__(self, inner_model, sigma_data=1., embed_dim=256):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.inner_model = inner_model
|
|
|
|
|
self.sigma_data = sigma_data
|
|
|
|
|
self.low_res_noise_embed = K.layers.FourierFeatures(1, embed_dim, std=2)
|
|
|
|
|
|
|
|
|
|
def forward(self, input, sigma, low_res, low_res_sigma, c, **kwargs):
|
|
|
|
|
cross_cond, cross_cond_padding, pooler = c
|
|
|
|
|
c_in = 1 / (low_res_sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
|
|
|
|
c_noise = low_res_sigma.log1p()[:, None]
|
|
|
|
|
c_in = K.utils.append_dims(c_in, low_res.ndim)
|
|
|
|
|
low_res_noise_embed = self.low_res_noise_embed(c_noise)
|
|
|
|
|
low_res_in = F.interpolate(low_res, scale_factor=2, mode='nearest') * c_in
|
|
|
|
|
mapping_cond = torch.cat([low_res_noise_embed, pooler], dim=1)
|
|
|
|
|
return self.inner_model(input, sigma, unet_cond=low_res_in, mapping_cond=mapping_cond, cross_cond=cross_cond, cross_cond_padding=cross_cond_padding, **kwargs)
|
|
|
|
|
|
|
|
|
|
def make_upscaler_model(config_path, model_path, pooler_dim=768, train=False, device='cpu'):
|
|
|
|
|
config = K.config.load_config(open(config_path))
|
|
|
|
|
model = K.config.make_model(config)
|
|
|
|
|
model = NoiseLevelAndTextConditionedUpscaler(
|
|
|
|
|
model,
|
|
|
|
|
sigma_data=config['model']['sigma_data'],
|
|
|
|
|
embed_dim=config['model']['mapping_cond_dim'] - pooler_dim,
|
|
|
|
|
)
|
|
|
|
|
ckpt = torch.load(model_path, map_location='cpu')
|
|
|
|
|
model.load_state_dict(ckpt['model_ema'])
|
|
|
|
|
model = K.config.make_denoiser_wrapper(config)(model)
|
|
|
|
|
if not train:
|
|
|
|
|
model = model.eval().requires_grad_(False)
|
|
|
|
|
return model.to(device)
|
|
|
|
|
|
|
|
|
|
# <<<<<< To be removed when we migrate upscaler model to diffusers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class StableDiffusionUpscalerPipeline(DiffusionPipeline):
|
|
|
|
|
r"""
|
|
|
|
|
Pipeline for text-to-image generation using Stable Diffusion.
|
|
|
|
|
|
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
|
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
vae ([`AutoencoderKL`]):
|
|
|
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
|
|
|
text_encoder ([`CLIPTextModel`]):
|
|
|
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
|
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
|
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
|
|
|
tokenizer (`CLIPTokenizer`):
|
|
|
|
|
Tokenizer of class
|
|
|
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
|
|
|
scheduler ([`SchedulerMixin`]):
|
|
|
|
|
A scheduler to be used in combination with the upscaler model. Currently restricted to `EulerDiscreteScheduler`.nn
|
|
|
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
|
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
|
|
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
|
|
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
|
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
vae: AutoencoderKL,
|
|
|
|
|
text_encoder: CLIPTextModel,
|
|
|
|
|
tokenizer: CLIPTokenizer,
|
|
|
|
|
scheduler: EulerDiscreteScheduler,
|
|
|
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
|
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
if safety_checker is None:
|
|
|
|
|
logger.warn(
|
|
|
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
|
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
|
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
|
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
|
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
|
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.register_modules(
|
|
|
|
|
vae=vae,
|
|
|
|
|
text_encoder=text_encoder,
|
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
|
scheduler=scheduler,
|
|
|
|
|
safety_checker=safety_checker,
|
|
|
|
|
feature_extractor=feature_extractor,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Download upscaler
|
|
|
|
|
config_path = huggingface_hub.hf_hub_download(UPSCALER_REPO, "config_laion_text_cond_latent_upscaler_2.json")
|
|
|
|
|
weights_path = huggingface_hub.hf_hub_download(UPSCALER_REPO, "laion_text_cond_latent_upscaler_2_1_00470000_slim.pth")
|
|
|
|
|
self.upscaler = make_upscaler_model(config_path, weights_path)
|
|
|
|
|
|
|
|
|
|
def to(self, torch_device: Optional[Union[str, torch.device]] = None):
|
|
|
|
|
self.upscaler.to(torch_device)
|
|
|
|
|
return super().to(torch_device)
|
|
|
|
|
|
|
|
|
|
def enable_xformers_memory_efficient_attention(self):
|
|
|
|
|
r"""
|
|
|
|
|
Enable memory efficient attention as implemented in xformers.
