[feat]: implement "local" caption upsampling for Flux.2 (#12718)

* feat: implement caption upsampling for flux.2.

* doc

* up

* fix

* up

* fix system prompts 🤷‍

* up

* up

* up
This commit is contained in:
Sayak Paul
2025-12-02 04:27:24 +05:30
committed by GitHub
parent 394a48d169
commit 564079f295
5 changed files with 255 additions and 23 deletions

View File

@@ -26,6 +26,12 @@ Original model checkpoints for Flux can be found [here](https://huggingface.co/b
>
> [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
## Caption upsampling
Flux.2 can potentially generate better better outputs with better prompts. We can "upsample"
an input prompt by setting the `caption_upsample_temperature` argument in the pipeline call arguments.
The [official implementation](https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/text_encoder.py#L140) recommends this value to be 0.15.
## Flux2Pipeline
[[autodoc]] Flux2Pipeline

View File

@@ -1,5 +1,8 @@
[tool.ruff]
line-length = 119
extend-exclude = [
"src/diffusers/pipelines/flux2/system_messages.py",
]
[tool.ruff.lint]
# Never enforce `E501` (line length violations).

View File

@@ -13,7 +13,7 @@
# limitations under the License.
import math
from typing import Tuple
from typing import List
import PIL.Image
@@ -98,7 +98,7 @@ class Flux2ImageProcessor(VaeImageProcessor):
return image
@staticmethod
def _resize_to_target_area(image: PIL.Image.Image, target_area: int = 1024 * 1024) -> Tuple[int, int]:
def _resize_to_target_area(image: PIL.Image.Image, target_area: int = 1024 * 1024) -> PIL.Image.Image:
image_width, image_height = image.size
scale = math.sqrt(target_area / (image_width * image_height))
@@ -107,6 +107,14 @@ class Flux2ImageProcessor(VaeImageProcessor):
return image.resize((width, height), PIL.Image.Resampling.LANCZOS)
@staticmethod
def _resize_if_exceeds_area(image, target_area=1024 * 1024) -> PIL.Image.Image:
image_width, image_height = image.size
pixel_count = image_width * image_height
if pixel_count <= target_area:
return image
return Flux2ImageProcessor._resize_to_target_area(image, target_area)
def _resize_and_crop(
self,
image: PIL.Image.Image,
@@ -136,3 +144,35 @@ class Flux2ImageProcessor(VaeImageProcessor):
bottom = top + height
return image.crop((left, top, right, bottom))
# Taken from
# https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/sampling.py#L310C1-L339C19
@staticmethod
def concatenate_images(images: List[PIL.Image.Image]) -> PIL.Image.Image:
"""
Concatenate a list of PIL images horizontally with center alignment and white background.
"""
# If only one image, return a copy of it
if len(images) == 1:
return images[0].copy()
# Convert all images to RGB if not already
images = [img.convert("RGB") if img.mode != "RGB" else img for img in images]
# Calculate dimensions for horizontal concatenation
total_width = sum(img.width for img in images)
max_height = max(img.height for img in images)
# Create new image with white background
background_color = (255, 255, 255)
new_img = PIL.Image.new("RGB", (total_width, max_height), background_color)
# Paste images with center alignment
x_offset = 0
for img in images:
y_offset = (max_height - img.height) // 2
new_img.paste(img, (x_offset, y_offset))
x_offset += img.width
return new_img