|
|
|
|
|
|
|
|
|
|
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
|
|
|
|
|
time. Speed up at training time is not guaranteed.
|
|
|
|
|
|
|
|
|
|
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
|
|
|
|
|
is used.
|
|
|
|
|
"""
|
|
|
|
|
# TODO: enable in the upscaler
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def disable_xformers_memory_efficient_attention(self):
|
|
|
|
|
r"""
|
|
|
|
|
Disable memory efficient attention as implemented in xformers.
|
|
|
|
|
"""
|
|
|
|
|
# TODO: disable in the upscaler
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
|
|
|
|
r"""
|
|
|
|
|
Enable sliced attention computation.
|
|
|
|
|
|
|
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
|
|
|
|
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
|
|
|
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
|
|
|
|
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
|
|
|
|
`attention_head_dim` must be a multiple of `slice_size`.
|
|
|
|
|
"""
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def disable_attention_slicing(self):
|
|
|
|
|
r"""
|
|
|
|
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
|
|
|
|
back to computing attention in one step.
|
|
|
|
|
"""
|
|
|
|
|
# set slice_size = `None` to disable `attention slicing`
|
|
|
|
|
self.enable_attention_slicing(None)
|
|
|
|
|
|
|
|
|
|
def enable_sequential_cpu_offload(self):
|
|
|
|
|
r"""
|
|
|
|
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
|
|
|
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
|
|
|
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
|
|
|
|
"""
|
|
|
|
|
if is_accelerate_available():
|
|
|
|
|
from accelerate import cpu_offload
|
|
|
|
|
else:
|
|
|
|
|
raise ImportError("Please install accelerate via `pip install accelerate`")
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda")
|
|
|
|
|
|
|
|
|
|
for cpu_offloaded_model in [self.text_encoder, self.vae, self.safety_checker, self.upscaler]:
|
|
|
|
|
if cpu_offloaded_model is not None:
|
|
|
|
|
cpu_offload(cpu_offloaded_model, device)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def _execution_device(self):
|
|
|
|
|
r"""
|
|
|
|
|
Returns the device on which the pipeline's models will be executed. After calling
|
|
|
|
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
|
|
|
|
hooks.
|
|
|
|
|
"""
|
|
|
|
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
|
|
|
|
return self.device
|
|
|
|
|
for module in self.vae.modules():
|
|
|
|
|
if (
|
|
|
|
|
hasattr(module, "_hf_hook")
|
|
|
|
|
and hasattr(module._hf_hook, "execution_device")
|
|
|
|
|
and module._hf_hook.execution_device is not None
|
|
|
|
|
):
|
|
|
|
|
return torch.device(module._hf_hook.execution_device)
|
|
|
|
|
return self.device
|
|
|
|
|
|
|
|
|
|
def _get_text_conditioning(self, prompt, device, do_classifier_free_guidance):
|
|
|
|
|
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
|
|
|
|
|
|
|
|
|
def get_conditioning(text):
|
|
|
|
|
text_inputs = self.tokenizer(
|
|
|
|
|
text,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
max_length=self.tokenizer.model_max_length,
|
|
|
|
|
truncation=True,
|
|
|
|
|
return_tensors="pt",
|
|
|
|
|
)
|
|
|
|
|
text_input_ids = text_inputs.input_ids.to(device)
|
|
|
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
|
|
|
cross_cond_padding = 1 - attention_mask
|
|
|
|
|
|
|
|
|
|
# I believe the attention mask should be provided here, but the original notebook does not do it
|
|
|
|
|
# TODO: test it out
|
|
|
|
|
# clip_output = self.text_encoder(input_ids=text_input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
|
|
|
|
clip_output = self.text_encoder(input_ids=text_input_ids, output_hidden_states=True)
|
|
|
|
|
hidden_states = clip_output.hidden_states[-1]
|
|
|
|
|
pooler_output = clip_output.pooler_output
|
|
|
|
|
|
|
|
|
|
return hidden_states, cross_cond_padding.to(dtype=hidden_states.dtype), pooler_output
|
|
|
|
|
|
|
|
|
|
prompt_conditioning = get_conditioning(prompt)
|
|
|
|
|
conditioning = prompt_conditioning
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
uncond_conditioning = get_conditioning(batch_size * [""])
|
|
|
|
|
conditioning = [torch.cat([uc_item, c_item]) for uc_item, c_item in zip(uncond_conditioning, prompt_conditioning)]
|
|
|
|
|
|
|
|
|
|
return conditioning
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_safety_checker(self, image, device, dtype):
|
|
|
|
|
if self.safety_checker is not None:
|
|
|
|
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
|
|
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
|
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
has_nsfw_concept = None
|
|
|
|
|
return image, has_nsfw_concept
|
|
|
|
|
|
|
|
|
|
def decode_latents(self, latents):
|
|
|
|
|
latents = 1 / 0.18215 * latents
|
|
|
|
|
image = self.vae.decode(latents).sample
|
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
|
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
|
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
|
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
|
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
|
|
|
# and should be between [0, 1]
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
|
|
extra_step_kwargs = {}
|
|
|
|
|
if accepts_eta:
|
|
|
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
|
|
|
|
# check if the scheduler accepts generator
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
|
|
if accepts_generator:
|
|
|
|
|
extra_step_kwargs["generator"] = generator
|
|
|
|
|
return extra_step_kwargs
|
|
|
|
|
|
|
|
|
|
def check_inputs(self, latents, prompt):
|
|
|
|
|
batch, _, height, width = latents.shape
|
|
|
|
|
if height != width:
|
|
|
|
|
raise ValueError(f"Latents should be square, got {height}x{width} instead")
|
|
|
|
|
|
|
|
|
|
if prompt is not None:
|
|
|
|
|
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
|
|
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
|
|
|
|
|
|
if isinstance(prompt, list) and len(prompt) != batch:
|
|
|
|
|
raise ValueError(f"`prompt` length has to be equal to the latents batch_size ({batch}), but is {len(prompt)}")
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
def __call__(
|
|
|
|
|
self,
|
|
|
|
|
latents: torch.FloatTensor,
|
|
|
|
|
prompt: Optional[Union[str, List[str]]] = None,
|
|
|
|
|
num_inference_steps: int = 50,
|
|
|
|
|
guidance_scale: float = 7.5,
|
|
|
|
|
generator: Optional[torch.Generator] = None,
|
|
|
|
|
output_type: Optional[str] = "pil",
|
|
|
|
|
return_dict: bool = True,
|
|
|
|
|
):
|
|
|
|
|
r"""
|
|
|
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
latents (`torch.FloatTensor`):
|
|
|
|
|
Latents to be upscaled. Generated from a Stable Diffusion Pipeline using `output_type="latents"`.
|
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts to guide the image upscaling process.
|
|
|
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
|
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
|
|
expense of slower inference.
|
|
|
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
|
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
|
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
|
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
|
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
|
|
|
usually at the expense of lower image quality.
|
|
|
|
|
generator (`torch.Generator`, *optional*):
|
|
|
|
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
|
|
|
deterministic.