View File

@@ -28,6 +28,7 @@ from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .image_processor import Flux2ImageProcessor
from .pipeline_output import Flux2PipelineOutput
from .system_messages import SYSTEM_MESSAGE, SYSTEM_MESSAGE_UPSAMPLING_I2I, SYSTEM_MESSAGE_UPSAMPLING_T2I
if is_torch_xla_available():
@@ -56,13 +57,34 @@ EXAMPLE_DOC_STRING = """
```
"""
UPSAMPLING_MAX_IMAGE_SIZE = 768**2
def format_text_input(prompts: List[str], system_message: str = None):
# Adapted from
# https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/text_encoder.py#L68
def format_input(
prompts: List[str],
system_message: str = SYSTEM_MESSAGE,
images: Optional[Union[List[PIL.Image.Image], List[List[PIL.Image.Image]]]] = None,
):
"""
Format a batch of text prompts into the conversation format expected by apply_chat_template. Optionally, add images
to the input.
Args:
prompts: List of text prompts
system_message: System message to use (default: CREATIVE_SYSTEM_MESSAGE)
images (optional): List of images to add to the input.
Returns:
List of conversations, where each conversation is a list of message dicts
"""
# Remove [IMG] tokens from prompts to avoid Pixtral validation issues
# when truncation is enabled. The processor counts [IMG] tokens and fails
# if the count changes after truncation.
cleaned_txt = [prompt.replace("[IMG]", "") for prompt in prompts]
if images is None or len(images) == 0:
return [
[
{
@@ -73,8 +95,67 @@ def format_text_input(prompts: List[str], system_message: str = None):
]
for prompt in cleaned_txt
]
else:
assert len(images) == len(prompts), "Number of images must match number of prompts"
messages = [
[
{
"role": "system",
"content": [{"type": "text", "text": system_message}],
},
]
for _ in cleaned_txt
]
for i, (el, images) in enumerate(zip(messages, images)):
# optionally add the images per batch element.
if images is not None:
el.append(
{
"role": "user",
"content": [{"type": "image", "image": image_obj} for image_obj in images],
}
)
# add the text.
el.append(
{
"role": "user",
"content": [{"type": "text", "text": cleaned_txt[i]}],
}
)
return messages
# Adapted from
# https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/text_encoder.py#L49C5-L66C19
def _validate_and_process_images(
images: List[List[PIL.Image.Image]] | List[PIL.Image.Image],
image_processor: Flux2ImageProcessor,
upsampling_max_image_size: int,
) -> List[List[PIL.Image.Image]]:
# Simple validation: ensure it's a list of PIL images or list of lists of PIL images
if not images:
return []
# Check if it's a list of lists or a list of images
if isinstance(images[0], PIL.Image.Image):
# It's a list of images, convert to list of lists
images = [[im] for im in images]
# potentially concatenate multiple images to reduce the size
images = [[image_processor.concatenate_images(img_i)] if len(img_i) > 1 else img_i for img_i in images]
# cap the pixels
images = [
[image_processor._resize_if_exceeds_area(img_i, upsampling_max_image_size) for img_i in img_i]
for img_i in images
]
return images
# Taken from
# https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/sampling.py#L251
def compute_empirical_mu(image_seq_len: int, num_steps: int) -> float:
a1, b1 = 8.73809524e-05, 1.89833333
a2, b2 = 0.00016927, 0.45666666
@@ -214,9 +295,10 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
self.tokenizer_max_length = 512
self.default_sample_size = 128
# fmt: off
self.system_message = "You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object attribution and actions without speculation."
# fmt: on
self.system_message = SYSTEM_MESSAGE
self.system_message_upsampling_t2i = SYSTEM_MESSAGE_UPSAMPLING_T2I
self.system_message_upsampling_i2i = SYSTEM_MESSAGE_UPSAMPLING_I2I
self.upsampling_max_image_size = UPSAMPLING_MAX_IMAGE_SIZE
@staticmethod
def _get_mistral_3_small_prompt_embeds(
@@ -226,9 +308,7 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
max_sequence_length: int = 512,
# fmt: off
system_message: str = "You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object attribution and actions without speculation.",
# fmt: on
system_message: str = SYSTEM_MESSAGE,
hidden_states_layers: List[int] = (10, 20, 30),
):
dtype = text_encoder.dtype if dtype is None else dtype
@@ -237,7 +317,7 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
prompt = [prompt] if isinstance(prompt, str) else prompt
# Format input messages
messages_batch = format_text_input(prompts=prompt, system_message=system_message)
messages_batch = format_input(prompts=prompt, system_message=system_message)
# Process all messages at once
inputs = tokenizer.apply_chat_template(
@@ -426,6 +506,68 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
return torch.stack(x_list, dim=0)
def upsample_prompt(
self,
prompt: Union[str, List[str]],
images: Union[List[PIL.Image.Image], List[List[PIL.Image.Image]]] = None,
temperature: float = 0.15,
device: torch.device = None,
) -> List[str]:
prompt = [prompt] if isinstance(prompt, str) else prompt