|
|
|
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
|
The output format of the generated image. Choose between
|
|
|
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
|
|
|
plain tuple.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
|
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
|
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
|
|
|
(nsfw) content, according to the `safety_checker`.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
|
|
|
self.check_inputs(latents, prompt)
|
|
|
|
|
|
|
|
|
|
# 2. Define call parameters
|
|
|
|
|
batch_size, channels, height, width = latents.shape
|
|
|
|
|
if isinstance(prompt, str):
|
|
|
|
|
prompt = [prompt] * batch_size
|
|
|
|
|
|
|
|
|
|
device = self._execution_device
|
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
|
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
|
|
|
# corresponds to doing no classifier free guidance.
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
|
|
|
|
# 3. Prepare timesteps
|
|
|
|
|
# We take log-linear steps in noise-level from sigma_max to sigma_min
|
|
|
|
|
# TODO(Pedro) Fix: create the scheduler with the betas instead
|
|
|
|
|
sigma_min = self.scheduler.sigmas[-2] # Last one is zero
|
|
|
|
|
sigma_max = self.scheduler.sigmas[0]
|
|
|
|
|
# The +1 comes from k-diffusion
|
|
|
|
|
sigmas = torch.linspace(np.log(sigma_max), np.log(sigma_min), num_inference_steps+1).exp().to(device)
|
|
|
|
|
# scheduler.sigmas = torch.cat((sigmas, torch.tensor([0.]).to(device)))
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
|
|
|
self.scheduler.sigmas = sigmas
|
|
|
|
|
|
|
|
|
|
# # 4. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
|
|
|
# extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
|
|
|
|
# 5. Prepare conditioning
|
|
|
|
|
conditioning = self._get_text_conditioning(prompt, device, do_classifier_free_guidance)
|
|
|
|
|
|
|
|
|
|
# 6. Create initial noise
|
|
|
|
|
x_shape = [batch_size, channels, 2*height, 2*width]
|
|
|
|
|
noisy_latents = torch.randn(x_shape, generator=generator, device=device, dtype=sigmas.dtype)
|
|
|
|
|
|
|
|
|
|
# Disabled; according to the notebook it doesn't seem to work well
|
|
|
|
|
# TODO: remove in final implementation
|
|
|
|
|
low_res_sigma = torch.full([batch_size], 0, device=device, dtype=sigmas.dtype)
|
|
|
|
|
|
|
|
|
|
# 7. Prepare inputs for CFG
|
|
|
|
|
low_res = latents
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
low_res = torch.cat([low_res] * 2)
|
|
|
|
|
low_res_sigma = torch.cat([low_res_sigma] * 2)
|
|
|
|
|
|
|
|
|
|
# 8. Denoising loop
|
|
|
|
|
noisy_latents = noisy_latents * sigma_max
|
|
|
|
|
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
|
|
|
|
sigma = sigmas[i]
|
|
|
|
|
sigma = sigma[None]
|
|
|
|
|
|
|
|
|
|
latent_model_input = noisy_latents
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
latent_model_input = torch.cat([latent_model_input] * 2)
|
|
|
|
|
sigma = torch.cat([sigma] * 2)
|
|
|
|
|
|
|
|
|
|
# predict the next denoised latent
|
|
|
|
|
denoised = self.upscaler(
|
|
|
|
|
latent_model_input,
|
|
|
|
|
sigma,
|
|
|
|
|
low_res=low_res,
|
|
|
|
|
low_res_sigma=low_res_sigma,
|
|
|
|
|
c=conditioning,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# perform guidance
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
uncond, cond = denoised.chunk(2)
|
|
|
|
|
denoised = uncond + guidance_scale * (cond - uncond)
|
|
|
|
|
|
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
|
|
|
noisy_latents = self.scheduler.step(denoised, t, noisy_latents).prev_sample
|
|
|
|
|
|
|
|
|
|
# 9. Post-processing
|
|
|
|
|
image = self.decode_latents(noisy_latents)
|
|
|
|
|
|
|
|
|
|
# 10. Run safety checker
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, sigmas.dtype)
|
|
|
|
|
|
|
|
|
|
# 11. Convert to PIL
|
|
|
|
|
if output_type == "pil":
|
|
|
|
|
image = self.numpy_to_pil(image)
|
|
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
|
return (image, has_nsfw_concept)
|
|
|
|
|
|
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|