device = self.text_encoder.device if device is None else device
# Set system message based on whether images are provided
if images is None or len(images) == 0 or images[0] is None:
system_message = SYSTEM_MESSAGE_UPSAMPLING_T2I
else:
system_message = SYSTEM_MESSAGE_UPSAMPLING_I2I
# Validate and process the input images
if images:
images = _validate_and_process_images(images, self.image_processor, self.upsampling_max_image_size)
# Format input messages
messages_batch = format_input(prompts=prompt, system_message=system_message, images=images)
# Process all messages at once
# with image processing a too short max length can throw an error in here.
inputs = self.tokenizer.apply_chat_template(
messages_batch,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=2048,
)
# Move to device
inputs["input_ids"] = inputs["input_ids"].to(device)
inputs["attention_mask"] = inputs["attention_mask"].to(device)
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(device, self.text_encoder.dtype)
# Generate text using the model's generate method
generated_ids = self.text_encoder.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=temperature,
use_cache=True,
)
# Decode only the newly generated tokens (skip input tokens)
# Extract only the generated portion
input_length = inputs["input_ids"].shape[1]
generated_tokens = generated_ids[:, input_length:]
upsampled_prompt = self.tokenizer.tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
return upsampled_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
@@ -620,6 +762,7 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
text_encoder_out_layers: Tuple[int] = (10, 20, 30),
caption_upsample_temperature: float = None,
):
r"""
Function invoked when calling the pipeline for generation.
@@ -635,11 +778,11 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
guidance_scale (`float`, *optional*, defaults to 1.0):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
Embedded guiddance scale is enabled by setting `guidance_scale` > 1. Higher `guidance_scale` encourages
a model to generate images more aligned with `prompt` at the expense of lower image quality.
Guidance-distilled models approximates true classifer-free guidance for `guidance_scale` > 1. Refer to
the [paper](https://huggingface.co/papers/2210.03142) to learn more.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
@@ -684,6 +827,9 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
text_encoder_out_layers (`Tuple[int]`):
Layer indices to use in the `text_encoder` to derive the final prompt embeddings.
caption_upsample_temperature (`float`):
When specified, we will try to perform caption upsampling for potentially improved outputs. We
recommend setting it to 0.15 if caption upsampling is to be performed.
Examples:
@@ -718,6 +864,10 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
device = self._execution_device
# 3. prepare text embeddings
if caption_upsample_temperature:
prompt = self.upsample_prompt(
prompt, images=image, temperature=caption_upsample_temperature, device=device
)
prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_embeds=prompt_embeds,

View File

@@ -0,0 +1,33 @@
# docstyle-ignore
"""
These system prompts come from:
https://github.com/black-forest-labs/flux2/blob/5a5d316b1b42f6b59a8c9194b77c8256be848432/src/flux2/system_messages.py#L54
"""
# docstyle-ignore
SYSTEM_MESSAGE = """You are an AI that reasons about image descriptions. You give structured responses focusing on object relationships, object
attribution and actions without speculation."""
# docstyle-ignore
SYSTEM_MESSAGE_UPSAMPLING_T2I = """You are an expert prompt engineer for FLUX.2 by Black Forest Labs. Rewrite user prompts to be more descriptive while strictly preserving their core subject and intent.
Guidelines:
1. Structure: Keep structured inputs structured (enhance within fields). Convert natural language to detailed paragraphs.
2. Details: Add concrete visual specifics - form, scale, textures, materials, lighting (quality, direction, color), shadows, spatial relationships, and environmental context.
3. Text in Images: Put ALL text in quotation marks, matching the prompt's language. Always provide explicit quoted text for objects that would contain text in reality (signs, labels, screens, etc.) - without it, the model generates gibberish.
Output only the revised prompt and nothing else."""
# docstyle-ignore
SYSTEM_MESSAGE_UPSAMPLING_I2I = """You are FLUX.2 by Black Forest Labs, an image-editing expert. You convert editing requests into one concise instruction (50-80 words, ~30 for brief requests).
Rules:
- Single instruction only, no commentary
- Use clear, analytical language (avoid "whimsical," "cascading," etc.)
- Specify what changes AND what stays the same (face, lighting, composition)
- Reference actual image elements
- Turn negatives into positives ("don't change X""keep X")
- Make abstractions concrete ("futuristic""glowing cyan neon, metallic panels")
- Keep content PG-13
Output only the final instruction in plain text and nothing else."""